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Finitely Additive Phenomena

ANNA MARTELLOTTI *¥)

1. Introduction

In 1976 Dorothy Maharam’s milestone paper [26] started with the
following sentence: Some years ago S. Bochner remarked to the au-
thor that finitely additive measures are more interesting, and perhaps
more important, than countably additive ones. Certainly there has
been increasing interest in them shown by mathematicians and statis-
ticians; and they lead quickly to problems that seem hard to answer.

The aim of these notes is to prove the assertion still to be true
more than twenty years later.
The first question that an analyst (if unfamiliar with Measure The-
ory) would probably ask is: why should one bother with finitely ad-
ditive measures, when everything is so nice and smooth and already
done with countably additive ones?

Let me just mention three reasons that any mathematician would
hopefully judge good enough to keep reading these notes:

- the vector space ba(€2,X) of bounded finitely additive measure is
the topological dual of the space L% (m) (with m countably addi-
tive);

- in Stochastic Integration, the classical Doléans measure, that fully
describes a process, and that allows to reasonably define a stochas-
tic integral in Banach spaces, is in general only finitely additive;
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- finitely additive probabilities are the conceptual foundations for
subjective probability, as in the work of say De Finetti, Dubins,
Savage.

By finitely additive phenomenon 1 mean a difference in the behaviour
of finitely additive measures versus countably additive ones. In these
notes I will for instance show that:

— 0 — 0 and ¢ — § absolute continuity fail to be equivalent;

non atomic finitely additive measures do not necessarily enjoy the
Darboux property;

the Lyapounoff theorem does not hold any more;

convergence in measure and almost everywhere do not compare;

LP spaces may be non-complete;

— the Radon-Nikodym theorem fails to be true.

There are of course several more topics concerning finitely addi-
tive measures that will be neglected in these notes, like the pathology
in the existence of liftings, various decomposition results, the exis-
tence of controls and Rybakov controls. On the other side I have
emphasized the existence of countably additive restrictions, an argu-
ment that is hardly treated elsewhere.

In other words I have made choices about the finitely additive phe-
nomena that I wanted to describe.

My selection has been generally driven by my feeling of competence
and my taste, but also by the bounds of the reasonable lenghts of
these notes and more than anything else by the determined purpose
of keeping things simple: this survey is in fact aimed at the youngest
in the audience, those who know almost nothing of finitely additive
measures, but just the standard amount of classical Measure Theory
and very little of Functional Analysis. Therefore use it just as a first
seight into a flavoured, interesting topic in advanced Measure The-
ory, but not as an updating on a research field.

In this very perspective I have reported the results in the most ele-
mentary cases, IR or IR", and only mentioned the extension to infinite
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dimensional cases at the end of each of the five sections in which the
material has been arranged:

1. The Stone extension;

2. Non atomicity and other regularity assumptions;
3. The range of a finitely additive measure;

4. Countably additive restrictions;

5. Integration and related pathologies.

The list of references that I have included is only functional to these
notes, for I have definitively given up the project of including a more
complete bibliography after having tried for a few days, only to con-
clude that the literature is too vaste and I know too little!

These notes also include 14 critical exercises, that the reader in-
trigued by this field of research may use as a first training; this in
obeyence with the general philosophy, that in this particular case
would recite: to start thinking finitely additive, you’ve got to first
flirt with finitely additive objects!

2. A big brother - the Stone extension

The material of this first lecture, and much more on the topic, can
be found in the books [8] and [33]; I am just reporting what is needed
for the purposes of this minicourse.

Although this concept may be familiar for most of the readers, in
the aim to make these notes self-contained, I am going to give the
definition of a Booelean algebra and some related definitions.

DEFINITION 2.1. A Boolean algebra s a non empty set B equipped
with two binary operations V and A and a unary operation © satisfying
the following identities

(2.1.1) aNb=bAa,aVb=>bVa for all a,b € B;

(2.1.2) a N(bANc) =(aNb)Acand aV (bVec) = (aVb)Vc for all
a,b,ce B
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(2.1.3) (aVb) ANb="0b,(a ANb)Vb=0b for all a,b € B;

(2.1.4) aV (bAc)=(aVb)A(aVe) andaN(bVe)=(aAb)V(aAc)
for all a,b,c € B;

(2.1.5) (aV a®) Nb=b, and (a ANa®) vV b=1>b for all a,b € B.

EXERCISE 2.2: Prove that for each a,b € B, a A a® = b A b and
aVa®=bV°

In view of the previous Exercise, there are two elements 0 and 1
in B such that a Aa®=1 and a V a® = 0 for every a € B.
We introduce a partial ordering on B in the following way: For a,b €
Ba<bifaVb=>bor equivalently a A b = a. The relation < is a
partial order, namely it is reflexive, antisymmetric and transitive.

DEFINITION 2.3. Let A and B be two Boolean algebras, and h a map

from A to B. h is an isomorphism if it is one-to-one, onto and such
that

(2.2.1) h(anb) = h(a)Ah(b), h(aVbd) = h(a)Vh(b), and h(a®) = h(a)®
for all a,b € A.

We shall now introduce the notion of a filter.
DEFINITION 2.4. A subset J of a Boolean algebra B is a proper filter
if
(2.3.1) 0 ¢ J;
(2.3.2) aNbe J for alla,be J ;

(2.3.3) ifbe J, a € B and a > b, then a € J.

J is a maximal filter in B if there is no proper filter in B that properly
contains J.

EXERCISE 2.5:

(2.1) Let {F;,i € I} be a family of filters; then ﬂ F; is a filter;
i€l
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n
(2.2) If H is a subset of B such that /\ a; # 0 for each finite collec-
i=1
tion aqy,...,a, in H, then there exists a filter containing H.
(2.3) If F is a filter in B, and a € B is such that a A f # 0, for every
f € F | then there is a filter J containing F and a.

(2.4) Every filter is contained in a maximal filter (use Zorn’s Lemma).

If 3 is an algebra of subsets of a set 2 then ¥ is a Boolean
algebra with respect to union, intersection and complementation; it
is natural to ask whether the converse is true, namely is any Boolean
algebra in fact an algebra of sets? The following theorem provides a
partially affirmative answer.

THEOREM 2.6. (Stone Representation Theorem). Let B be a Boolean
algebra. Then there exists a compact totally disconnected space S
such that B is isomorphic to the algebra G of clopen subsets of S.

Proof. Let S be the set of all maximal filters in B. For each a € B
let h(a) be the set of all filters in S containing a. Then the following
properties hold:

o
~—

h
h(aV b) = h(a) Uh(b) for a,b € B;
h(a Ab) = h(a) N h(b) for a,b € B;
h(a®) = S\ h(a) for a € B;
h(a) # h(b) if a # b.

Consider the family G = {h(a),a € B}. By (2.1.iii) G is closed under
finite intersections, therefore the collection 7 of unions of sets from
G is a topology on S, for which G is a base.

CLAM 1: (S, 7) is a Hausdorff space.

Proof. Let J1 and J9 be two distinct elements in S; then there exists
a € B such that a € J; and a® € J. Thus J; € h(a) and J2 € h(a®).
Since both h(a) and h(a®) belong to G they are open, and from
(2.1.iii) h(a) N h(a®) = Q. O
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CLAM 2: (S, 7) is compact.

Proof. Since every closed set in S is an intersection of sets from G,
it suffices to show that G has the finite intersection property. Let
{h(ai),1 € I} be a family in G; for each finite subset I" of I /\ a; 0.
el
From (2.2) and (2.4) there exists a maximal filter J D {h(a;),i € I},
for which clearly one has J € m h(a;). O
1€l

CLAIM 3: G is the collection of clopen sets of S.

Proof. From (2.1.iv) G is closed under complementation, therefore
each element in G is clopen. Conversely, let U be a clopen subset
of §: then U is a union of elements from G, and since U is closed,
and S is compact, this union admits a finite subcover. As G is closed
under finite unions, by (2.1.ii) U € G. O

CLAIM 4: (S, 7) is totally disconnected.

Proof. this is an obvious consequence of Claim 3 and the fact that
G is a base for . O

CLAIM 5: B and G are isomorphic.

Proof. Indeed the map h from B to G is the requested isomorphism:
property (2.2.1) follows immediately from (2.1.i), (2.1.ii) and (2.1.iii),
and it is obvious that h is onto; finally, from (2.1.v) h is also one-to-
one. U

We will call the space (S, 7) the Stone space associated to the
Boolean algebra B.

EXERCISE 2.7: Prove the properties (2.1.i) - (2.1.v).

PROPOSITION 2.8. Let B be a Boolean algebra, S its Stone space

and G the algebra of its clopen sets. Then for every infinite family

{A;,i € I} of pairwise disjoint non empty elements of G, U A €4G.
i€l
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Proof. Assume by contradiction that A = U A; € G. Then A is clo-
el
pen in S, and therefore compact; thus the open cover {4;,i € I}

k
should admit a finite subcover, namely U A; = U A; thus contra-
icl j=1
dicting the assumption that [ is infinite and the A;’s are pairwise
disjoint and non empty. O

EXERCISE 2.9: Let {A,,n € IN} be a countable family of non
empty elements of G, (not necessarily pairwise disjoint!). Could
U 4neg?
nelN

Let now consider a measurable space (£2,Y%), where ¥ is an al-
gebra of sets, and let m : 3 — ]RSr be a finitely additive measure,
namely a set function such that

(fam.1) m( Q) =0;

(f.a.m.2) m(AUB)=m(A)+m(B) whenever A, BEY and ANB=0) .

We introduce an equivalence relation ~ in the following way:
A ~ B if m(AAB) = 0. Then the quotient space ¥|. becomes a
Boolean algebra; let S be its associated Stone space, G the algebra
of clopen sets, and A the isomorphism of Theorem 2.1.
We define a set function m: G — ]RSr by setting

m(G) =m(h (@), Geg,

where we have abused the notation, since h~!(G) is an equivalence
class in 3J; since every representative of it has the same m measure,
by the very definition of ~, m is well defined.

Observe that, since h is an isomorphism of algebras, m becomes a
finitely additive measure, and, thanks to Proposition 1.1, it is in
fact countably additive on G; thus, by means of a Carathéodory
Extension procedure, it can be uniquely extended to a countably
additive measure on the g-algebra G, generated by G; we will keep
the notation m for this extension, and will call it the Stone ezxtension
of the finitely additive measure m.

Indeed, m will often play the role of a big brother of m, rescueing



208 A. MARTELLOTTI

it from many of the troubles in which m is set by the lack of the
countable additivity.

Notes on Section 2

In many cases, the set function m that one considers ranges in spaces
much more general than the half line [0, 00); according to relation-
ships (f.a.m.1) and (f.a.m.2) all what we need to define a finitely
additive measure is a 0 element and a sum; thus a semigroup with a
neutral element would be enough. However, to carry out a technique
of this kind, and therefore to have a countable additivity notion, we
need a topology on the range space! But even in this case, remem-
ber that Carathéodory Theorem is a scalar one (for it is based on
inequalities), and therefore one needs an extension theorem in the
more general setting. A good old one is due to Maurice Sion:

THEOREM 2.10. [3/] Let T’ be a commutative, complete topological
group, and let m : G — I' be a countably additive measure, such that
for each monotone sequence (Ayp)n in G, m(Ayp) admits a limit in
I'; then m can be uniquely extended as a countably additive measure
to the whole G, .

A different approach can be followed in the case that the target
space has an order together with the suitable algebraic operations;
in this case the o-convergence can be replaced by order convergence.
Clearly the countable additivity is consequently redefined. A recent
result in this direction is due to Antonio Boccuto :

THEOREM 2.11. [10] Let T be a o-complete commutative lattice group,
and let m : G — T be a positive countably additive measure; then m
can be uniquely extended as a countably additive measure to the whole

Go-

In Boccuto’s paper there are also many references concerning the
existence of o-additive extensions of vector or group-valued mea-
sures.
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3. Chemical phenomena of finitely additive measures -
Strong non atomicity and agglutination

In Grado 1995, Professor Bhaskara Rao lectured on Some impor-
tant Theorems in Measure Theory: the first section of the course
concerned the celebrated Liapounoff’s Theorem. I shall report the
statement of the Theorem without its proof, referring the reader to
those notes [7] to find it.

However, younger readers should be aware that Liapounoff’s Theo-
rem is really an important result for many different fields in Analysis;
people in Measure Theory should have read a proof of it somewhen
in their life...

DEFINITION 3.1. Let (2,3, m) be a measure space, i.e. X is a
o-algebra, and m : % —>Rar a countably additive measure. m is
said to be non atomic provided, for each A € ¥ with m(A) > 0 there
erists B € ¥, B C A such that 0 < m(B) < m(A).

THEOREM 3.2. (Liapounoff’s Theorem) Let (2, %) be a measurable

space, and let m; : ¥ — IR(')", 1=1,...,n be non atomic countably
additive measures.
Then the range of the vector measure m = (mq,...,my,) is compact

and convex.

EXERCISE 3.3: In [7] the author omits the condition B C A in the
definition of non atomicity. Find an example of a measure that would
satisfy that condition of non atomicity, and not the one in Definition
3.1, and such that Theorem 3.2 also fails to be true.

DEFINITION 3.4. Let (2,3, m) be as in Definition 3.1; m is said to
be semiconvex if for every A € X there is B € 3, B C A such that

m(B) = %m(A).

DEFINITION 3.5. Let (2, X, m) be as in Definition 3.1; m is said to
be strongly non atomic if for every € > 0 there exists a decomposi-
tion of Q into finitely many X-measurable sets each of m-measure
underneath €.

PROPOSITION 3.6. Let (2,%) be a measurable space, and let
m: X —>R(J{be a countably additive measure. Then the following are
equivalent:
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(3.6.1) m is non atomic;
(3.6.2) m is semiconvex;

(3.6.3) m is strongly non atomic.

Proof. To show that (3.6.1) = (3.6.2) we shall use Liapounoff’s
Theorem with n = 1 hereditarily on Y5 := {CNB : C € ¥} for
any B € Y. Since the range of m restricted to g is, according to
Liapounoff’s Theorem, the interval [0,m(B)] , there is a set in Xp
whose measure is the midpoint of the interval.

We next show that (3.6.2) =>(3.6.3): let ¢ > 0 be fixed, and let

1
k be such that 2—km(Q) <e. Let Qp :=Q, and Q; C Q;_; be such

1 1
that m(Q;) = §m(Qj,1). Then clearly m() = 2—km(Q) <e. Put

oL = \ Q; if m(QM)) < & we are done, otherwise reapply the
same reasoning to Q) and keep repeating the construction until
m(QM) <e.

Finally, to prove that (3.6.3) = (3.6.1), assume by contradiction
that A is an atom of m, with m(A) > 0. Let ¢ < m(A), and let
{Q1,...,9,) be an e-small decomposition of 2. Then m(ANQ;) < ¢

for i = 1,...,n and since A is an atom, necessarily m(A N Q;) =
n

0. But then, A = U(AﬂQi) would measure 0 itself, which is a
i=1
contradiction. O

We now turn our attention to the finitely additive case. In the

remaining of this section (£2,%) will be a measurable space, and
m: X —>Rar will be a finitely additive measure.
We shall consider the validity of Liapounoff’s Theorem in this setting
in a further section, but we shall need a version in the case n = 1
right now, in order to investigate which ones of the implications of
Proposition 3.6 will remain true.

THEOREM 3.7. [26] If m is strongly non atomic, then the range of
m is the interval [0, m(S)].

Proof. Note first that if m is strongly non atomic, and B € X, then
the restriction on X p is still strongly non atomic.



FINITELY ADDITIVE PHENOMENA 211

We shall show that for each o €]0, m(€Q)[ there is A € ¥ such that
m(A) = a.

Assume by contradiction that this is false for some « fixed. Put
By =0 and C; = Q: we shall construct recursively two sequences,
(Bp)n increasing and (C),), decreasing, with B, C C,, and

1 1
a—ﬁ<m(Bn)<oz<m(Cn)<a+ﬁ. (1)

Suppose we have done this for n < k for some £ > 1.

Let 1
0<e< mln{a —m(Bg), m(Cr) — a, W}

and by the strong non atomicity express Cj\ By as the union of say
r pairwise disjoint sets Dy,..., D, with m(D;) <e.
Put

t
Bry1 =BrU[JDi],  Cry1 = Bry1 UDp

=1

J
with ¢ = maz{j such that m(Bj U [U D;]) < a}.
i=1
Then By C Bk+1, Ck+1 c Cy, Bk+1 C Ck+1 and (1) holds. Now
define A = UB"' Then, for each n, B, C A C C),,. Therefore
n

1 1
a— — <m(A) < a+ — whence m(A) = a. O
n n

We should now be able to investigate what of Proposition 3.6
remains true.

PROPOSITION 3.8. Consider the properties:

(3.8.1) m is non atomic;
(3.8.2) m is semiconvex;

(3.8.3) m is strongly non atomic.

Then (5.8.2) <> (3.8.3) =>(3.8.1).
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Proof. The implications (3.8.2) = (3.8.3) = (3.8.1) are proven in
the same way as in Proposition 3.1, while the implication (3.8.3)
= (3.8.2) can be proven analogously to the implication (3.6.1) =
(3.6.2) by means of Theorem 3.2. O

What about the remaining implication? We shall show that it is
in general false in the finitely additive setting. Obviously Definition
3.1 can be given exactly in the same way in the finitely additive case;
therefore if m : X —>Rar is a finitely additive measure that is not non
atomic, it will admit an atom. In the finitely additive case this atom
being a singleton or not makes a difference.

We first state the formal definitions.

DEFINITION 3.9. A X-measurable set A with m(A) > 0 is an atom
of a finitely additive measure m : 3 —>Rar if m assumes on the -
measurable subsets of A only the two values O or m(A).

If there is w € Q such that {w} € ¥ and m({w}) > 0 then {w} is an
atom of m; in this case we shall say that m is concentrated in w.

If A is an atom of m but m is not concentrated in any point of A,
we will say that m is agglutinated on A.

THEOREM 3.10. [1] Let my,ma : ¥ — IR$ be two finitely additive
measures, with my agglutinated on some subset and mo strongly non
atomic. If ma(A) > 0 for every atom A of my, then m := my + mo
is non atomic but not strongly non atomic.

Proof. Let A € ¥ with m(A) > 0 be fixed.

If A is not an atom of m;, then it is obvious that it is not an
atom m. If A is an atom of m; instead, then my(A) > 0 and ac-
cording to Proposition 3.8 there is a set B € X, B C A such that

may(B) = %mQ(A). Hence

0< mQ(B) < ml(B) + mg(B) = m(B) < ml(B) + mQ(A) < m(A),

namely 0 < m(B) < m(A) and so A is not an atom of m. This shows
that m is non atomic.

In order to show that m is not strongly non atomic, let A be an atom
of my and let e = my(A4).

Let {Eq, ..., Ex} be any finite decomposition of € into X-measurable
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k
sets. Since m(A) = Zml(Ej NA) and A is an atom of m; there
j=1
exists only one index 4 for which m;(E; N A) = m1(A) = ¢, while for
every index j # i mi(E; N A) = 0.
This yields that m(E;) > mq(E;) > mi(E; N A) = € namely m does
not admit decompositions that are e-small. ]

EXERCISE 3.11: Prove that the finitely additive measure m; in The-
orem 3.10 cannot be countably additive.
Notes on Section 3

Often in the literature the subadditive case has to be taken into
consideration.

DEFINITION 3.12. We shall call m : 2 —>R6“a monotone submeasure
provided

(s.a.1) m( Q) =0;
(s.a.2) if AN B = (O then m(AU B) <m(A) +m(B);
(s.a.3) if A C B then m(A) < m(B).

Moreover we shall say that a monotone submeasure s semiconvex
provided for every A € X there exists B C A B € X such that

m(B) =m(A\ B) = %m(A).
DEFINITION 3.13. On X the equality
(3.13.1) d(A, B) := m(AAB)

defines the Fréchet-Nikodym pseudometric determined by the finitely
additive measure m.

EXERCISE 3.14: Prove that d is a pseudometric on .

In [12] the following extension of Theorem 3.7 is given:

PROPOSITION 3.15. [12] Let m : ¥ —R{ be a semiconvex monotone
submeasure. Then m(X) is the closed interval [0, m(Q)].
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Proof. Our proof will proceed by steps:

CLAM 1: For any A € ¥ and for any dyadic rational p € [0,1] there
is Ap € ¥4 such that m(A,) = pm(A); furthermore, if p < q then
A, C A,

Proof. Let A be fixed; from the semiconvexity there exists A1 := B
2
such that

m(Ay) = m(A\ 4y) = %m(A)
)
m(Ay) = m(A,\A)) = mi(A\ Ay)

= m[(A\ A1)\ (4\ 4}),]

N

such that

]

and there exist A% :=(A1)1 and (A \ A%)

1
2

o=
[T

1
1 2

= %m(A)
Thus putting A% = A% U4\ Al)% we find m(A%) < %m(A), but
since
3 1
m(A) < m(A%) +m(A\ As) < Zm(A) + Zm(A)

it has to be m(A%) = —m(A). Thus proceeding, at the n-th step we

shall find 2" pairwise disjoint subsets of A, on each of which m is

1
--m(A), and 2" subsets, AQLn forr =1,...,2" obtained as unions of

those disjoint 2" sets; in this way if p < ¢ necessarily A, C 4,. [0

CLAIM 2: For any A € ¥ and for any t € [0,1] there is Ay € X4
such that m(Ay) = tm(A). Furthermore if t < s then Ay C As.

Proof. Without loss of generality, let ¢ €]0, 1 be fixed, and let (p,)n
be an increasing sequence of dyadic numbers such that p, 1 t. By
Claim 1 there is an increasing sequence of subsets of A, say (A4,)n
such that m(A4,) = p,m(A); then obviously lim, m(A,) = tm(A).

If m were a countably additive measure, our proof was done! Being
in the subadditive case, we shall work a little more to achieve the
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result.
From the inclusion A,, C U A, we have that
n

tm(A) = limm(Ay) < m(| J An).

Let now g, | t be a decreasing sequence of dyadic numbers, and re-
peat the same argument to find sets A/, such that m(A) = ¢,m(A).
Then eventually one finds that

tm(A) = limm(4;) > m(() 4,).

Since p, < g for any pair n, k, it also is U A, C ﬂ Al and thus on
n

n
both these sets m assumes the value tm(A). Put then A, = U Ap.

n
Note that it is essential that 3 is a o-algebra. It is also clear that
when ¢t < s it is A; C A;. O

CLAIM 3: (X,d) is arcwise connected.

Proof. Let A and B be two sets in ¥ with A% B. For every t€(0,1]
consider the two sets (B\A); and (A\B);_; whose existence is es-
tablished in Claim 2.

Define the map ¢ : [0,1] — X by setting

p(t) = (A\B)1-+ U (AN B) U (B\A)y;
then easily ¢(0) = A while ¢(1) = B. Moreover, if t < s then
o(s)\p(t) = (B\A);\(B\A),

and
(t)\ep(s) = (A\B)1-\(A\B)1-s.
Then

d(p(s), (1)) = (s = t)[m(B\A) + m(A\B)] < (s — t)m ()

and so ¢ is continuous, which concludes the proof of Claim 3. U
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Claim 4: m is uniformly continuous with respect to d.

Proof. Indeed for every € > 0 if A, B are such that d(A, B) < ¢ then

Im(A) —m(B)| = |m(A\B) —m(B\A)
< m(A\B) + m(B\A)
= d(A,B)<e.
which proves the assertion. O

Finally, we conclude that the range of m, being the continuous
image of an arcwise connected pseudometric space is a connected
subset of the real line, and since m is bounded it is therefore an
interval. The endpoints are the images of () and the whole space
respectively, and this concludes the proof. ]

4. An evanescent leaf - The range of a finitely additive
measure

In Section 3 we have mentioned Liapounoff’s Theorem, and have es-
tablished that by using the correct extension of the non atomicity,
the same result is true for non negative scalar finitely additive mea-
sures.

In this section we will face the vector case; the signed case will be
trated as a byproduct of this case.

DEFINITION 4.1. Let m: ¥ — IR"™, m = (mq,...,my) be a finitely
additive measure (namely, each component is a finitely additive mea-
sure); we shall say that it is non negative provided each component
m; 1§ non negative, and we shall say that m is semiconvex if for

1
every A € ¥ there exists B € ¥ B C A such that m(B) = §m(A)

LEMMA 4.2. [13] Let m : ¥ — IR™ be non negative and semiconvex.
Then for every E € ¥ there exists a family (Ey)ic(0,1) of X-measurable
subsets of E such that:

(4.2.1) Ey=0 , E; =F
(4.2.2) if s <t then Es C Ey;
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(4.2.3) m(E;) = tm(E), for every t € [0,1].

Proof. 1t is completely analogous to that of Proposition 3.3. First,
by means of the semiconvexity, one determines a family (Ep),cq(2),
for every dyadic rational p, satisfying (4.2.1), (4.2.2), (4.2.3). Then
for every ¢ € [0, 1], choosing two sequences (p,), and (gn), in Q (2)
with p, T ¢ and ¢, | t, it will follow that

m(JEy,) = m(() E,,) = tm(E)

and setting for instance F; = [, B, , then (Ey)c[o,1] is the required
family. O

Then, analogously to the proof of Proposition 3.6 the range R(m)
is arcwise connected in this case too.
We shall prove that it is indeed convex.

DEFINITION 4.3. Let u, m : X —>R(')" be two finitely additive measures.
We shall say that p is m-continuous, and write p < m, if for every
€ > 0 there exists 6 > 0 such that whenever E € % is such that
m(E) < 6§ then u(E) < €.

REMARK 4.4. Remember that in the countably additive case, and if
Y. is a o-algebra, the previous definition is equivalent to the 0 — 0
absolute continuity of a measure with respect to another. This equiv-
alence fails to be true in the finitely additive case, as we shall see at
the end of this section.

DEFINITION 4.5. For a given non-negative finitely additive measure
m : 2% — IR™ the symbol m will denote the variation of m, namely
the finitely additive measure m : ¥ — ]RS’ defined as m := Y, m;.

THEOREM 4.6. [13] Let m : ¥ — IR"be a non negative semiconves
finitely additive measure, and let E, F' € 3. Then there exists a family
(Ct)tE[O,l} mn X with:

(4.6.i) Co = E, C, = F;

(4.6.91) m(Cy) = tm(E) + (1 — t)m(F);
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(4.6.3i3) if p : X — Ry is m-continuous, then t — p(Cy) is a con-
tinuous function.

Proof. Define C; = (F'\ E);U(ENF)U(F\ E)(1_), where the lower
index have the same meaning of Lemma 4.2. Then we only need to
show the third condition. Let z,y € [0,1]; clearly |u(Cy) — p(Cy)| <
p(C ACy). Since easily m(C,ACy) < |z —y| >, mi(EAF) for every
fixed € > 0 it is enough to choose x and y close enough as to have
m(CrACy) < 6. O

As a consequence, a non negative semiconvex vector finitely ad-
ditive measure has convex range.
In Section 3 we have shown that strong non atomicity and semicon-
vexity are equivalent. It is therefore natural to ask whether the same
equivalence holds in the vector case. It is immediate that, when m
is semiconvex, each component is semiconvex and therefore strongly
non atomic. Our next result establishes that the converse is also
true.

THEOREM 4.7. [13] Let m: ¥ — IR"™, m = (mq,...,my) be a non-
negative finitely additive measure such that each component is strong-
ly non atomic. Then m s semiconvex.

Without loss of generality, we assume that n > 1. We divide our
proof in two steps:

CLAIM 1: The assertion is true if m; < m;_1,1 =2,...,n.

Proof. By induction, we assume that m' := (mq,...,m,_1) is semi-
convex. Let E € ¥ : then there exists E' € 3, E' C FE such that

1 1
m/(E') = Em'(E) If m,(E") = Em'(E) we are finished; otherwise

1
assume, for instance, that m,(E') < §mn(E) and apply Theorem
4.6 to the sets E' and E\ E'. Since m,, < m/, there are ¢ € [0, 1] and
Cy € 3,0y C E such that, from (4.6.i1) m/(Cy) = (1 — t)m/(E') +
1
tm/(E \ E') and from (4.6.iii) m,(C}) = §mn(E) But one easily
1

checks that m'(Cy) = Em'(E) O
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CLAIM 2: m is semiconvex.

Proof. Foreachj = 1,...,nset m} := > I m;. Then the finitely ad-
ditive measure m’ := (m/,...,m/,) is semiconvex by the first Claim,
since m; < m’;_;. Let T' = (t;;) be the matrix with entries:

1 ifj=1
ti]' = —1 ifj =7+4+1
0 otherwise

Then m = T'm’, whence obviously m is semiconvex too. U

EXERCISE 4.8: Let m : ¥ — IR? be a non negative, semiconvex fini-
tely additive measure. Define the two functions g, G: [0,m1(2)]— IR
as

g(z) = inf{mqo(E): E € X,m(E)=
G(z) = sup{ms(E):E€c€X m(E)=

Prove that

- g is convex and monotone non decreasing;

- G(z) = ma(Q) — g[m1(2) — z] (and therefore G is concave and non
decreasing).

Therefore the finitely additive phenomenon in the vector case is
the lack of the compactness of the range; more precisely the following
example shows that the range is not necessarily closed (its bounded-
ness is a trivial consequence of the finiteness of m).

In order to state the counterexample, we shall need an extension
result for finitely additive measures; we just report the statement of
the result, referring to [8] for its proof and related results.

THEOREM 4.9. (/8, Corollary 3.3.4] ) Let C be a field of subsets of
Q, m:C— ﬂ%a“ a bounded finitely additive measure on it, Fa field
on  containing C. Then there exists a bounded finitely additive
measure m : F — JR(']" which extends m from C to F.
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REMARK 4.10. Therefore every countably additive measure on a
o-algebra can be extended in a finitely additive fashion to the whole
power set 2%; note also that if the measure is non atomic (and
therefore, being countably additive, strongly non atomic), then ev-
ery finitely additive extension will be strongly non atomic.

EXAMPLE 4.11. [12] Let Q2 = [0, 1], and let my, be any extension to
22 of the Lebesque measure on it. Denote by D the family of subsets
D of Q such that the following limit exists:

m (DN [%5 1)
()" ’

Then D is a weak Dynkin system, namely:

d(D) = limp_s 1o

1) Qe D;
2) if D1,Dy € D and D1 N Dy = 0, then D1 U Dy € D;

3) if D1,Ds € D and Dy C Dy then Dy \ Dy € D.

Moreover D contains every subinterval of [0,1[; furthermore, if D €D
and D' is such that mp,(DAD') = 0 then D' € D and d(D) = d(D’).
Consider now the intervals

n __ n+1 _
A, = [2 1’2 1[
an

2n+1

with n =0,1,....
For eachn and each k let us divide every A, into 2% contiguous subin-
(k) 4%

tervals, of the same lenght, and let us denote them with An’l, ey A ok

oo
Now, for every k and i < 2F set B;j = U A;’fg

n=0
Clearly, for each i < 2F there is a suitable r < 2¥=1 such that
B C By j—1; moreover B; N Bj = 0 if i # j. Since for each

m
2m —1 11
mry, <Bi’kﬂ|: m ,1|:> :2_m2_k
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necessarily B; € D for each k and i < 2k - furthermore

A(Big) = (%)k

for every i < 2% It is clear that B; N B p, is either empty or coincide
with one of them. Finally the intersection of a set B;j with an
interval is again a set of D.

Consider the family F’ formed by the subintervals (possibly one-
point) of Q, the sets B,y and F the family formed by the elements
of F’ and the finite intersections of elements of F’; hence F C D.
Let 33 be the family of all sets that are my, equivalent to some set in
F; then X is closed under intersection and it is contained in D. As
in [5] the weak Dynkin system generated by ¥ is an algebra which is
contained in D since X C D. Then, d is defined on an algebra and
therefore, according to Theorem 4.9, it admits some finitely additive
extension, say 0, to the whole 2%.

Thanks to the B;}’s, it is clear that d is strongly non atomic, and
from Remark 4.4. 0 is strongly non atomic as well.

Now observe that if E C Q is such that my(E) = 1 then necessarily
d(E) =1, while 6 vanishes on the intervals of the form [0,1 — .
Therefore, the range of the 2-dimensional non negative semiconvex
finitely additive measure (mr,6) : 2% — IR? is easily seen to be the
square

(10, 1[x]J0, 1[) U ([0, 1[x{0}) U (J0, 1] x {1}).

REMARK 4.12. (1) In the previous example 6 < my, in the 0 — 0
sense but not in the € — § sense.

(2) If one considers the signed finitely additive measure mp, — 9, then
R(myp, — 6) =] — 1,1]: hence, even in the scalar case, if we allow
negative values, the Liapounoff property does not hold anymore.

Notes on Section 4

The Liapounoff Theorem does not hold anymore for countably addi-
tive measures when the target space is infinite dimensional.
Liapounoff himself gave an example in this sense: let Q = [0,1], &
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be the Borel o-algebra on {2 and p be the Lebesgue measure; let
E = L'Y(p). Then m : ¥ — E defined as m(A) = 14 is countably
additive, has no atoms, but its range is neither convex nor compact
(not even in the weak topology).

We refer to [19] for more details. Only, as a curiosity, we mention
that it is more difficult to get a counterexample where only one of
the two properties lacks, and refer to the paper [4] for some results
where conditions are investigated ensuring that one of the two prop-
erties can be derived from the other.

Because of the lack of compactness, in the literature, results concern-
ing the range of a countably additive measure ranging on an infinite
dimensional Banach space, generally concern the strong or the weak
closure of the range or of its convex hull.

A positive finitely additive phenomena in this more general setting
is that usually the same properties are recovered in the infinite di-
mensional case: in fact it can be shown ([13, Theorem 3.2]) that if
m : X — FE is a finitely additive measure and F is a Banach space,
then m admits a Stone extension m : G — E and that R(m) is
strongly dense in R(m), while the weak closure of R(m) is contained
in that of R(m). Hence the compactness results that hold in the
countably additive case can be inherited in the finitely additive case.
We refer to ([13] Section 3) for more details on this topic.

For the sake of completeness we mention that the range of a finitely
additive measure with values in a topological group has been inves-
tigated also, and refer to the papers [27] and [25] for results in this
sense.

Another question that might tease the reader’s curiosity might be:
what is known about R(m) if m has atoms? The answer to this ques-
tion when m is countably additive is given for dimension n = 1 in
[2] and in the case n > 1 partly investigated in [21]. In the scalar
case the result that I know is the following:

THEOREM 4.13. [2] If m : ¥ —R{ is a measure, then for R(m) the
following alternatives hold:

- R(m) is finite;

- R(m) = [0,m(Q)};
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- R(m) is the finite union of closed sets;

- R(m) is a Cantor set.

Also in the same paper some investigation is carried out in the
finitely additive case.
In the case n > 1 in [21] it is proven that the distance between R(m)
and its convex hull depends on the dimension. More precisely, define
for a set A C IR" the mazimum dent size as

D(A) = sup{d(z,A),x € coA}

and assume that m : ¥ — IR" is a non-negative measure; let «,, be
defined as

am = maz{a : m; has an atom A, with m;(4) = a}

(namely every coordinate of m has atoms of mass not greater than

Q).

THEOREM 4.14. [21]

D(R(m)) < any.

5. Moving up and down - Extensions and restrictions

In Section 4 we have stated an extension result (Theorem 4.3) and
noted as a consequence that the following fact is true:
Every countably additive non atomic measure m : X —>R(']" on an
algebra admits finitely additive strongly non atomic extensions to the
power set 28,

This is another positive finitely additive phenomenon, in the sense
that the same property does not hold in the countably additive case,
because of Ulam’s Theorem:

THEOREM 5.1. [35] Let us assume the continuum hypothesis, and
suppose that || > V. Then if m : 2 — RS is non concentrated
and countably additive, then m = 0.
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Therefore, it is impossible to extend a countably additive mea-
sure to the whole power set. It is natural to ask why one should
be interested in extending to the whole power set. One reasonable
argument is in integration theory: every function is measurable with
respect to the power set, thus it might be desirable to have the set
function defined on it as well, in order to get rid of difficult measur-
ability troubles! On the other side, one has to keep in mind that the
use of such extensions never extend the countably additive case...
An obvious remark is that Theorem 4.6 holds for a vector measure,
namely if m : 3 — IR" is a countably additive measure on an algebra
¥ then it admits finitely additive extensions to the whole 2.

The rest of this section will be devoted to the converse question, that
is:

Does a finitely additive measure m : 2% — IR™ admit a countably
additive restriction on some subfamily of 247

Raised in this way the question has an obvious answer: it is enough
to choose ¥ = { @ ,Q} to obtain a positive answer. Positive as
much as useless: it is clear that something more has to be requested
in order to have a more significant restriction. In other words we
want a countably additive restriction that preserves something nice
of the original m.

For instance, having already noted that the strong non atomicity is
immediately inherited by any extension, a property that one would
like to preserve in restricting to > could be this one.

EXERCISE 5.2: Let m : 2% — R()" be a strongly non atomic measure.
Prove that for every € > 0 there exists a o-algebra X, such that m is

countably additive on Y. and there is a >.-measurable decomposition
of Q, say (Q1,...,8y) such that m(Q;) <eforj=1,... k.

We are not going into further details about this problem, for we
are going in fact to answer a more general question, that is:
Given a finitely additive strongly non atomic non negative measure
m : 2% — IR" does a subalgebra ¥ C 2% exists such that:

i) myy, is countably additive;
ii) m is strongly non atomic;

iii) m(3) = R(m)?
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EXERCISE 5.3: Conditions ii) and iii) above are independent.

5.1) Produce a countably additive atomic probability m : 3 —>R(']"
such that m(X) = [0, 1], (thus iii) % ii));

5.2) Produce a finitely additive semiconvex measure m : 2% — IR?
whose range is the parallelogram with vertices in (0,0), (1,1),

11\ (2 1)
3’2)°\3°2)’
5.3) Show in this second case that there is a filtering family (E¢);¢o,1]
satisfying (4.2.1), (4.2.2), (4.2.3) (with E = Q) and such that
m is countably additive on the o-algebra Y generated by the

family (thus ii) # iii), since m(X) is only the diagonal of the
parallelogram ).

We shall see that, surprisingly, the answer to the question de-
pends upon the cardinality of the set 2. Let us face the case |Q| = N
first.

EXERCISE 5.4: If Q is a set, 3 a o-algebra on 2 and m : 2 —>R(']" a

non atomic measure on it, then there exists a non empty set £ € X
such that m(E) = 0.

THEOREM 5.5. If Q= IN, X is a o-algebra on Q and m : 3 —>Rar 18
a non atomic measure, then m = 0.

Proof. Let (IN, %, mg) be the completion of (INV, X, m), and set
K ={k e IN,{k} € ¥p}.

Clearly K € ¥y and from the strong non atomicity of mg, {k} € X
iff {k} is a subset of a m-null set in ¥. Therefore mo({k}) = 0 for
every k € K, and by the countable additivity mq(K) = 0.

Let IN* = IN \ K, and * = {4\ K, A € 5g}. Then (IN*, £*, myg) is
a measure space, with mg non atomic. Let B € ¥*, with m(B) = 0.
Thus there exists A € ¥ such that B = A\ K; therefore mg(A) =0
and so {a} € ¥y Va € A. Consequently AC K whence B =(. From
Exercise 5.4 my = 0 and then m is null on X. O
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COROLLARY 5.6. Let m : 2V — IR(')" be a strongly non atomic non
trivial finitely additive measure. Then no algebra X exists on IN such
that m,, is a non atomic countably additive measure.

It is clear now that the interesting case becomes that of an un-
countable set 2. Throughout the rest of this section we shall assume
that || = c.

We first establish an affirmative answer to the question, and will
later comment about the result.

THEOREM 5.7. [9] Let m : 2% — IR" be any bounded finitely additive
measure. Then there exists an algebra % such that i) m, is countably
additive, and ii) m(X) = R(m). Furthermore, i) if m is strongly
non atomic, then 3 can be chosen in such a way that my, is strongly
non atomic too.

Proof. 1t is easy to show that without loss of generality the theorem
can be proved for a non negative m, with m;(Q2) = 1 for every com-
ponent m; of m.

Also, by decomposing €2 into at least ¢ many pairwise disjoint sets,
each of cardinality ¢, and by making use of the countable chain con-
dition (which is verified for the range of m is finitely dimensional),
that is

(CCC) Given a family { A}y of pairwise disjoint sets, then m(Ay) # 0
for at most countably many indices t,

we see that there exists a set X C Q with |X| = ¢, m(X) = 0 and
2\ X| = ).

Put Y = Q\ X. Since |[R(m)| < ¢, there is a family A C 2¥ with
|A| = ¢ and m(A) = R(m).

If m is strongly non atomic, replace A with the family AU {Y},t €
[0,1]} where the sets Y; are those whose existence has been estab-
lished in Lemma 4.2.

Now, let F be the algebra on Y generated by A. Then |F| = c. Let
S be the Stone space of F, and let ¢ : F — G denote the Stone
isomorphism. Set now m(C) = m(¢ 1(C)),C € G and keep the
notation m to denote the extension of this countably additive set
function to the whole G,: since |F| = |G| = ¢, then |G,| = c.

Now, applying the Axiom of Choice, there exists a set T' C S such
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that for each non empty G € G,, TNG is a singleton. Thus |T| = c.
Set now mr : G, NT — IR™ by putting

mr(B) = m(BNT).

Since TN B =0 implies B = O, m7 is well defined; furthermore it is
countably additive and my(S) = (1,...,1). Finally for every H € F
we find

m(H) = m(p(H)) = mr(e(H) NT). (2)

Since |T'| = |X| = ¢, by means of any bijection we can identify X
with T" and set therefore & = Y UT with Y and T disjoint and
m(T) = 0. Let us define ¥ as

Y = {HU(p(H)NT),H € F}.

F being a field, X is a field too; indeed ¥ is the requested field, as
we are going to show.
We first prove that i) holds: indeed, if (F})j is a sequence in X
decreasing to ), then there are Hjy in F such that F, = Hp U
(p(Hk) NT) for every k. As F, NT = @(Hi) NT, it follows that
e(Hg) NT O, whence mp (p(Hg) NT) — 0, that is m(Hg) — 0
from (1). But m(Fy) = m(Hy) since m(T") = 0, whence i) follows.
We now prove ii). For every x € R(m) there is H € F with
m(H) =z. Then F = HU (p(H)NT) € ¥ and m(F) =m(H) = =,
whence m(X) = R(m).

Finally, if m is strongly non atomic, for each ¢ > 0 choose k €

1
IN such that Z < e. We can find in F sets Hy,...,Hj such that

1
mi(H;) = z for each i« = 1,...,n and for every j = 1,...,k, (for
instance take Hy = Y% , Hy = Y% \Y% and so on). Then clearly, for
Fj = H]' U ((p(H]) ﬂT) , we have

which proves iii). O
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REMARK 5.8. The complete solution of the question went along a
path having Theorem 5.7 has one of the last steps.

The problem was first investigated and solved in [14] for a positive
scalar finitely additive measure. The scalar techniques though could
not apply in higher dimension, the trouble being that sketched in
Ezercise 5.35.

In [28] the case of n = 2 was solved by means of ad hoc techniques.

These included in particular the Hereditarily Overlapping Boundary
Property (HOBP), which proved to be a property of interest by it-
self, in particular for application to Radon-Nikodym Theorems: it is
stated and proven in Theorem 5.9 below.
Again the two-dimensional techniques could not be carried out in
higher dimensions, and eventually Theorem 5.7 appeared. Finally, a
new constructive proof was given in [17], solving the problem in the
general case when m : 22 — G where G is an abelian topological
group.

To state and prove the (HOBP) we shall need some notation.

Let m : ¥ — IR? be a non negative semiconvex finitely additive
measure. For the sake of simplicity, we will assume m;(A4) = 1,
i=1,2. Let A€ X, and define Ry = {m(B): B€ XN A}.

In Exercise 4.8 we have defined the maps g, G. When we consider
only pairs in R4 we shall use the notation g4,G 4, and keep the
notation g, G when A = ().

Clearly, for every A € 3, g4,G4 have the same properties of g, G
established in Exercise 4.8.

Finally we set:

o = {(z,Ga(2)):z €[0,mi(A)]}U{(0,y) : y € [0,GA(0)]},
a; = {(.’L‘,gA(ZE)) RS [Oaml(A)]} U
{(mi(A),y) : y € [ga(mi(A)), ma(A)]}.

Then it is easy to prove that OR, = 0 U 8;'{.

THEOREM 5.9. [28] (Hereditarily Overlapping Boundary Property)
Let m : 22 — IR? be a non negative strongly non atomic finitely ad-
ditive measure with closed range. Then the following assertions hold:
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(5.9.1) for every set A C Q such that m(A) € 0~, 0, = 0~ (in the
sense that fort € [0,m1(A)], ga(t) = g(t), and, if mi1(A) =1
every point (0,y) with ga(1) <y < ma(A) belongs to 95 );

5.9.2) for every set A C Q such that m(A) € 01, 07 = 9T in the
( )f y 9 A

same sense.

Proof. We will prove only (5.9.1) since (5.9.2) can be proven analo-
gously.

Let P € 0 ; since R(m) is closed, there is A C Q such that m(A) = P.
We will consider two different cases:

Assume first that ma(A) = g(m1(A)) : set B = A°. We shall denote
by ¢'.,¢", G’ ,G" the right and left hand side derivatives of g and
G (whose existence is a consequence of Exercise 4.8).

By the same Exercise we have that

(1) =g (1—1), G (1) = g (1—1).

Let a = g’ (m1(A)), B = g¢'.(m1(A)). Then the properties of g imply
that 0 < a < 8 < +00. Moreover necessarily a < +oc.

Assume now that 3 < +o00.By the convexity of g for each0 <z <mq(A)
it is ¢/, (z) < .

Consider the two parallelograms

Qa = {(may) HY/AS [OamQ(A)]ay <ar<y +aml(A) - m?(A)}
Qs = {(z,y): 2z €[0,m(B)], Bz <y < Bz + ma(B) — Bm1(B)}.

Then Ry C Q4 and Rp C @Qp. (Indeed the lines y = Sz and
y=LPx+mqy(B)—Lmq(B) support Rp at (0,0) and m(B) respectively,
and analogously the lines y = ax and y = ax — amy(A4) + ma(A)
support R4 at (0,0) and m(A)).

Therefore, if a < 8 then R4 N R = (0,0), while, if a = [ the
intersection is a segment of the line y = ax.

Let now C C Q be such that m1(C) < mi(A) and C € 9.
Then, ma(C) = ¢g(m1(C)). From the convexity of g the function
[ = ax — g(x) satisfies f, = a— ¢/, >0, for x < my(A). Hence f is
non decreasing, whence

0 < amy(C) —me(C) < ami(A) —mo(A). (3)
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Set now

_ ma(4) —me(C)
 my(A) —m(C)’

From (3) two possible cases may happen:

If o < a then [m(C) — Q] N Ra = {m(C)}. In this case then
m(C) —m(C N B) =m(C), namely m(C N B) = 0. Therefore
m(C)=m(CNA) € Ry.

If o = «, g is linear between m(C) and m(A). Put

ma) —ote) _ .
mi(A) —z ’

Then 2o < m1(C) < my(A); let Cy C Q be such that
m(Coy) = (z0,9(zo)). Then, analogously to the previous case,
[m(Co) —Qp] N R4 = {m(Cp)}, which again yields that
m(Cy) = m(CyNA) € R4. By the convexity of R4 the whole segment
joining m(Cp) with m(A) lies in R4, and since m(C') belongs to this
segment, we have obtained in this second case that m(C) € R4.
In the case that # = +oc the same reasoning will apply with

o = min{z :

QB = {(an)ao <y< mQ(B)}a

since in this case necessarily mq(A) = 1.

It only remains to discuss the case of mq(A)=1 and ma(A)>g(m1(A)).
Let C be a set such that m;(C) = 1 and ma(C) = g(1); then from
the previous case with § = 400 we can suppose that C C A; again a
convexity argument shows that the segment joining m(C) with m(A)
belongs to R4, and the proof is now complete. U

Notes on Section 5

The extension result established with Theorem 5.7 only gives an
algebra as a solution of the question. It could be desirable however
to have a o-algebra on which m is countably additive and preserves
the range and the strong non atomicity.

Clearly, Example 4.11 shows that this should not be expected in
general: indeed, if m admits a countably additive restriction on a
o-algebra preserving the range and the strong non atomicity, then
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because of Liapounoff’s result its range should be closed.

It would be nice if this last condition could be also sufficient to get
the desired restriction; unfortunately, one should not expect this
to be the case. Indeed, while there is just one countably additive
extension from an algebra to the generated o-algebra, there could
be many different finitely additive extensions. A concrete example
of this phenomenon is given in [14]. Also the situation is faced for
not necessarily strongly non atomic finitely additive measures in [18],
under different points of view.

So, even when R(m) is closed, what could enable us to say that our
m precisely coincides with the countably additive extension to X, of
m s, whose existence we have established in Theorem 5.7 7 In [14]
some results in this sense were given in the case of n = 1.

In [28] the problem of the existence of a o-algebra was given an
approximate answer, namely there always is an increasing sequence
of g-algebras on which m is countably additive and strongly non
atomic, and such that the sequence of subranges approximates R(m)
in the Lebesgue measure of IR". Compare with Exercise 5.2.

6. Can we cure it? - Pathologies in Integration Theory

Integration is the field were most of the finitely additive pathologies
occurr.

Throughout this section m : ¥ — IR will be a bounded finitely ad-
ditive measure, with > a o-algebra on a set {2, and we shall assume
for the sake of simplicity that

mT () sup{m(A): A€ ¥} < +o0
m () = —inf{m(A): A€ X} < +oc.

The finitely additive measures defined on ¥ by

mT(A) = sup{m(E):E € X,},
m (A) = —inf{m(E): E€ X4}

are called the positive and negative variations of m: one easily ob-
tains the Jordan decomposition for m
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m:m+—m7,

while the total variation of m is defined as |m| :=m™* +m ™.

DEFINITION 6.1. Let m : X —>Rar be a finitely additive measure;
following [20] and [8] we shall adopt the notation

m*(A) = inf{m(E): E D A}.
Given m : ¥ — IR, we will say that A is m-null provided |m|*(A)=0,
and a map f: Q — IR is said to be m-null if {|f| > €} is m-null for
every ¢ > (.

When m is finitely but not countably additive, m-null functions
need not to vanish m-a.e., as the following example shows.

EXAMPLE 6.2. Let 2 = IN and let 3 be the o-algebra generated by the
field of finite and cofinite subsets of Q). Let p be any finitely additive
extension to 3 of the (already only finitely additive) set function
defined as

0, if Ais finite
n(A) = { 1, if A is cofinite

1
Let the function f be defined on Q by f(k) = % Then f is p-null,
since {|f| > e} is finite for each € > 0, but |u|*({f # 0}) = 1.
The first pathology occurring in the finitely additive setting con-
cerns the convergence of sequences of functions.

EXERCISE 6.3: Let m : X —>R6r be a finitely non countably additive
measure:

(12.1) Find a sequence (fy), converging to 0 m-a.e. but such that
m({|fn] > a}) 4 0 for some o > 0.

(22.2) Find a sequence (f,), such that f, = 0 but no subsequence
of (fn)n converges to 0 m-a.e.

(The definition of convergence m-a.e. and convergence in m-measure
are meant in exactly the same sense as in the countably additive
setting.)
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Precisely because of this phenomenon, the equality m-a.e. has to
be replaced by the more suitable equivalence relation:

f=g[m] if f— g is m-null (4)

and the convergence in m-measure has to be replaced by the hazy
convergence:

DEFINITION 6.4. A sequence (fy)n converges hazilyto f if

llmnﬁ+oo|m|*({|f’n - f| > 6}) =0,
for every e > 0.

REMARK 6.5. If f, and f are Y-measurable (in the usual sense, for
(Q,%) is a measurable space) then (fn)n hazily converges to f iff
(fn)n |m|-converges to f. In fact, when f, — f is X-measurable, it is
clear that

ImI"({[fn = fI > €}) = Im|({[fn = f| > £}).

From now on our functions will be Y-measurable, unless differ-

ently stated.
The first problem that one has to face in order to define integration
is the measurability of f: to explain this we begin by observing that
one of the main engines of a theory of integration are convergence
results, namely establishing which topologies make the integral a
continuous operator.

In the countably additive case, the integral of f is usually defined
by means of the limit of the sequence of the integrals of a sequence
of simple functions converging to f m-a.e. As already noticed this
convergence is not the suitable one in the finitely additive setting.
We begin by defining the right form of measurability.

DEFINITION 6.6. A function f is said to be totally measurable if there
exists a sequence of Y-measurable simple functions that converges to
f in |m|-measure.

DEFINITION 6.7. A function [ is said to be m-integrable if there
exists a sequence of simple functions (fn)n such that
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(6.7.1) (fn)n converges in |m|-measure to f;
(6.7.2) lim /|fn — fildm| = 0.
n,k—-+oco

By (6.7.2) the limit limy,_, | [}, fndm exists for every E € X, and
a routine argument proves its independence from the sequence (fp)n.
Therefore we define

/fdm:: lim /fndm, E el
E n—+oo |p

For the properties of this integral we refer the reader to [20]
Chapter III or to [8] Chapter 4.
Another approach is that of the monotone integral

DEFINITION 6.8. Let m : X —>R(')"be a finitely additive measure, and
let f:Q — JR(']" be a X-measurable function. Define the distribution
function of f as

d(t)=m({f >t}), teR].

f is said to be integrable in the monotone sense (or briefly (7) inte-
grable) if ® is Lebesque integrable on Rar. In this case we set

]E fdm := /0 o OF (t)dt.

This definition extends to the case of f : Q — IR by the decomposi-
tion f = f* — f~ as well as to the case of m : ¥ — IR by means of
the Jordan decomposition.

Apparently Definition 6.8 applies to a class larger than that of
totally measurable functions. Indeed there might be ¥-measurable
functions that are not totally measurable. The next Exercise en-
lightens what happens in the case of the monotone integral.

EXERCISE 6.9: Let f: Q — Rj, m: X —R;.

(6.9.1) If f is bounded, then it is totally measurable, m-integrable
and (0)-integrable; furthermore
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~

[ fim = | gam;

9.2)1 n)n 18 & sequence of totally measurable functions an
6.9.2) if i f 11 ble fi i d
fn 3 f then f is totally measurable;

(6.9.3) if f is (O)-integrable, then fAn = f (use Markov inequality).
As a consequence if f is (7)- integrable, then f is totally mea-

surable. The remaining of the comparison is based upon the Vitali
Theorem for both integrals:

THEOREM 6.10. [20, 32] Let (fn)n be a sequence of m-integrable
(resp. ()-integrable) functions such that

(6.10.1) (fn)n m-converges to f;

(6.10.2) the sequence of finitely additive measures defined by

([ fudma) (resp.(].fndm)n)

is m-continuous (in the sense of Definition 4.3 ) uniformly
with respect to n € IN.

Then f is m-integrable (resp. (7)-integrable ) and

/fdm: lim /fndm.
. n—>+00 /g4

(resp. /.fdm = nllgrl_loo /.fndm)

COROLLARY 6.11. Let f be Y-measurable. Then f is (°)-integrable
iff f is m-integrable. Moreover in this case

/.fdm = Zfdm.
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The second engine of an Integration Theory is the Radon-Niko-
dym Theorem, which ensures that in some spaces the integral is
an invertible operator. And here sits another finitely additive phe-
nomenon!

DEFINITION 6.12. Let m : 3 — IR be a finitely additive measure; a
pair of X-measurable sets (P, N) is a Hahn decomposition if: PN N
18 a m-null set, PUN = and

m*T(P) =m™(Q), m~(N) =m™(Q).

Consequently, if A € X N P then m(A) = m*™(A) > 0 whence

m~(A) =0, namely P is a positive set. (Analogously N is a negative
set ).

Differently from what happens with countably additive measures,
the assumption mo < m; is not enough to ensure that a Radon-
Nikodym density exists, namely that mo is in fact the indefinite
integral of some mj-integrable function, as the following Example
shows.

EXAMPLE 6.13. Consider the finitely additive measures m; and & of
Ezample 4.11. Let m1 = mp and mgo = myp + 0; then m; < mo,

m
but d—l does not exist. In fact, if we assume by contradiction that
ma

1
a density f exists, then the sets P = {f > 5} and N = P¢ would
1

be a Hahn decomposition for my — —mg = —(mg — 0) and therefore

for mp, — 6. But then (my, — 0)(P) =1 and (mp — §)(N) = —1, thus
contradicting Remark 4.12.

DN —

Indeed there is a strong link between the existence of Hahn de-
compositions and that of the Radon-Nikodym density, as stated in
the following result, that is the finitely additive version of the original
Theorem as due to Greco [22].

THEOREM 6.14. [22] Let mi,ms : & — IRy be two finitely additive
measures. The following are equivalent:
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(6.14.1) there exists a map f such that

mQ(E) :/ fdm1 VE € ¥;
E

(6.14.2) there ezists a family of sets {Ar}reler in X such that (A, AS)

is a Hahn decomposition for mo—rmy and lim mo(A,) = 0.
n—-+o0o

Proof. To show that (6.14.1) = (6.14.2) observe that if f is the
Radon-Nikodym density, then the sets A, = {f > r} and A¢ form a
Hahn decomposition for ms — rmyq; in fact for £ € ¥ N A,

ma(E) = /Efdml > rmq(FE) (5)

and analogously ma(F) < rmi(E) for every E € ¥ N AS. Now, from

(5), m1(An) < ~ma(A,) < “ma(€) and therefore lim mi(Ay) = 0.
r r r

—+o00

But from (6.14.1) my < m; and so lim my(A4,) =0.
r—-+00

We shall now prove the converse inclusion.
Consider the family of sets { B, },cq(2) defined inductively by

By =9
B,=A4,NB,_1 for neIN
and
Bogy1)/on+1 = (A(2k+1)/2n+1 N B(k,l)/Qn) U Byjgn for n,k € IN.
Then the family is decreasing with respect to increasing r; therefore

lim my(B,) =inf{ma(B,),r € Q(2)},

r—-+400

and since by definition mq(B),) < ma(A,) = 0, we have shown that

lim mqo(B,) =0.

r—-+400

Also (By, Bf) is a Hahn decomposition for mg — rmy. The proof of
this fact follows from the following steps,
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— if r > s then A, N B, is a positive set for mo — rmy;
— if r > s >t then (A, N By) U B, is a positive set for mgy — tmy;

(we are sparing the reader of the lenghty details).
Now the map defined as

f(w) =sup{r € Q(2) :w e B,}
is the Radon-Nikodym derivative. To show this (again we shall just

sketch the main passages and skip the details) consider the sequence
2n
1 n

o > 1B,sn- Then
k=1

of simple functions defined by f,, :=

(f/\n)—<f/\2in) <fu<f

for every n € IN and therefore it is a defining sequence. Now for
EeXx

n2m

1
/Efndm1 = 2—an1(EﬁBk/2n)
! (6)

k
- Z 2_11 [ml(E N Bk/?") - ml(E N B(k—l—l)/Z")] .
k=1

Then, since B, is a positive set for mo — rm;y

n2"—1

/Efnd?m < > [ma(ENByan) — ma(E N Bjaryyon)] =
k=1

and letting n — oo we find [ fdm; < my(E).
Conversely, writing (6) as

n2"—1

k+1
/ fndmq = Z [—n (ml(E N Bk/Qn) —my (E N B(k+1)/2n))
B o L2
n2"—1
+nm1(E N Bn) o0 Z [ml (E N Bk/Qn) - ml(E N B(k+1)/2n)]

k=1
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and using the fact that B is a negative set for ma — rm; and that
B(k+1)/2n C Bk/?” we obtain
[ fudmy = a0 By = ma(E 0 By) + i (0 By)
E

1
- [ml(EﬂBl/2n) —mi(E N By)]

> ma(EN Byjn) —ma(EN By)
1
~ on [m1(E N Byjge) —mi(EN By)]
which in turn implies that / fdmy > mo(E) O
E

EXERCISE 6.15: Let mqy,mg : ¥ — ]R(']" be two strongly non atomic
finitely additive measures, m = (my,m2) and let (A4,, A%) be a Hahn
decomposition of my — rmy; then m(A,) € OR(m).

PROPOSITION 6.16. [15] Let my,ma : ¥ — IR{ be two strongly non
atomic measures, with mg < mq, and let m := (my,ma). If R(m) is

closed, then there exists a Radon-Nikodym density d—m2
m1

Proof. From Theorem 4.6 and Theorem 4.7 R(m) is compact and
convex. We will show that (6.14.2) is satisfied. Let oo = ¢/, (0) and

fix
mQ(Q):|
mq (Q) )

r e [oz,

By Exercise 4.8, g is convex; hence there is a point z, € [0,m1(Q)]
such that ¢g(z,) = rz,, and there is ¢, € [0, z,] such that the line
y(z) = g(t,) + r(z — t,) supports R(m) at (¢, 9(t,)). By the closed-
ness of R(m) there exists A, € ¥ such that m(4,) = (¢, 9(t)), so
that m(A4,) € dR(m).

From Theorem 5.9, ga,.(s) = g(s) for all s € [0,%,] and hence
(94,)"(t;) = g_(t;) < r. By the central simmetry of the subrange
Ry, then (G a,)!,(0) < r. Therefore we have that R4, is contained in
the cone delimited by the lines y(z) = ax and y(z) = rz, while R4
is above the line y(z) = rz. Hence for B € ¥ N A, mao(B) > rm(B),
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while for B € ¥ N AS mo(B) < rmy(B).
Let 8 = G',(0), and define the family {FT}rele by putting:

[(Q  ifrel0,q
- ma($2)
A, 1fr€]a,ml(m]
Fr:< m (Q) (7)
. - 2
AS 1fr€]m1(9),ﬁ]
| O ifr>p.

Note that if § < +oc then mo(F,) = 0 for r > 3, while, if § = +o00
since mg(F,) = ma(AS) for r large, and mo(AS) = G(m1(AS) we
have that lim,_, o mao(AS) = 0, since my < m; and mi(AS) — 0.
The assertion follows then from Theorem 6.14. U

It would be nice if the above Proposition could be reverted, namely
if the closedness of R(m) would charachterize the pairs my < my ad-
mitting a density. Unfortunately, this is not the case, as the following
example shows.

EXAMPLE 6.17. [15] Let Q,3,m1 = mp, + 6 be as in Example 4.11.
Then mq is strongly non atomic, and, as one is easily convinced, it
enjoys the property

(o)  the ideal of mj-null sets is stable under countable unions;
Also remember that my([0,t]) =t for t < 1 and m1(Q) = 2. Let
f [0,1[— R{ be defined as f(z) = 2(1 — z), and consider the
finitely additive measure

ma(A) = /A Fdmy.

Then clearly f is a density. Note that, from Corollary 6.11,

1 2
ma(Q) = /Ofdmlz/o mi({f > 1))t
2

o o= = [ (1= D aes

while, if A=[0,y] y <1 then
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o (10 ) = (o4 -3

whence

ma(A) = /02m1(Aﬂ (f > 1))dt

2(1—7) 2 t
- / ydt+/ <1——>dt
0 2(1-y) 2

= 2y

Hence (1,1) € R(m).
2
Suppose that ma(E) =0 : then/ my | EN [0, 1- %]) dt = 0. Nec-

0
essarily m1([0, s[NE) = 0 for every s € [0, 1].
From (o) it follows that mi(E) = 0. Therefore ma(E) = 1 implies
that mq(E) = 2, that is (1,1) & R(m).

In [15] the following charachterization is proven

DEFINITION 6.18. Let K be a convex subset of IR"; P € 0K is an
exposed point for K if every hyperplane H supporting K at P is
such that H N K = {P}. The set of exposed points of K is denoted
by ExzpK.

THEOREM 6.19. [15] Let my,my : ¥ — IRy be two strongly non ato-
mic finitely additive measures, with me < mq, and let m = (m1, ms).
Then the following are equivalent:

d
(6.19.1) there exists ij;

(6.19.2) for every P € ExpR(m) there is A € ¥ such that m(A) = P.

The charachterization of Theorem 6.19 without the assumption
that m; is strongly non atomic, and with condition (6.19.2) replaced
by
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VP € Exp coR(m) 3A€ X such that m(A) = P;

has been proven in [6] . The proofs of both results are rather long and
difficult and therefore we shall not reproduce them in these notes.
No matter how short the author would like it to be, this exposition
would be too deficient if it would neglect another finitely additive
phenomenon which can occurr in connection with Integration The-
ory: the fact that LP(m) is not necessarily complete. To convince the
reader of this, we shall report a result from [3] : this is a very recent
and complete update of the book [8] relative to this topic.

DEFINITION 6.20. Let m : X —>Rar be a finitely additive measure.
In (4) we have defined the equivalence relation f = g [m]. We shall
denote by L1(2,3,m) (or more shortly L'(m)) the vector space of
equivalence classes [f] of m-integrable functions, normed by the usual
norm

1) I = /Q |fldm.

DEFINITION 6.21. Let m : X —>Rar be a finitely additive measure,
h the Stone isomorphism introduced in Section 2. For any simple
function f:Q — IR, say f =Y 1, cila,, we set f:8 = IR for the
simple function f =31 cilp(a,). Note that [ fdm = [ fdm.

If f is an m-integrable function, and (fn)n is a defining sequence,
then lim,, ;. [¢ |fn — fxldm = 0. Since m is countably additive, L' (m)

— 71 _
is complete; hence there exists f € L'(m) such that f, L f. We shall
call f the Stone extension of f.
Note that for every A € 3,

/A fdm = /h e (8)

THEOREM 6.22. [8] Let m : ¥ —R{ be a finitely additive measure.
Then L' (m) is the completion of L*(m).

THEOREM 6.23. [3] Let m : X =Ry be a finitely additive measure. If
LY (m) is complete, then for every X < m there exists an m-integrable
function f such that



FINITELY ADDITIVE PHENOMENA 243

A(A):/Afdm Aes,

Proof. By the previous result, if £!(m) is complete, then

L'(m) = L' (m). Let A < m; then dR(m, \), does not contain verti-
cal lines, and since R(m, \) = R(m, A) the same is true for R(m, ),
namely X < 7. From the classical Radon-Nikodym Theorem then
there is ¢ € L£!(m) such that

X = /(pdﬁz.

But the embedding ¢ : £'(m) — L£'(m) defined by 9([f]) = [f]
is by assumption onto. Hence there exists [f] € L£(m) such that
9([f]) = . From (5), for A € ¥,

def

/fdm:/ odm = A(h(A)) E \(A).
A h(A)
O

From this Theorem, the finitely additive measure m; + § in Ex-
ample 6.13 provides an example of a case of incomplete £!(m).

REMARK 6.24. We want to stress the fact that Theorem 6.23 in [3]
is actually a necessary and sufficient condition.

Notes on Section 6

We start with the obvious remark that, given two vector spaces F
and F paired by some product, it is clear how to integrate simple
E-valued (resp. F-valued) functions with respect to finitely additive
measures ranging on F' (resp. E).

When a topology is available, a limit process can be used to integrate
larger classes of functions, approximating via simple functions.

The easiest situation of this type is that of a real Banach space X
and the scalar field IR. Therefore one finds in the literature, besides
the integral of a vector function (in the several senses it is commonly
defined: Bochner, Pettis, Gelfand, ...) also the integral of scalar
functions with respect to vector finitely additive measure.
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This last integration is of particular interest in Stochastic Integra-
tion. Clearly in this setting one can also define a monotone integral.
The comparison between the m-integral and the monotone integral
with a vector m started in [11].

Notice first that in this case the distribution functions ®%(¢) range
on the Banach space X; then the monotone integral can be defined
in many different ways, according to the type of vector integration
one takes for ®¥. The first attempt ([11]) of taking Bochner inte-
grability proved to be too restrictive, and also the Pettis approach
turned out to be unsuitable. The right approach was recently found
to be the Mc Shane-Fremlin vector integration which sits in between
the Bochner and the Pettis integral ([24] ).

For what concerns the Radon-Nikodym Theorem, let us remind the
reader that even in the countably additive case in the infinite di-
mensional setting the simple absolute continuity can be not enough.
There is however a sharp difference between finite and countable
additivity under this respect. It is known that functional analysts
overcome the difficulty in the countably additive case by looking at
the space X, and assuming the (RNP). By virtue of Example 6.13
this approach would be senseless in the finitely additive setting: in-
deed not even IR would enjoy a (FARNP)!

For this reason in the finitely additive setting authors focus on the
properties of the pair (my, mso). This very fact makes the list of refer-
ences concerning Radon-Nikodym Theorems in the finitely additive
setting considerably larger than in the countably additive one. A
complete list of references would be rather long: we bound ourselves
to mentioning the papers [23, 16] and [31] for the integral with re-
spect to a scalar m, and to the notes [30] and [29] for what concerns
integration with respect to X-valued m.

Finally we wish to quote the fact that there are also extensions to
the case X LCTVS or X nuclear space.

On the other side, it is known that in the scalar case, the following
approximate Radon-Nikodym Theorem always hold:

THEOREM 6.25. ([20],1V.9.1}) Let m : ¥ — R be a non-negative
finitely additive measure, and let A : X — IR be a finitely additive
measure with A < m. Then Ve > 0 there exists a m-measurable
simple function f. such that for the set function
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u(8) = [ fuim
E
the inequality var(\ — p) () < e holds.

Therefore the following Definition in the vector case makes sense:

DEFINITION 6.26. Let X be a Banach space, m : 3 — X be a finitely
additive measure; we shall say that m is of bounded variation if the
scalar finitely additive measure

|m|(E) = sup{z lm(E)|,{Er,...,En} € D(E),n€ IN}
=1

is finite on Q (and therefore on the whole of X2), where D(E) repre-
sents the class of finite X-measurable decompositions of E.

We shall say that the space X satisfies the Finitely Additive Radon-
Nikodym Property (briefly (FARNP)) if for every measurable space
(Q, %) and for every finitely additive measure m : ¥ — X of bounded
variation, for each € > 0 there exists a simple -measurable function

fe : Q@ — X such that |m — M\|(Q) < & where A(-) is defined as

AE) = [ fedim
E
for every E € 3.
Then the following result holds
THEOREM 6.27. X has (FARNP) if and only if X has (RNP).

Proof. Assume first that X has (RNP); let m be a finitely additive
measure of bounded variation, and let € > 0 be fixed. Since m is
of bounded variation, it is well known ([13]) that it admits a Stone
extension, namely there exists a countably additive measure m on
Go, the Baire o-algebra of the Stone space associated to Xy (jm)-
Also it is known that m is of bounded variation and that

[m| = |ml.
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By (RNP) there exists a Bochner integrable function f : S — X such
that

w(m) = [ s

for E€§G. A density argument shows that there exists then a G-simple
function ¢ : S — X such that

[ Nl = Flarin <.
s
Let ¢ = > x;lg,; since G; € G there are pairwise disjoint sets

Ay, ..., A, €3 such that h([4;]) = G;. Put y=> x;14,, and let
A: X — X be defined as
A= /'yd|m|.

Then easily A= /gd|fﬁ|, and since

L m =X = [If = glldml;
2. m—\=1n— X;

3. |m— M(Q) = |m — A(S).

we find that |m — A|(Q2) <e.

Conversely, assume that X has the (FARNP); let m : ¥ — X be a
(countably additive) measure of bounded variation. For each € > 0
let f. be any simple X-valued function such that

var(m — /f5d|m|) <e. (9)

Consider £ = 27% and put f, = f.,. We want to show that (fy) is
Cauchy in L'(|m|). Indeed, for each n,k € IN

Voo = fills = /Q 1 — Fellxdim] = var(hn — Ag).
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where \; = [ f;d|m]|.
Since the total variation is a norm on bvca(€2, %),

var(A, — A\g) < var(A, —m) +var(m — A)

whence || fn, — filli < en + €.
Since |m]| is countably additive, L'(|m|) is complete. Hence there

1
exists f € L!(|m|) such that f, LD f. By definition, (f,), is a
defining sequence for f, namely

[ tuil = [ saim

From (8) then var(m — [ fd|lm|) = 0 namely, being var(-) a norm,

[1]

m= [ sam|
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