Rend. Istit. Mat. Univ. Trieste
Vol. XXXTII, 299-311 (2001)

Low Frequency
Electromagnetic Scattering.
The Impedance Problem for a Sphere

GEORGE VENKOV AND YANY ARNAOUDOV *)

SUMMARY. - We consider the low-frequency scattering problem of
a plane electromagnetic wave by a small sphere, on the bound-
ary of which an impedance condition is satisfied. The impedance
boundary condition was introduced by Leontovich (1948) and it
accounts for situations where the obstacle is not perfectly con-
ducting but the exterior field will not penetrate deeply into the
scatterer. It provides a method to simulate the material prop-
erties of the surface of highly absorbing coating layers. For the
near electromagnetic field we obtain the low-frequency coefficients
of the zeroth and the first order while in the far field we derive
the leading non-vanishing terms for the scattering amplitude, the
scattering and the absorption cross-sections.

1. Introduction

The problem of scattering of an electromagnetic plane wave by a re-
sistive object, whose characteristic dimension is much less than the
wavelength of the incident wave has taken less attention than the
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corresponding problem for an acoustic plane or spherical wave. In
this work we develop the low-frequency technique for a scatterer,
where Leontovich boundary condition holds on its surface [6]. While
no general results for this impedance boundary condition are known
we present a new method for obtaining solutions in the special case
of a spherical obstacle. The problem of low frequency scattering,
both for the sphere and the ellipsoid, appears in the work of Das-
sios and Kleinman [2], where the zeroth order approximations are
obtained and the new results in the present paper are the relative
first order low-frequency approximations as well as the exact form of
the absorption cross-section.

We attack the problem from the point of view of Helmholtz de-
composition theorem [3], in which the vector field solutions are ex-
pressed as a sum of a longitudinal and a transverse part. The same
separation holds for the low-frequency approximations [4], which are
reduced to the solution of an exterior boundary value problem for
the vector Laplace equation [6].

The longitudinal part of the solution may be represented as the
gradient of a scalar potential and consequently all the techniques,
applied for the scalar Laplace equation are at once available to pro-
vide result. The second part, namely the transverse component, is
obtained from a vector potential by taking the curl. This field may
always be derived from scalar fields and the gauge requirement that
the field has zero divergence leads again to the scalar Laplace equa-
tion [3].

The scalar Laplace equation with boundary conditions on a sphe-
re is simply representable if we separate it in spherical polar coordi-
nates. The form of the solution for the exterior scattering problem
is a spherical harmonic of the n-th order times ="~ [1].

It is shown that in the case of plane wave incidence both the
near and far field approximations are expressible in terms of a finite
number of multiples [2]. This is not true in the case of spherical wave
incidence, where the near field is constructed from infinitely many
multiple terms. This difference is due to the fact that in the near field
every plane wave component generates an appreciable interaction
with the scatterer.

The formulation of the problem is presented in Section 2. Sec-
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tion 3 involves the decomposition of the scattering problem into low-
frequency approximations [4]. The reduction of the initial wave prob-
lem to a set of exterior problems for the approximation coefficients
and the relative explicit results are partially provided in Section 4.
The low-frequency approximation for the cross-sections furnished in
Section 4 shows that the absorption cross-section is by two orders of
magnitude larger than the scattering cross-section.

2. Statement of the problem

Consider a sphere Si with radius R, centered at the origin, which lies
in a homogeneous isotropic medium V with magnetic permeability p,
electric primitivity € and conductivity o. An incident plane-polarized
electromagnetic wave (E', H?) propagates in the direction k and has
the following form

. . . 1~ .1
EZ(I‘) — éezkk-r’ HZ(I‘) — Ebezkk-r (1)

where the polarization vectors &, b and the direction k form a right-
handed orthogonal system & x b=k, 4-b = 0. Here

k = \epw? + ipow, ITmk > 0

is the wave number with angular frequency w. The harmonic time-

dependent factor e ™! is suppressed throughout this work.

The impedance scattering problem in the exterior V¢ of the
sphere Sg is formulated as follows. Find the total field
E(r) = E(r) + E’(r), H(r) = H'(r) + H%(r), re V® (2)
which solves the Maxwell’s equations
VxE=ikZH, V xH= —LikE
V-E=0,V-H=0

and satisfies the Leontovich or impedance boundary condition

nx (hxE)=-Z,Z(i x H), (4)
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while the scattered fields (E*, H®) satisfy the Silver-Miiller radiation
conditions

. V x E? ) E?
rli)nolo<rx{V><Hs}+Zkr{ H })—0 (5)

uniformly over directions.

The dimensionless parameter Z; denotes the surface impedance
of the obstacle relative to the characteristic impedance

pw

Vepw? +ipow

7 =

of the medium and may vary on Sg. Here i is the outward unit
normal to the sphere.

The impedance problem will reduce to the perfect conductor as
the surface impedance approaches zero.

The solutions E, H of the above scattering problem enjoy the
following integral representation (Stratton-Chu) formula

E(r) = E(r) + %Sf [ikZ G (r,r') (2’ x H(r"))

+V.G (r,r') (A" - E(r)) — (VoG (r,r') x (&' x E(r')))]ds(r')

H(r) = Hi(r) + & [ [-ik 2G (r,1') (8 x E(r'))
Sr
+Vp G (r,r') (8- H(r)) — (Ve G (r,r') x (&' x H(r')))] ds(r)
(6)

where G (r,r') is the fundamental solution of the Helmholtz equation
in Ve,

Taking into consideration the impedance boundary conditions,
we obtain the following integral representations for the solutions of
the scattering problem
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E(r) = E'(r) + %sf [—ik ZLSG (r,r') (' x (' x E(r)))

+VeG(r,r) (@ - E(r)) — (Ve G (r,r') x (i’ x E(r')))]ds(r),

H(r) = Hi(r) + %Sf [—ik ZsG (r,r') (' x (' x H(r")))

+VeG (r,r) (& - H(r)) — (Ve G (r,r') x (&' x H(r)))]ds(r).
(7)
The electric scattering amplitude g¢(f) is given by the surface
integral

g.(F) = — % x
tx [[-Z#- (&' x H(r')) + &' - E(r))] /e * T ds(r') (8)
Sr

i x [ [ (@ x B(r')) + Z&' - H(z) r'e T ds(r)
SR

and the magnetic scattering amplitude, with simplification from the
boundary condition, is given by

1
gm(f') = Zf' X ge(f')'

The scattering amplitudes contain all the obstacle information
and it is easily seen that is tangential in nature.

We define the differential scattering cross-section or radar cross-
section to be the power, scattered in the direction ¥, relative to the

incident power flux in the direction of incidence and given explicitly
by

~ 47I' v 12
o(¢) = 1312 (F)"
The scattering cross-section is defined as the value of o(t) aver-
aged over all directions, i.e.

2 [ e as(d). )

5'2

os(t) =
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A similar expression is used to define the absorption cross-section
as

(%@):R{/éTQE@qF—Wﬂ-anF)dgﬂy (10)
Sr
The extinction cross-section which measures, in units of area, the
total energy that the scatterer removes from the incident wave either
by scattering in all directions, or by absorption is given by

0e(F) = 05(F) + o4 (F).

3. The low-frequency expansion

When the characteristic dimension of the scatterer is much smaller
than the wavelength of the incident wave, all the fields are analytic
functions of the wavenumber [2]. In other words, the assumption
that kr << 1 implies that the total fields can be expanded in power
series with respect to k and have the following form

szégyﬁn@“yzIﬂ”:%agfg(kﬁn’uD

n!

Substituting the expansions into the vector Helmholtz equation,
adding the boundary condition and equating like powers of ik we
arrive at the following sequence of potential problems for the low-
frequency coefficients

V x V x Ey(r) = —n(n — 1)E, »(r),
V x V x Hy(r) = —n(n — 1)H,_(r)

V x E,(r) =nZH, _4(r),

12
V xHy(r) = —%nEn_l(r) (12)

V- -E,(r)=0,
V-Hy,(r) =0
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for r € V¢ and the following boundary conditions

i x (i x By (r) = —Z,Z(A x Hy(r)), r€ Sq (13)

In the order to establish the behaviour of the approximations
E,,H, in the far field we replace 11 into the integral representation
7. This give us that

Z
7z ~ ~/ n—l1 n—l 1ni—1 ) )
—g [ ' x (A X . e — ' H, o (x))ds(r)
Sr 7j=1 J
1 A S n 1j—3 1\ ! ’
—/@- > )G =D =1 "H,_(r")r'ds(r)
Sr j=3 \J

(15)
for every n = 0,1,2,. ...

The electric scattering amplitude is expressible in terms of the
coefficients in the low-frequency expansions by substituting the ex-
pansions 11 into the expression for g.(f) given in Section 2, expand-
ing the exponential that appears in the integrand and collecting like
powers of ik. The corresponding expression for the electric scattering
amplitude that results is
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4. Near and far field approximations

For the zeroth order approximations Eg, Hy we have that they are
harmonic vector functions, which assumes the asymptotic form

Eo(r):é+0<%>, Hg(I‘)z%f)—i—O(%), r—oo  (17)

solve the differential equations

> {n ) -
i
Hy(r) ’

and the boundary condition

fi x (A x Bo(r)) = —ZsZ(i x Hy(r)), € S. (19)

From the Helmholtz’ theorem [3] we have that any vector field,
which is finite, uniform, continuous and vanishes at infinity, may be
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expressed as a sum of a gradient of a scalar potential and a curl
of a zero-divergence vector potential. We shall call these two parts
the irrotational (longitudinal) and the solenoidal (transverse) part,
respectively.

For Eg, Hy we need to arrange things so that the fields have zero
curl and zero divergence. This condition gives us that they have
only longitudinal part, which we shall obtain as a gradient of scalar
potentials.

Thus, for the zeroth order coeflicients we have

1.
E¢(r) =a+ VUqy(r), Hpy(r)= Zb + V&y(r), reVe (20)

The condition for zero divergence yields, that the potentials Wy,
®( are solutions of the scalar Laplace equation.

Let us introduce a spherical polar coordinate system with its
origin at the centre of the sphere Sp and unit vectors F, 6 and Q.
Then we shall consider that the polarization vectors &, b and the
direction k have the following coordinate components

a = (sinf cos ¢, cos O cos ¢, —sin ),
b = (sinfsin ¢, cos O sin p, cos @), (21)
k = (cos 6, —sin#,0).

just as the Cartesian unit vectors %X, ¥ and z. Substituting the
expression for the gradient V in spherical polar coordinates into the
boundary condition 19, we obtain the relations

%\11070 + a9 + %@0#3 + Zsb3 = 0,
(22)
%‘I’o,w + a3 sinf — %@0’9 sinf — Zsby sinf = 0,

where we denote by a;, b;;1 = 1,2, 3 the three coordinate components
of the polarization vectors & and b. After differentiating the first
equation with respect to ¢ and the second one — to 6 and eliminating
the function ¥y we obtain the equation

cos 0 1
P Dpg— ——
0,00 + sing %Y sin? 6

2R
Qo pp — - sinfsing = 0. (23)
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If we separate the radial and angular parts in @ the equation
(23) becomes the associated Legendre equation from which we find
that

3
Dy = —%Pf (cos @) sin ¢, (24)
with P! be the associated Legendre function.
The same approach, but differentiating the first equation in 22
with respect to 6, the second - to ¢ and eliminating now the function
®q, we use to find that

R®
Vo = —— Py (cos0) cos ¢ (25)
T

Finally the zeroth order approximations Eg, Hy are obtained
from ¥y and @y by taking the gradient.

The first order low-frequency coefficients E;, H; are again solu-
tions of the vector Laplace equation and have zero divergence. From
the relations 12 we obtain that

VXxVxE|(r)=0, VxVxH(r)=0,
V x Ei(r) = ZHy(r), VxH;(r) = —4E(r), reVe

V- -Ei(r) =0, V- -H(r)=0.

Using the aforementioned breaking of the vector solutions into a
longitudinal and a transverse part we write E;, H; as

Ei(r) = a(r-k) + V x (r¥(r)¢) + VI3(r),
(27)
Hi(r) = +b(r - k) + V x (r®l(r)E) + Vo3(r)

where the scalars U1, U2 &1 and ®? are solutions of the Laplace
equation in the exterior of the sphere in the form

"I P (cos @) sing or "' P™(cos ) cos .

First, we need to arrange things so that
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VxEi(r) =V xa(r-k)+VxVx (r¥(r)i)
_|_

— b+ (£ (rel(n)) = ZHo(x)

:Z[%E)-FV —R—,in(cow)SmsO)],

V x Hy(r) = V x Lb(r k) + V x V x (rol(r)8)
= —La+ V(2 (rol(r))) = —LEo(r)
:_%[Q-FV(—%”Pf (cos9)cos<p)].

This, give us the relations
3 .
a% (T\Ij%(r)) = _17?_2]311 (cos B) sin ¢,

a% (r@i(r) = ZR—;PII (cos ) cos .
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(28)

(29)

Now, from the Leontovich boundary condition, applying the same
technics used to obtain the zeroth order coefficients, we find the

functions U1, W2 &1 and ®? in the following form

Ul() = R—3P11 (cos ) sinp,

_1"2

U2(f) = —%4 [%P; (cos 0) + 2= P! (cos )] cos ¢,

r2

Ol(f) = —ZR—;PII (cos 0) cos p,

P2 (f) = —f—; [T%PQI (cos @) + #Pf (cos 9)] sin .

Finally, the first order approximations are
E|(f) = a(r - k) + R*V x (1P} (cos ) sinp.t)
—%V [(%PQ1 (cos 0) + 222 P! (cos 0)) cos ],

r2

(r-k)— R73V x (1P} (cos 0) cos ¢.F)

1
Z
—%V [(%P; (cos ) + %Pf (cos 0)) sin go].

(30)

(31)
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The explicit forms of the low-frequency approximations Eg, E{,Hg
and H; allows the calculation of the electric scattering amplitude up
to the order k% through the expression

ge(F) =

— k2§ lf x Sf [—Z%- (' x Ho(r))) + 1’ - Eg(r’)]r’ds(r’)]
+i X sf [ (# x Eo(r))) + Z1 - Hg(r’)]r’ds(r’)>

HiFEx [ [ =28 (F x (i) — (- x') Ho(r') (32)
+r' - (Eq(r') — (8- 1) Eo(r))]r'ds(x')]

+F % Sf [£- (& x (Bi(r') — (£-1') Eo(r')))
+Z¢ - (Hy(r') — (8- v') Ho(r'))]r'ds(r")) + 0 (k) .

With the use of the addition theorem for spherical harmonics

over the unit sphere and after tedious calculation of a number of
particular surface integrals we arrived at the expression

0
g.(#) =i (kR)® (1+ Py (cosB)) cos ¢
—(1+ P1 (cos@))singp
0

8+ P»(cos §) .
+(kR)"| ~ + =6z )COS‘P +0 (k%) ,kR — 0.

6 - 6 i
(3P12(2(S)s )+ Zs4 Pzécos )) sing

(ZsPl(cos )
2

(33)
Substituting g. in 9 for the scattering cross-section we easily
obtain that

—4 2 [ = 4 e s 6
os = 4R <3 (kR)" + <24 + 6022 + 15) (kR) >

+0 ((k-R)S) , kR 0.
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Now, from the formula 10, replacing the approximation coeffi-
cient for the total field we evaluate the absorption cross-section up
to the order k?

0 = 47 R? (kR)* % (Zi + Zs> +0(kR)*, kR — 0.
S

We observe that the low-frequency approximation of g, is by two
orders of magnitude higher than o4, which means that the absorp-
tion is much more prominent than scattering. Note that, for plane
wave incidence, both the near and the far fields are expressed in
terms of finite number of multiples. The reason for this behaviour
is connected to the actual distance between the singularities of the
incident and that of the scattered field. In our case this distance is
infinite and only the first few multiples of the incident field interact
with the scatterer. These multiples appear in the asymptotic form of
the total field and the solution has as many multiples as those that
survive at infinity.
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