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for Monomial Rings

Mikael Johansson (∗)

Contribution to “School (and Workshop) on Computational Algebra
for Algebraic Geometry and Statistics”, Torino, September 2004.

Summary. - The multigraded Poincaré-Betti series P k
R(x̄; t) of a

monomial ring k[x̄]/〈M〉 on a finite number of monomial gener-
ators has the form

∏
xi∈x̄(1+xit)/bR,k(x̄; t), where bR,k(x̄; t) is a

polynomial depending only on the monomial set M and the char-
acteristic of the field k. I present a computer program designed to
calculate the polynomial bR,k for a given field characteristic and
a given set of monomial generators.

1. Introduction

Let Q = k[x̄] = k[x1, . . . , xr] be the polynomial ring over a field
k with r variables. The ring has a natural Nr-grading1 by set-
ting deg(xi) = ei for the canonical basis vectors ei of Nr. Setting
|(a1, . . . , ar)| = a1 + · · · + ar, we can derive an N-grading of Q from
this Nr-grading. We write deg(m) for the Nr-degree of a monomial
m, and given (a1, . . . , ar) = α ∈ Nr, we write xα = xa1

1 xa2
2 . . . xar

r
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The Nr-grading and its inherent N-grading both are inherited
from Q to the ring R = Q/I where I is a monomial ideal, i.e. an
ideal generated by monomials in Q. We call R a monomial ring.

The Nr-grading inherits, via minimal resolutions respecting to
the grading, to an Nr-grading on TorR(k, k). Thus, we can define
the multigraded Poincaré-Betti series PR

k (x̄; t) of an Nr-graded ring
R over k: ∑

i∈N

∑

α∈Nr

dimk TorR
i (k, k)αxαti

From PR
k (x̄; t), the simple Poincaré-Betti series can be calculated

as PR
k (t) = PR

k (1, . . . , 1; t).

Since [3], it is known that the Poincaré-Betti series of a monomial

ring R holds the form PR
k (t) = (1+t)n

bR,k(t) for some polynomial bR,k(t).

Moreover, Alexander Berglund proved in [4] that deg bR,k(t) < 2n
for monomial rings with n monomial generators. It follows that there
are finitely many Poincaré-Betti serie occurring for a fixed n at all.

We may define a partially ordered graph, or po-graph, to be a
graph with a partial order on the vertices. Two po-graphs are said
to be isomorphic if there is a simultaneous isomorphism of the graph
and the partial order.

Let Q = k[x̄] and Q′ = k[x̄′] be polynomial rings for two finite
variable sets x̄ = {x1, . . . , xr} and x̄′ = {x1, . . . , xr′}, and let I and
I ′ be monomial ideals in Q and Q′ respectively, with M and M ′

the sets of generators for each ideal. For some set S of monomials,
we denote by LS the set of all least common multiples of subsets of
S. LS can be equipped with the structure of a po-graph, ordering
monomials by divisibility and adding an edge between two elements
when they have a non-trivial common factor.

Luchezar Avramov shows in [2] that if two rings R = Q/I and
R = Q′/I ′, with I and I ′ generated by the monomial sets M and M ′

respectively are such that LM
∼= LM ′ , then bR,k(t) = bR′,k(t). From

this follows that for a fixed field and a fixed number of monomial
generators, only finitely many different Poincaré-Betti series can oc-
cur. Avramov further proves that the limitation to a fixed field is
superfluous.

In [4], Alexander Berglund, proving the conjecture by Avramov
that deg(bR,k(t)) ≤ 2n whenever the monomial ideal generating the
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ring R has n generator, constructs combinatorially a minimal model
for R and gives a characterisation of the Poincaré-Betti series denom-
inator polynomial in terms of the homology of associated simplicial
complexes. Avramov’s earlier observation that only finitely many
different Poincaré-Betti series exist for a fixed number of generators
for the monomial ideal I follows as an immediate consequence of
Berglund’s construction.

I have in the course of my M.Sc. thesis work [7] continued Berg-
lund’s work by implementing his formula in a program, written in
C++, capable of calculating simplicial homology over fields of arbri-
trary characteristic, as well as explicitly calculating bR,k(t) for arbri-
trary characteristic of the coefficient field k.

1.1. Simplicial Complexes

Since we will work a lot with simplicial homology, I will take a few
moments to review definitions and terminology. A simplicial complex
on a set V is a set ∆ of subsets of V such that if G ∈ ∆ and F ⊂ G,
then F ∈ ∆. V is called the vertex set of ∆. All simplicial complexes
I shall refer to will have V =

⋃
∆ unless otherwise stated. The i-

faces or i-simplices of ∆ are precisely the elements in ∆ of cardinality
i + 1.

To a simplicial complex ∆ we can associate an augmented chain
complex C̃(∆) with C̃i(∆) the free abelian group on the i-faces of ∆,
where we consider ∅ to be the unique −1-simplex. We equip C̃(∆)
with the standard differential of degree −1. Thus

Hi(C̃(∆)) = H̃i(∆)

As usual, for an abelian group G, we set C̃(∆;G) = C̃(∆) ⊗Z G
and H̃i(∆;G) = Hi(C̃(∆;G)).

For a simplicial complex ∆ we define the Alexander dual

∆∨ = {F ⊆ V | V \ F 6∈ ∆}

For simplicial complexes ∆ and ∆′ with disjoint vertex sets we
define the join

∆ ∗ ∆′ = {F ∪ F ′ | F ∈ ∆, F ′ ∈ ∆′}
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and the dual join

∆ · ∆′ = (∆∨ ∗ ∆
′∨)∨

and note that then

∆ · ∆′ = {F ∈ V ∪ V ′ | F ∩ V ∈ ∆ or F ∩ V ′ ∈ ∆′}

In [5, Lemma 5.5.3], it’s shown that

H̃i(∆; k) ∼= H̃n−3−i(∆
∨; k)

for a complex ∆ on n vertices.

For a graded vector space H =
⊕

i∈N
Hi, we will write H(t) for

the generating function
∑

i∈N
dimk Hit

i of H. We then can find that
the join of complexes as well as the Alexander dual gives rise to rather
easily handled equalities on the level of generating functions for their
respective homologies, again with ∆ a complex on n vertices, and ∆′

some other complex.

tnH̃(∆∨; k)(t−1) = t3H̃(∆; k)(t) (1.1)

H̃(∆ ∗ ∆′; k)(t) = tH̃(∆; k)(t) · H̃(∆′; k)(t) (1.2)

where the t factor in the latter equation comes from the fact that a
simplex with d elements is considered to have dimension d − 1.

2. Berglund’s work

In [4], Berglund treats the theoretical aspects of computation of the
Poincaré-Betti series denominator for monomial rings. I will not
repeat all of his proof here, but rather reference his work to establish
the vocabulary and touch the results I will need for my own work.
Q = k[x̄] is Nr-graded by assigning to a monomial xa1

1 . . . xar
r the

element α = (a1, . . . , ar). We write xα for xa1
1 . . . xar

r . The monomial
xα is said to be squarefree if α ∈ {0, 1}r .

By a construction by Weyman and Fröberg [8, 6], it is enough
to treat squarefree monomial sets, since an easy procedure can be
used to go from a monomial ring to a squarefree monomial ring with
the same homological properties. So we can assume that R = Q/I
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is a squarefree monomial ring with I generated by the monomial
antichain2 M of cardinality n.

For a set S of monomials, set mS = lcm(m : m ∈ S). In particu-
lar m∅ = 1. Thus LM = {mS | S ⊂ M}. For a specific monomial m
and a monomial set M set Mm = {m′ ∈ M | m′|m}.

Now, for I = 〈M〉 a monomial ideal in Q generated minimally
by the antichain M , Berglund introduces the complex

∆M = {S ⊆ M | mS 6= mM or S disconnected}

where connectivity is for S as a subgraph of LM .
Using multigraded ring-deviations

ǫi,α = dimk H̃i−3(∆Mxα ; k)

Berglund gives the squarefree part of the multigraded Poincaré-Betti
polynomial

bR,k(x̄, t) ≡
∏

xα∈LM

(1 − xαpα(t)) (mod 〈x2
1, . . . , x

2
r〉) (2.1)

with pα(t) = t3H̃(∆Mxα ; k)(t). Backelin demonstrated already in [3]
that the denominator polynomial will be squarefree whenever the
monomials generating the ideal all are.

Berglund then goes on to find several more theoretically pliable
forms of this particular formula; expanding the product and taking
the irrelevance of non-squarefree terms into account, he arrives at
the form

bR,k(x̄; t) = 1 +
∑

S

mS(−t)c(S)+2H̃(∆S ; k)(t) (2.2)

where the sum is taken over all non-empty saturated subsets of M
and c(S) counts the number of graph components of S as a subgraph
to LM . We define the saturation of a subset S ⊂ M as the set of
all monomials in M that divide the least common multiple of some
connected component of S as subgraph to LM . A set is saturated if
it is equal to its saturation.

2Recall that in a partially ordered set P , an antichain A is a subset such

that all elements of A are mutually incomparable. The monomials are partially

ordered by divisibility.
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3. The resulting application – poincare

My own achievement is that I have constructed a computer program
to calculate simplical complex homology and mainly to calculate the
denominator polynomials of Poincaré-Betti series using Berglunds
methods. I will devote this section to a discussion of the program,
which can be fetched in its latest version under the MIT software
license from http://www.math.su.se/~mik/poincare/.

The form deemed most promising for implementation as I started
was the form given in (2.1) – mainly since the formulation in terms
of saturated subsets had at that time not yet matured. Thus, I
have implemented specific C++ classes for calculating in the ring
Q/〈x2

1, x
2
2, . . . , x

2
r〉 and let the final product forming the polynomial

take place in that particular ring. The only part forming any kind of
complexity for the straightforward implementation is that of forming
the complex ∆Mxα and calculating its homology over the specified
characteristic.

The construction of ∆Mxα is done with a modified kind of breadth
-first search: monomials are stored in a queue along with an in-
dex keeping track of which of the monomials covering the particular
monomial that have already been tried. Thus, for each monomial in
the queue, all later covering monomials are tried one after the other,
and upon compliance with the two conditions – that the least com-
mon multiple of all generating monomials dividing the candidate is
equal to xα and that those generating monomials are connected as a
graph – the monomial is added to the queue carrying a testing index
one higher than the index that produced it. This algorithm does
yield a speed increase compared to the earlier algorithm that simply
tested all monomials for both conditions; but still is not optimal by
far.

Once the simplicial complex as such has been constructed, the
calculation of its homology commences. This is calculated degree by
degree, constructing a matrix with entries in {0,±1} and fetching its
rank from the matrix routines in the Pari library [1].

This is wrapped in a text-mode user interface, using the GNU
Readline library to facilitate command history and command edit-
ing. The user interface reads in space-separated lists of monomials as
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input to the add simplex and add monomial commands. A mono-
mial, to the program, is a *-separated list of strings of characters,
where each separated string is taken to be the name of a variable.
The variable names must avoid +-*/^,. and whitespace, but can use
any other characters. Any string occuring in such a position will be
interpreted as a variable and added to an internal dynamic variable
pool.

The user interface wraps, among other things, around the Wey-
man-Fröberg method for conversion to a squarefree monomial ring.
The conversion is done transparently, using several internal variables
that are easily converted back to the original variables before printing
the answer. The output rendered by the program is written in such
a way that other computer algebra systems should have an easy time
handling it.

As an example on how the program works, I give in example 3.1
a session, calculating first the simplicial homology of the projective
plane over Q as well as over Z2 and then calculating the Poincaré-
Betti denominator polynomial of Q[x, y, z]/〈x2, xy, yz〉.

Example 3.1.
Welcome to the Poincaré calculator.

You can use this program to calculate simplicial

homology over prime fields and to calculate the

denominator polynomial of the Poincaré-Betti series

of monomial rings.

(c) 2004 Mikael Johansson

This program is released under the MIT License

> add simplex a*b*e a*b*f a*c*d a*c*f a*d*e

> add simplex b*c*d b*c*e b*d*f c*e*f d*e*f

> homology

Calculating homology ranks...

***** Hilbert series of simplicial homology *****

0

> char 2

New characteristic: 2

> homology

Calculating homology ranks...

***** Hilbert series of simplicial homology *****

ZZ + ZZ^2

> add monomial x^2 x*y y*z
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> char 0

New characteristic: 0

> denom

1 - x^2*ZZ^2 - x*y*ZZ^2 - y*z*ZZ^2 - x^2*y*ZZ^3 - x*y*z*ZZ^3

> set multigrade false

> denom

1 - 3*ZZ^2 - 2*ZZ^3

> quit

Thanks for visiting.

Calculation with poincare

Among the things we may observe in example 3.1 is the basic
set of commands – add simplex and add monomial to build simpli-
cial complexes or monomial ideals, homology and denominator (or
an abbreviation denom thereof) to calculate simplicial homology and
the Poincaré-Betti denominator respectively, as well as the command
char, which changes the field characteristic over which all homology
calculations take place and the command sequence set multigrade

false, which sets a flag that causes the program to change the way
it prints the polynomials output by the denominator command, so
that instead of the polynomial bR,k(x̄, t) the program prints the poly-
nomial bR,k(1, . . . , 1, t). The program ends upon receiving quit.

In addition to these, there are the commands clear: clearing the
stored simplicial complex and monomial ideal, but not changing the
characteristics used and var: which changes the implicit homology
variable, which in my review in this paper has been called t, and
which by default in poincare is called ZZ. Should you wish to use
ZZ as a ring variable in your calculations, a change of homology
variable will be necessary. For this, the command var is provided,
with which you can change the string that poincare uses for the
homology variable.

4. Questions and future directions

There are several things that I want to improve upon on the system
herein presented, and also several questions that can be posed.

There are numerous complexity issues associated to the program
in its current form. Mainly, these issues are related to the size of
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the resulting po-graphs for larger sets of monomials. As an exam-
ple, the initial ideal of a Gröbner basis with revlex ordering of the
homogenized cyclic 6-root ideal, i.e. the ideal generated by

x1 + x2 + x3 + x4 + x5 + x6,

x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x1x6,

x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x1x5x6 + x1x2x6,

x1x2x3x4 + x2x3x4x5 + x3x4x5x6 + x1x4x5x6 + x1x2x5x6+

+ x1x2x3x6,

x1x2x3x4x5 + x2x3x4x5x6 + x1x3x4x5x6+

+ x1x2x4x5x6 + x1x2x3x5x6 + x1x2x3x4x6,

x1x2x3x4x5x6 − y6

invariably becomes larger than Pari’s working memory. This initial
ideal has 100 monomial generators and produces a po-graph with
11443 elements. The calculations normally halt after between 200
and 400 lattice point calculations.

The problem I have observed with for instance this example is
that the calculation of homology of large simplicial complexes is
memorywise unfeasible. The most visible problem is when the ho-
mology calculations turn out to be too hard, since this results in
a crash in the Pari library; whereas too hard construction of the
simplicial complexes merely result in slow running of the program.

Question 4.1. Given the rather special structure of the matrices
that are used to calculate field homology of a simplicial complex, can
anything be said about the sizes of elements of a matrix as some sort
of reduction algorithm is used to deduce its rank? Can some variant
of row-reduction be found such that the matrices that produce “large”
entries (for instance, larger than a standard 32-bit word) have some
easily recognizable feature?

If such a method could be found, then it would be possible to
single out the specific homology matrices that would actually need
treatment with some sort of bignum library, and produce fast 32-bit
(sparse) matrix arithmetic to deal with all other instances. Such a
separate treatment would also obliterate the need to rely on Pari’s
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internal memory allocation structures and would give the user more
control over acceptable memory consumption for the calculations at
hand.

An obvious further point of attack is the generation algorithm
for the Berglund complexes. This would be vastly improved if a
search algorithm would be constructed that minimizes the number
of multiple checks done on each candidate monomial; since the graph
connectivity checks are not, in the context, very fast.

Finally, an interesting direction to take would be to look at the
APIs for larger computer algebra systems and try to adapt the code
here written to work as a pluggable module to those systems; for
instance providing an interface to calculate Poincaré-Betti series of
monomial rings directly from Singular or Magma or Macaulay 2.
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