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Algebraic Aspects of Commutation of

Linear Operators up to a Factor

B. Bellonotto and G. Teppati (∗)

Summary. - When representing projective geometry by means of a
vector space, commutativity can be replaced by commutativity up
to a factor. This feature was investigated by F. Cecioni under
very weak assumptions, but it is hard to generalize the methods
of [4] to a wider algebraic context. In this note, we develop the
independent treatment of H. Weyl, and extend the approach of
[13] to non-commutative rings under suitable assumptions on the
endomorphisms. From this point of view, we show that commu-
tativity of operators up to a non-trivial factor is an exceptional
phenomenon in comparison to strict commutativity.

1. Introduction

The problem treated in this note arises from the investigation of
commutativity of automorphisms in modular lattices, especially in
projective geometries [6],[11]. It can be tackled by passing to the rel-
evant vector spaces, in which the automorphisms can be described
by semi-linear mappings and commutativity is described by commu-
tativity up to a factor.

Strict commutativity of semi-linear operators, especially in com-
plex spaces, was investigated in particular by the second author and
his collaborators [1]. In the present paper, we treat commutativity
of linear operators up to a scale factor. We shall demonstrate that
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commutativity up to a factor other than unity imposes some signifi-
cant constraints. For instance, the phenomenon cannot occur if the
ambient space is R2n+1, or one of the operators is invertible and the
other operator has only one non-zero eigenvalue. The same is true in
a Z2n+1 module if one operator is again invertible and diagonalizable
(see Examples 1).

Such questions had been treated in about 1930 at an early stage
in the development of modern algebra and geometry by F. Cecioni
[4], and somewhat later by others [5]. These authors addressed the
problem under very weak assumptions on the operators involved,
but their use of nilpotent matrices and Jordan forms makes it hard
to generalize the theory, for example to non-commutative rings. An
independent and simpler treatment, which is based on eigenvalues
and eigenvectors, is to be found in Hermann Weyl’s 1931 book [13],
which considers diagonalizable operators only. Further developments
are treated in a paper of J. Schwinger [9], and applications in more
recent papers such as [12], [10], [8], [7].

A motivating example is the following. Let (e1 . . . , en) be a ba-
sis of Cn, and set ϕ = e2πi/n. Let U be the endomorphism of Cn

for which ej is an eigenvector with eigenvalue ϕj , and S one that
cyclically permutes the basis. Then

U(ej) = ϕjej , S(ej) =

{

ej+1, j 6= n
e1, j = n,

and
US = ϕSU. (1)

Taking determinants of both sides, ϕn = 1 and so a first restriction is
that ϕ is a root of unity. By passing to the limit n→ ∞ in a suitable
way, Weyl showed that one recovers the standard representation of
the Heisenberg group and the fundamental commutation relations of
quantum mechanics.

We shall formalize Weyl’s approach so as to identify the minimal
assumptions that are required, and this leads us to formulate ex-
plicit statements that are easily interpretable. Our treatment refers
to modules over a ring that is not necessarily commutative, and we
provide examples in the skew-field of quaternions. Given an endo-
morphism U of a moduleX over a ringR, conditions for the existence
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of automorphisms of X commuting with U up to a factor ϕ 6= 1 are
examined.

Theorem 1 concerns necessary conditions: they hold under re-
markably general assumptions, and exclude commutativity up to a
factor ϕ 6= 1 (meaning the equation (1)) in a number of cases. In
particular, Theorem 1 strongly restricts the point spectrum Λ and
the set of the eigenelements of U , as well as the possible values of
ϕ. We present several examples where commutativity up to ϕ 6= 1
cannot occur. In comparison with the Weyl’s investigation, one of
the most relevant assumptions that emerges is finiteness of Λ rather
than finiteness of an overall dimension. Thus, some of our state-
ments apply in infinite dimensions, and generalize to rings in place
of fields.

Theorem 2 provides necessary and sufficient conditions under
restrictive assumptions which nonetheless allow us to formulate the
problem in terms of a module X over a ring R. We require Λ to lie in
the center R′ of R, and this enables us to group the eigenelements of
U into “eigenmodules” Xλ ⊆ X. We further require X be the direct
sum of the Xλ. The treatment is developed via tensor products, and
the condition on U that we obtain may be expressed by means of
tensor products involving the motivating example above. Corollary
1 concerns the easier case of vector spaces. Some final examples are
given with endomorphisms that do commutate up to a factor ϕ 6= 1.

2. Necessary conditions for the commutation up to a

non-trivial factor

Throughout this paper, R denotes a ring with unity and X a module
over R. We let L(X) denote the algebra of the endomorphisms of
X, and GL(X) the algebra of the invertible endomorphisms of X.

Definition 1. For any pair of elements S,U ∈ L(X) we say that S
and U commute up to a factor ϕ if there exists ϕ ∈ R such that

US = ϕSU.

We say that S and U commute up to a non-trivial factor whenever
ϕ 6= 1.
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Given U ∈ L(X), we let

ΛU = {λ ∈ R | ∃ e ∈ X \ {0} with Ue = λe}

denote the point spectrum of U (0 is of course the null element of
R). The following result then holds.

Lemma 1. Let U ∈ L(X). Suppose that S ∈ GL(X) commutes with
U up to a factor ϕ ∈ R, so that US = ϕSU . Let Λ = ΛU . Then

a1) if λ ∈ Λ and j ∈ N then ϕjλ ∈ Λ; indeed,
a2) any eigenelement e of U with eigenvalue λ is mapped by Sj

to an eigenelement Sje with eigenvalue ϕjλ.
Suppose also that the inverse ϕ−1 of ϕ exists in R (actually, it

suffices to assume the existence of a left inverse). Then:
b1) if λ ∈ Λ and j ∈ Z then ϕjλ ∈ Λ;
b2) The statement a2) above also holds for j ∈ Z.

Proof. By the very definition of Λ, we have that λ ∈ Λ if and only
if Ue = λe for some e 6= 0. It follows that SUe = λSe, with e 6= 0.
From US = ϕSU , we have U(Se) = ϕ(λSe). As S is invertible,
Se 6= 0. We can therefore conclude that λ ∈ Λ ⇒ ϕλ ∈ Λ. By
induction on j, we deduce a1) and a2).

In order to prove b1), let us now assume that a left inverse ϕ−1

of ϕ exists. From US = ϕSU and the invertibility of S, it follows
immediately that US−1 = ϕ−1S−1U . Using the same argument as
before with S−1 instead of S and ϕ−1 instead of ϕ, we deduce that
λ ∈ Λ ⇒ ϕ−1λ ∈ Λ. Combining this result with the preceding points
a1) and a2), we obtain b1) and b2).

We next now apply some elementary group theory to the mul-
tiplicative group R∗ of invertible elements of R. Let N∗ = N \ {0}
denote the set of positive integers.

Proposition 1. Let ϕ ∈ R. The following conditions are equivalent:

i) ϕ is a root of unity, i.e. there exists j ∈ N∗ such that ϕj = 1;

ii) The set ϕN
∗

= {ϕj | j ∈ N∗} is finite.

Whenever these conditions are satisfied, ϕ is invertible. Indeed,
ϕ−1 = ϕm−1, where m can be defined in the following two equiv-
alent ways:
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iii) ϕ is a primitive root of unity of order m in the sense that m
equals the least positive integer j such that ϕj = 1;

iv) m = card(ϕN∗

) = card(ϕZ), so that ϕZ = ϕM where M =
{1, 2, . . . ,m}.

This elementary proposition is based upon the fact that the map-
ping j 7→ ϕj determines a homomorphism of Z onto a cyclic group
isomorphic to Z/(m).

We may now state the main theorem of this section.

Theorem 1. Let X be a module over a ring R without zero divisors.
Let U ∈ L(X) be an endomorphism whose point spectrum Λ = ΛU

is finite. Set Λ∗ = Λ \ {0} and ℓ = card Λ∗; we suppose also that
Λ∗ 6= ∅. Let S ∈ GL(X) and ϕ ∈ R be given such that US = ϕSU .
Then

i) ϕ is a root of unity whose order m divides ℓ (hence commuta-
tivity up to a non-trivial factor may only occur if ℓ 6= 1);

ii) setting ℓ = mc and M = {1, 2, . . . ,m}, the non-zero spectrum
Λ∗ may be expressed (non-uniquely) as

Λ∗ = ϕM · P = {ϕjργ | 1 6 j 6 m, 1 6 γ 6 c}, (2)

where P = {ρ1, . . . , ρc} is a suitable subset of R of cardinality
c.

iii) For each λ ∈ Λ∗, let Xλ denote the subset of X consisting of
eigenelements of U with eigenvalue λ. Then, for each fixed γ,
the subsets Xϕjργ

with j = 1, 2, ..,m are isomorphic: Xϕjργ
∼=

Xργ
.

Suppose in addition that R is a (commutative) field, which we denote
here by K, so that X becomes a vector space over K. Let n be the
dimension of the subspace generated by the eigenvectors of U . Then
the eigenspaces Xϕjργ

with j = 1, 2, . . . ,m are eigenspaces with the
same dimension dγ, so that dimXϕjργ

= dimXργ
= dγ for each fixed

γ. Thus, m divides n, and commutativity up to a non-trivial factor
cannot occur if ℓ and n are coprime.
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Remark. It will also be convenient to write (2) in the form

Λ∗ = ϕM · P =
⋃

γ∈Γ

Λγ , (3)

where Γ = {1, 2, . . . , c} and

Λγ = ϕM · ργ = {ϕjργ | j ∈M}. (4)

Proof. Let us first prove point 1. From the equation US = ϕSU , the
fact that S is invertible and U non-null, we deduce that ϕ 6= 0. Given
λ ∈ Λ∗, we know from Lemma 1 that ϕNλ ⊆ Λ∗, whence card(ϕNλ) <
∞. Proposition 1 now tells us that there exists a smallest positive
integer m such that ϕm = 1.

Let ∼ be the relation on Λ∗ defined by

λ ∼ λ′ ⇔ λ′ ∈ ϕZλ.

This is an equivalence relation: reflexivity and transitivity are ob-
vious, while symmetry follows from the additivity property of the
group Z. The finite non-empty set Λ∗ is partitioned into say c equiv-
alence classes, with c ∈ N∗. We express the equivalence class of Λ∗

containing an element λ by

[λ] = ϕZλ.

Let us show that each of these classes has the same number m of
elements. In effect, we have a chain of equalities

card([λ]) = card(ϕZλ) = card(ϕZ) = card(ϕM ) = m.

The first equality follows from the definition of [λ] . In order to ex-
amine the second, consider the mapping R→ R defined by x 7→ xλ;
it is injective since R has no zero divisors and

x1λ = x2λ ⇔ (x1 − x2)λ = 0 ⇒ x1 = x2.

The same mapping is bijective when restricted to ϕZ, and
card(ϕZλ) = card(ϕZ). As the number c of classes is finite, we
conclude that ℓ = mc, and so c divides ℓ.
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Let us turn to the proof of 2. Having set Γ = {1, 2, . . . , c}, let
(Λγ)γ∈Γ be the equivalence classes of eigenvalues, and let (ργ)γ∈Γ
be any system of representatives of these classes. According to the
remarks above and Proposition 1, we have

Λγ = ϕZργ = ϕMργ = {ϕjργ | j ∈M},

whence

Λ∗ =
⋃

γ∈Γ

Λγ =
⋃

γ∈Γ

{ϕMργ} = ϕM
⋃

γ∈Γ

{ργ} = ϕMP,

where P = {ργ | γ ∈ Γ}. This justifies (2) and (4).
The proof of 3 proceeds as follows. In the following discussion,

we fix γ ∈ Γ, meaning 1 6 γ 6 c. From Theorem 1, we know
that any eigenelement e with eigenvalue ϕjργ is mapped by S into
an eigenelement Se with eigenvalue ϕj+1ργ . Let us temporarily ab-
breviate Xϕjργ

to Xj,γ , so that in this notation, S(Xj,γ) ⊆ Xj+1,γ .

Conversely, any eigenelement e with eigenvalue ϕj+1ργ may be ob-
tained by applying S to the eigenelement S−1e, which is (accord-
ing to statement 2 of Theorem 1) an eigenelement with eigenvalue
ϕ−1ϕj+1ργ . Thus, S−1(Xj+1,γ) ⊆ Xj,γ . It follows that

S(Xj,γ) = Xj+1,γ ,

and S defines the required isomorphism of Xj,γ onto Xj+1,γ .
For the last assertion, suppose that R = K is a field. This

immediately implies that Xj,γ and Xj+1,γ have the same dimension,
which we denote by m. Consider the vector space generated by the
eigenvectors of U , and suppose that n is its (finite) dimension. It
follows that n is a finite multiple of m: as ℓ also is a finite multiple
of m (see point 1), we conclude that n and ℓ cannot be coprime.

To state the next result, let X be a vector space, or more generally
a module over a ring R without zero divisors and which is torsion free
(so λe = 0 implies either λ = 0 or e = 0). Let L(X) be the algebra
of endomorphisms of X, and let O denote the null endomorphism.

Lemma 2. With the above assumptions, suppose that S ∈ L(X) and
U ∈ L(X) commute up to a factor, so that US = ϕSU with ϕ ∈ R
(Definition 1). The following statements hold:
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a) SU 6= O ⇔ US = ϕSU for a unique ϕ ∈ R;

b) SU = O ⇔ US = ψSU for all ψ ∈ R.

Proof. As for a), we first observe that SU 6= O implies the uniqueness
of the factor ϕ. For given

US = ϕSU = ϕ′SU, ϕ, ϕ′ ∈ R,

we infer that (ϕ−ϕ′)SU = O, whence ϕ = ϕ′. The converse follows
by reversing the operations.

Let us now prove b). Assume that SU = O, so ψSU = O for all
ψ and

US = ϕSU = O = ψSU, ∀ ψ ∈ R. (5)

Conversely, we already know that (5) implies that SU = O.

We conclude this section with a few examples.

2.1. Examples 1

As Theorem 1 provides necessary conditions for the occurrence of
commutativity up to a factor ϕ 6= 1, it enables us to find instances
where the phenomenon cannot occur, or at least to restrict the pos-
sible values of the factor ϕ.

i) Such restrictions depend on the very nature of the coefficients
of the ring R. Commutativity up to a factor ϕ 6= 1 cannot
occur at all if the ring R has no non-trivial roots of unity, as
is the case when R is the field Z/(p) of cardinality p. The
restriction ϕ = ±1 applies for the field R and the ring Z, and
more generally for the quotient ring Z/(r) for any integer r > 0.

ii) The impossibility of commutativity up to a factor ϕ 6= 1 may
depend on the module X, independently of the diagonaliz-
able operator U under consideration. According to the last
statement of Theorem 1, this situation occurs when X is an
odd-dimensional real vector space, and also when R = Z2n+1.
Moreover, Theorem 2 implies that if X is a vector space of
prime dimension and U is diagonalizable, then no non-trivial
commutation is possible.
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iii) The impossibility of commutativity up to a factor ϕ 6= 1 may
depend on the particular operator U . This occurs with any
module X, for instance an infinite-dimensional vector space,
whenever U has only one non-zero eigenvalue. It also occurs
for when X is one of R2, C2, Q2, Z2 (Q denotes the skew-field
of quaternions) if U is a diagonal matrix with entries 1, 2. Or,
we could take X to be one of R4, C4, Q4, Z4 and U to be a
diagonal matrix with entries 1, 1, 1,−1.

3. A necessary and sufficient condition for the

commutation up to a non-trivial factor

Let U continue to denote an endomorphism of a module X over a
ring R with unity. In this section we make the further assumption
that the point spectrum Λ = ΛU lies the center R

′

of R. For any
λ ∈ Λ, the set

Xλ = {e ∈ X | Ue = λe} (6)

of eigenelements of U with eigenvalue λ is then a submodule of X,
and we call it an eigenmodule. If we further assume that the sets Xλ

generate X, then the latter is a direct sum of the submodules Xλ

in view of the assumption Λ ⊆ R′. In these circumstances, we can
write

X =
⊕

λ∈Λ

Xλ, X∗ =
⊕

λ∈Λ∗

Xλ. (7)

We shall shortly formulate a necessary and sufficient condition
for the existence of operators S that commute with U up to a non-
trivial factor (Theorem 2). This simplifies considerably in the case
of vector spaces (Corollary 1).

In order to state the results compactly, we first introduce the
following notation. We denote by

mXλ = Xλ ⊗mR

the external direct sum of m copies of Xλ (see [2]). Given a primitive
mth root of unity ϕ, we shall also work with the diagonal matrix

Em =







1
. . .

ϕm−1






(8)
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of size m×m. Given a submodule such as Xλ, we denote by I(Xλ)
and O(X0) the identity and null matrices representing endomor-
phisms of Xλ. With these preliminaries we state our main result.

Theorem 2. Let U ∈ L(X), and suppose that its point spectrum
Λ = ΛU is finite. Set Λ∗ = Λ\{0} and ℓ = card Λ∗, and assume that
Λ∗ 6= ∅. Assume further that Λ ⊆ R′. Suppose that X is generated by
the submodules (6), so that (7) applies. Then there exists an operator
S ∈ GL(X) commuting with U up to a non-trivial factor if and only
if the following conditions all hold:

1. there exists a primitive root ϕ of unity of order m > 1 that
divides ℓ, and an index set Γ = {1, 2, . . . , c} such that Λ∗ is
partitioned into a family

(

Λγ = ϕM · ργ

)

γ∈Γ
of subsets as in

(4),

2. the eigenmodules associated to the elements of each subset are
isomorphic, so that

X = X0 ⊕
⊕

γ∈Γ

⊕

j∈M

Xϕjργ
∼= X0 ⊕

·
⊕

γ∈Γ

mXργ
. (9)

3. the matrix of U relative to (9) has the form

O(X0) ⊕
·
⊕

γ∈Γ

Em ⊗ ργI(Xργ
). (10)

Remark. In spite of the difficulties that can arise when consid-
ering the tensor product of modules over a non-commutative ring,
there is no problem here because the left factor is a module over the
center of the ring (see e.g. N. Bourbaki [3]).

Proof. Let us first prove necessity, that is 1 implies 2. We assume
that an operator S ∈ GL(X) exists, commuting with U up to a
non-trivial factor ϕ. We have the decompositions (7) in which we
use

• the description of Λ∗ in (3),
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• the isomorphism Xϕjργ
∼= Xργ

for each γ ∈ Γ,

both consequences of from Theorem 1. We express the result as a
tensor product

X∗ =
⊕

γ∈Γ

⊕

j∈M

Xϕjργ
=

·
⊕

γ∈Γ

mXργ
.

The corresponding non-null component of the operator U can be
expressed as

U∗ =
⊕

γ∈Γ

⊕

j∈M

ϕjργI(Xj,γ)

=
·
⊕

γ∈Γ

ργ

·
⊕

j∈M

ϕjI(Xργ
)

∼=

·
⊕

γ∈Γ

Em ⊗ ργI(Xργ
).

This ends the proof of point 1.

Let us now prove sufficiency. We thereby adopt points 1,2,3 as
hypotheses. Relative to the representation (9) of X, the operator U
is expressed as

U = O(X0) ⊕
·
⊕

ργEm ⊗ I(Xργ
).

Define, for each j ∈M , the matrix

Pm =

(

0 1
Im−1 0

)

(11)

that is easily seen to satisfy the equation

EmPm = ϕPmEm.

In this notation, the permutation operator defined in the Introduc-
tion is none other than Pn.
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In this more general situation, let us define the operator S by
summing such permutation operators over the non-zero eigenmod-
ules:

S =
⊕

γ∈Γ

Pm ⊗ I(Xργ
).

Ignoring to write explicitly the null component of U , we have

US =

(

·
⊕

ργEm ⊗ I(Xργ
)

)





⊕

γ∈Γ

Pm ⊗ I(Xργ
)





= EmPm ⊗
⊕

γ∈Γ

ργI(Xργ
)

= ϕPmEm ⊗
⊕

γ∈Γ

ργI(Xργ
)

= ϕ





⊕

γ∈Γ

Pm ⊗ I(Xργ
)









⊕

γ∈Γ

Em ⊗ ργI(Xργ
)





= ϕSU.

The matrix S thus constructed belongs to GL(X), as it is invertible.

As a consequence of the preceding theorem, we can prove the
following result in the case of vector spaces.

Corollary 1. Let X be any finite-dimensional vector space over a
(possibly skew-) field F . Let U ∈ L(X). As usual, set Λ = ΛU ,
and assume that Λ∗ = Λ \ {0} is non-empty. Assume further that
Λ ⊆ K ′. Suppose that the eigenvectors of U generate X, so that (7)
applies. Then the following conditions are equivalent:

1. There exists an operator S ∈ GL(X) which commutes with U
up to a non-trivial factor.

2. There is a primitive root ϕ of unity of order m > 1 such that,
relative to a basis of eigenvectors, U can be expressed in the
equivalent ways

U = Em ⊗ V =

·
⊕

δ∈∆

σδEm. (12)
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Here Em is the m ×m matrix over K defined by (8), V is a
suitable finite-diagonalizable matrix over K, and (σδ)δ∈∆ is a
finite family of elements of K.

Whenever the conditions 1 and 2 are satisfied, m divides dimX.

Proof. The statement of the Corollary is more handy than that of
Theorem 2, but its proof is complicated by the manipulation of finite
sets of numbers. (In the following formulas, we also include the
eigenvalue 0.)

We start by observing that the existence of a basis of eigenvectors
of U in X is a particular case of the assumption that X be generated
by the Xλ, as in Theorem 2.

We consider the formula (12), and write the last term expression
as a sum of tensor products involving identity matrices Iδ:

U = Em ⊗ V =

·
⊕

δ∈∆

σδEm =

·
⊕

δ∈∆

Em ⊗ σδIδ.

Using the argument that follows, we can deduce that

V =

·
⊕

δ∈∆

σδIδ. (13)

Indeed, Em =
·
⊕

j∈M

ϕjIj and we may write Em⊗A =
·
⊕

j

ϕjAj for

any operator A. Hence,

Em ⊗A = Em ⊗B ⇔
·
⊕

j

ϕjAj =

·
⊕

j

ϕjBj

⇔ Aj = Bj for all j ∈M

⇔ A = B.

To derive Corollary 1 from Theorem 2, we merely compare the
expression (13) with that originating from (10), namely

V =

·
⊕

γ∈Γ

ργI(Xργ
),
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in the vector space context. In (13), V is effectively expressed by a
diagonal matrix whose entries are the σδ with δ ∈ ∆. The resulting
family is partitioned into subsets

(σδ)δ∈∆γ
=
(

(ργ)δ

)

δ∈∆γ
,

parametrized by Γ, with each subset collecting ℓγ = card(∆γ) equal
elements ργ .

This formula shows that the two expressions for U in (12) are
equal up to isomorphism. Moreover, they specialize the expressions
for U in Theorem 2 to the case of vector spaces, so that the impli-
cation from 1) to 2) of the Corollary follows easily.

The implication from 2) to 1) also follows because any choice
of U or V in (12) can be put in the form described in Theorem 2
by partitioning the family (σδ)δ∈∆ into subsets as explained. This
concludes the proof.

3.1. Examples 2

Let us give some examples using the sufficiency for the occurrence of
commutativity up to a factor ϕ 6= 1 from Corollary 1. In particular,
the last example shows that for a given U there may exist operators
S which commute up to different factors.

Below, Em is the matrix (8), Ir is the identity matrix on r copies
of R, Q the skew-field of quaternions, and i2 = −1. In examples
(1),(2),(3), R is one of Z, R, C, Q, and in example (4), R is C or Q.
We point out that example (1) is well known, especially to physicists.

(1) X = R ⊕ R (2) X =
L3

1 R

U =

„

1 0
0 −1

«

U =

0

@

1 0 0
0 −1 0
0 0 0

1

A

= E2 ⊗ I1 = E2 ⊗ I1 + O

= 1 · E2 = 1 · E2 ⊕ O
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(3) X =
L4

1 R (4) X =
L4

1 R

U =

0

B

B

@

1 0 0 0
0 −1 0 0
0 0 a 0
0 0 0 −a

1

C

C

A

U =

0

B

B

@

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

1

C

C

A

= E2 ⊗

„

1 0
0 a

«

= E4 ⊗ I1

= 1 · E2 ⊕ aE2 = 1 · E4

The sufficiency statement from Corollary 1 ensures that commuta-
tivity up to a factor ϕ 6= 1 does occur. In (1),(2),(3) with a 6= i,−i
we have m = 2 and ϕ = −1; in (4) we have m = 4 and ϕ = −1 or
−i.

In each of the four examples in turn, an operator S commuting
with U up to a factor ϕ, as in the proof of Theorem 2, is given by

S =

„

0 1
1 0

«

,

0

@

0 1 0
1 0 0
0 0 a

1

A ,

0

B

B

@

0 1 0 0
1 0 0 0
0 0 0 a

0 0 a 0

1

C

C

A

,

0

B

B

@

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

1

C

C

A

Note that example (4) with ϕ = −1 is a particular case of example
(3) with a = i, except for the order of the basis vectors.
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