Rend. Istit. Mat. Univ. Trieste Vol. XXXIX, 119–126 (2007)

Kakutani's Splitting Procedure in Higher Dimension

Ingrid Carbone and Aljoša Volčič (*)

Dedicated to the memory of Fabio Rossi

SUMMARY. - In this paper we will generalize to higher dimension the splitting procedure introduced by Kakutani for [0,1]. This method will provide a sequence of nodes belonging to $[0,1]^d$ which is uniformly distributed. The advantage of this approach is that it is intrinsecally d-dimensional.

1. Introduction

A partition π of I = [0, 1] is a finite covering of I by a family of intervals $[t_{i-1}, t_i]$, with $1 \le i \le k$ and $t_{i-1} < t_i$, with pairwise disjoint interiors. In 1976 Kakutani introduced the very interesting notion of uniformly distributed sequence of partitions of the interval [0, 1].

DEFINITION 1.1. If π is any partition of [0, 1], and $\alpha \in]0, 1[$, its Kakutani's α -refinement $\alpha \pi$ is obtained by splitting all the intervals of π having maximal length in two parts, having lengths (left and right) proportional to α and $\beta = 1 - \alpha$, respectively.

Kakutani's sequence of partitions $\{\kappa_n\}$ is obtained by successive α -refinements of the trivial partition $\omega = \{[0,1]\}$. For example, if $\alpha < \beta$, $\kappa_1 = \{[0,\alpha], [\alpha,1]\}$, $\kappa_2 = \{[0,\alpha], [\alpha,\alpha+\alpha\beta], [\alpha+\alpha\beta,1]\}$, and so on.

^(*) Authors' address: Ingrid Carbone and Aljoša Volčič, Dipartimento di Matematica, Università della Calabria, 87036 - Arcavacata di Rende (CS), Italy; E-mail: i.carbone@unical.it, volcic@unical.it

DEFINITION 1.2. Given a sequence of partitions $\{\pi_n\}$, with

$$\pi_n = \{ [t_{i-1}^n, t_i^n], 1 \le i \le k(n) \},\$$

we say that it is uniformly distributed, if for any continuous function f on [0,1] we have

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} f(t_i^n) = \int_0^1 f(t) \, dt \, .$$

We denote, as usual, by δ_t the Dirac measure concentrated in t.

REMARK 1.3. It follows from the definition that uniform distribution of the sequence $\{\pi_n\}$ is equivalent to the weak convergence of the sequence of measures

$$\frac{1}{k(n)}\sum_{i=1}^{k(n)}\delta_{t_i^n}$$

to the Lebesgue measure λ on [0, 1].

REMARK 1.4. It is obvious that the uniform distribution of the sequence of partitions $\{\pi_n\}$ is equivalent to each of the following two conditions:

1. For any choice of points $\tau_i \in [t_{i-1}^n, t_i^n]$ we have

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} f(\tau_i^n) = \int_0^1 f(t) \, dt \,,$$

for any continuous function f on [0, 1].

2. For any choice of points $\tau_i \in [t_{i-1}^n, t_i^n]$ the sequence of measures

$$\frac{1}{k(n)}\sum_{i=1}^{k(n)}\delta_{\tau_i^n}$$

converges weakly to the Lebesgue measure λ on [0, 1].

The following beautiful theorem is the main result of [5]:

THEOREM 1.5. For any $\alpha \in]0,1[$ the sequence of partitions $\{\kappa_n\}$ is uniformly distributed.

This result got a considerable attention in the late seventies, when other authors provided different proofs of Kakutani's theorem and also proved its stochastic version [8]. The paper [1] extended the notion to compact metric spaces, and put in connection to a question rised by De Bruijn and Post, which has been addressed also in [7].

The aim of this paper is to extend Kakutani's splitting procedure to higher dimension.

It is convenient to introduce for later convenience the useful standard notation for the so called " α -dyadic" intervals. Let $I(\alpha) = [0, \alpha]$ and $I(\beta) = [\alpha, 1]$. If $I(\gamma_1 \dots \gamma_m) = [a, b]$ (with $\gamma_k \in \{\alpha, \beta\}$ for $1 \le k \le m$), then

$$I(\gamma_1 \dots \gamma_m \alpha) = [a, a + \alpha(b - a)]$$

and

$$I(\gamma_1 \dots \gamma_m \beta) = [a + \alpha(b - a), b].$$

Naturally $\lambda(I(\gamma_1 \dots \gamma_m)) = \gamma_1 \dots \gamma_m = \alpha^p \beta^q$, where p + q = m and p is the number of occurencies of α among the γ_k 's, while q is the number of the occurencies of β .

2. Splitting the *d*-dimensional cube

By $I^d = [0,1]^d$ we denote the unit cube of \mathbb{R}^d . By a cartesian *d*-rectangle (or simply a rectangle) contained in I^d we always mean a set of the type $R = \prod_{j=1}^d [a_j, b_j]$. We denote by $v_i = (a_1, \ldots, a_d)$ the *left endpoint* of R.

A partition of I^d will always mean in this paper a finite collection of rectangles $\{R_i, 1 \leq i \leq k\}$ as defined above, with disjoint interiors and which cover I^d .

The following definition is the natural extension of Kakutani's one-dimensional splitting procedure.

DEFINITION 2.1. Fix $\alpha \in]0,1[$. If $\pi = \{R_i, 1 \leq i \leq k\}$ is any partition of $[0,1]^d$, its Kakutani's α -refinement $\alpha \pi$ is obtained by splitting all the rectangles of π having maximal d-dimensional measure λ_d in two rectangles, dividing in two segments the longest side such that the lower and upper part have length proportional to α and $\beta = 1-\alpha$, respectively. If the rectangle R has several sides with the same length, we split the side with the smallest coordinate index j.

We define now the generalized Kakutani sequence of partitions $\{\kappa_n^d\}$ of I^d as the successive α -refinements of the trivial partition $\omega = \{I^d\}.$

The definition of uniformly distributed sequence of partitions extends naturally to higher dimension.

DEFINITION 2.2. Given a sequence of partitions $\{\pi_n\}$, with $\pi_n = \{R_i^n, 1 \leq i \leq k(n)\}$, we say that it is uniformly distributed if for any continuous function f on I^d , we have

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} f(v_i^n) = \int_{I^d} f(t) \, dt \, .$$

As in the previous section, it is possible to allow, in the above expression, other choices of the points $\sigma_i^n \in R_i^n$ and to express uniform distribution as the weak convergence of

$$\frac{1}{k(n)}\sum_{i=1}^{k(n)}\delta_{\sigma_i^n},$$

for any choice of $\sigma_i \in R_i^n$, to the *d*-dimensional Lebesgue measure λ_d on [0, 1].

Our aim is to prove that the *d*-dimensional Kakutani's sequence of partions $\{\kappa_n^d\}$ is uniformly distributed. This will be obtained introducing a convenient notation and proving two preparatory lemmas.

Let us begin with the following notation. By $R(\alpha)$ and $R(\beta)$ we denote the rectangles $[0, \alpha] \times [0, 1]^{d-1}$ and $[\beta, 1] \times [0, 1]^{d-1}$, respectively. If $R(\gamma_1, \ldots, \gamma_m) = \prod_{i=1}^d [a_i, b_i]$ (with $\gamma_k \in \{\alpha, \beta\}$ for $1 \le k \le m$), then we define

$$R(\gamma_1,\ldots,\gamma_m\alpha) = \prod_{i=1}^{j-1} [a_i,b_i] \times [a_j,a_j + \alpha(b_j - a_j)] \times \prod_{i=j+1}^d [a_i,b_i]$$

$$R(\gamma_1, \dots, \gamma_m \beta) = \prod_{i=1}^{j-1} [a_i, b_i] \times [a_j + \alpha(b_j - a_j), b_j] \times \prod_{i=j+1}^d [a_i, b_i]$$

if

and

$$b_j - a_j > b_k - a_k$$

for all $1 \leq k < j$ and

$$b_j - a_j \ge b_h - a_h$$

for all $j \leq h \leq d$.

LEMMA 2.3. The diameter of the Kakutani partition κ_n^d tends to zero, when n tends to infinity.

Proof. As in the one-dimensional case, every rectangle of κ_n^d is eventually subdivided in two parts, therefore given any $m \in \mathbb{N}$ there exists n_0 such that for $n \geq n_0$ every R_i^n in κ_n^d results from at least md splittings. This implies that each side of R_i^n has length at most L^m , where $L = \max\{\alpha, \beta\} < 1$, and therefore its diameter is smaller than $L^m \sqrt{d}$.

We have to introduce now in this context a notion which is widely used in the theory of uniformly distributed sequences of points (compare for instance Chapter 3 of [6] or Chapter 1 of [2]).

DEFINITION 2.4. We say that a class of functions \mathcal{F} is determining for the uniform convergence of partitions whenever, for a given sequence of partitions $\{\pi_n\}$ $(\pi_n = \{R_i^n, 1 \le i \le k(n)\})$, from

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} f(v_i^n) = \int_0^1 f(t) \, dt$$

for any $f \in \mathcal{F}$, it follows that $\{\pi_n\}$ is uniformly distributed.

By χ_C we will denote the characteristic function of C.

LEMMA 2.5. Assume $\{C_n\}$ is a sequence of finite partitions of I^d whose elements C_i^n , $1 \leq i \leq k(n)$, are rectangles and diam C_n tends to zero. Suppose moreover that for each C_i^m we have

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_{Cj^m}(v_i^n) = \lambda_d(C_j^m) \,, \tag{1}$$

where v_i^n is the left endpoint of C_i^n . Then the family \mathcal{F} of the characteristic functions of the C_i^n 's is determining.

Proof. It is well known that the family of the characteristic functions of all the rectangles $R = \prod_{j=1}^{d} [a_j, b_j]$ is determining. So let $R \subset I^d$ be a (non degenerate) rectangle and denote by B the unit ball of \mathbb{R}^d . Fix $\varepsilon \in]0, 1[$ and let us denote by $R_{\varepsilon} = (\bigcup_{z \in R} (z + \varepsilon B)) \cap I^d$.

Let $n_0 \in \mathbb{N}$ be such that for $n \geq n_0$, diam $\mathcal{C}_n < \varepsilon$. For such an n, let $\mathcal{C}_n(R)$ be the collection of all the sets in \mathcal{C}_n intersecting R, and let us denote by C_R their union. Then we have $R \subset C_R \subset R_{\varepsilon}$ and therefore

$$\lambda_d(R) \le \lambda_d(C_R) \le \lambda(R_{\varepsilon}) \le \lambda_d(R) + c\varepsilon \,, \tag{2}$$

where c is an appropriate constant.

The same inclusions imply that, for arbitrarily small ε ,

$$\limsup_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_R(v_i^n) \leq \lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_{C_R}(v_i^n) = \lambda_d(C_R)$$
$$\leq \liminf_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_R(v_i^n) + c\varepsilon$$
$$\leq \limsup_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_R(v_i^n) + c\varepsilon . \quad (3)$$

The equality in the first line follows from (1). It follows now from (2) and (3) that

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_R(v_i^n) = \lambda_d(R) \,,$$

for any rectangle $R \subset I^d$, and the conclusion follows.

We are now in position to prove the main result of this paper.

THEOREM 2.6. The sequence of partitions $\{\kappa_n^d\}$ introduced in Definition 2.1 is uniformly distributed.

Proof. We apply the previous lemma to the sequence of partitions $\{\kappa_n^d\}$. Since by Lemma 2.3 its diameter tends to zero, we only have

to prove that given any $s \in \mathbb{N}$ and any rectangle $R = R_j^s$ belonging to κ_s^d , we have that

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_R(v_i^n) = \lambda_d(R) \,. \tag{4}$$

But from the previous discussion we know that $R_j^s = R(\gamma_1 \dots \gamma_m)$ for appropriate values $\gamma_k \in \{\alpha, \beta\}$. On the other hand there is a one to one correspondence between the rectangles $R(\gamma_1 \dots \gamma_m)$ showing up in the partitions κ_n^d and the intervals $I(\gamma_1 \dots \gamma_m)$ appearing in the one-dimensional partitions κ_n . Since

$$\lambda_d(R(\gamma_1\dots\gamma_m)) = \gamma_1\dots\gamma_m = \lambda(I(\gamma_1\dots\gamma_m)),$$

the rectangle $R(\gamma_1 \dots \gamma_m)$ is split into $R(\gamma_1 \dots \gamma_m \alpha)$ and $R(\gamma_1 \dots \gamma_m \beta)$ exactly when the interval $I(\gamma_1 \dots \gamma_m)$ undergoes the same procedure. Now Kakutani's theorem says that $I = I(\gamma_1 \dots \gamma_m)$ is subdivided the right number of times, so that

$$\lim_{n \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_I(t_i^n) = \lambda(I) \,,$$

and therefore the analogous identity (4) holds for $R = R(\gamma_1 \dots \gamma_m)$.

3. Conclusions

The interest of this result is that it is intrinsecally *d*-dimensional and this may be useful in applications to integration in higher dimension, where it is important (and not very easy) to find good sets of nodes.

Given κ_n^d , the centers of gravity of the rectangles R_i^n seem to be a convenient choice of nodes.

In a subsequent paper we will compare our results, and other intrinsecally multidimensional methods we are developing, with methods which are based on the subdivision of the one-dimensional factors of I^d as proposed in [3] and [4].

References

- F. CHERSI AND A. VOLČIČ, λ-equidistributed sequences of partitions and a theorem of the De Bruijn-Post type, Annali Mat. Pura e Appl. 162 (1992), 23–32.
- [2] M. DRMOTA AND R.F. TICHY, Sequences, discrepancies and applications, Lect. Notes in Math. 1651, Springer (1997).
- [3] J.H. HALTON, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84-90 and Erratum, ibid. 2 (1960) 196.
- [4] J.M. HAMMERSLEY, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86 (1960), 844–874.
- [5] S. KAKUTANI, A problem on equidistribution on the unit interval [0,1], in Proceedings of the Oberwolfach conference on measure theory (1975), Lecture Notes in Math. 541, Springer (1976).
- [6] L. KUIPERS AND H. NIEDERREITER, Uniform distribution of sequences, Wiley and Sons (1974).
- [7] S. SALVATI AND A. VOLČIČ, A quantitative version of the De Buijn-Post theorem, Math. Nach. 229 (2001), 161–173.
- [8] W.R. VAN ZWET, A proof of Kakutani's conjecture on random subdivisions of longest intervals, Ann. of Prob., 6 no. 1 (1978), 133–137.

Received June 11, 2007.