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Extensions of Asymmetric Norms
to Linear Spaces

L.M. GARcia-RAFFI, S. ROMAGUERA
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SUMMARY. - Let M be a subset of a (real) linear space that is closed
with respect to the sum of vectors and the product by monnega-
tive scalars. An asymmetric seminorm on M is a monnegative
and subbaditive positively homogeneous function q defined on M.
Moreover, q is an asymmetric norm if in addition for every non
zero element © such that —z belongs to M, q(z) or q(—x) are
different from zero. Consider the linear expansion X of M. In
this paper we characterize when (M,q) can be extended to an
asymmetric normed linear space (X, q*), i.e. when there ezists
an asymmetric norm ¢* on X such that ¢*|pr = q. As an appli-
cation we study these extensions in the case of subsets of normed
lattices.
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1. Introduction

Let R be the set of real numbers, and let R be the set of nonnegative
real numbers. An algebraically closed space M (ac-space for short)
is a subset of a (real) linear space X which is closed with respect
to the sum on X and with respect to the product by non negative
scalars, i.e.

T+y €M, forevery z,ye M

and

ax € M for every © € M and a € R™.

In particular, 0 € M. An easy example of an ac-space is the
positive cone C), of the finite dimensional space R" for n € N, where
N is the set of natural numbers. For instance,

Co = {(z1,29) € R? : 1 > 0,25 > 0}

defines an ac-space. An asymmetric seminorm on an ac-space M is
a function ¢ : M — R™ such that for all z,y € M and a € R*:

1) q(az) = aq(z).
2) q(z +y) < qz) +q(y).

We say that the couple (M,q) is an asymmetric seminormed ac-
space. Moreover, if the function g satisfies the following property,

3) for every z € M such that —z € M, then ¢(z) = gq(—z) = 0 if
and only if x = 0,

it is called an asymmetric norm on M. In this case, we say that the
couple (M, q) is an asymmetric normed ac-space. This definition is
the reasonable restriction to ac-spaces of the notion of an asymmetric
norm on a linear space (a quasi-norm in [1] and [2]). If X is a linear
space, an asymmetric seminorm on X is a function ¢ : X — R™
satisfying the conditions above 1) and 2). In this case, the third
condition for ¢ to be an asymmetric norm on X is the separation
axiom
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3) q(x) = q(—z) =0 if and only if z = 0.

The function ¢~! : X — R* defined by ¢~ '(z) := q(—=) is also
an asymmetric (semi) norm. The function ¢*(.) : X — R™ given by
the formula ¢*(z) := maz{q(z),q ' (z)} is a (semi) norm on X.

The aim of the present paper is to obtain conditions under which
it is possible to extend an asymmetric norm defined on an ac-space
M to the corresponding linear span span{M}. Our motivation is
that a great part of the asymmetric linear spaces that appear in ap-
plied contexts are in fact extensions of asymmetric norms defined on
ac-spaces (see [7] and [5]). For example, the natural definition of the
dual of an asymmetric normed linear space X (the linear and upper
semicontinuous functions f : X — R) gives an asymmetric normed
ac-space. In Section 2 we characterize those asymmetric seminorms
defined on an ac-space M that can be extended at least to an asym-
metric seminorm on span{M }. However, note that in general such
an extension does not lead to an asymmetric norm on span{M},
since we cannot assure that the third axiom of the definition above
-the separation axiom- is satisfied. For example, the asymmetric
seminorm g2 defined on Cy as g2((z1,22)) = x1 can be extended to
the function gy,

Go((w1,22)) =21 if 1 >0,

and G5((x1,22)) = 0 in the other case. It is clear that g, does not
satisfy the third axiom of the definition of an asymmetric norm,
although g9 is an asymmetric norm on Cj.

This motivates the study of extensions satisfying the separation
axiom. In Section 3 we characterize when this condition is also sat-
isfied, under the assumption that such an extension exists. Section
4 is devoted to the application of these results to the particular case
of the increasing asymmetric seminorms that appear in several in-
teresting applied frameworks.

Each asymmetric (semi)norm ¢ on a linear space X defines the
quasi-(pseudo)metric dy(z,y) = q(y — z), =,y € X. A fundamental
system of neighborhoods of 0 for the topology induced by d, is given
by the sets

V(0,e) :={z € X : q(z) < €}, e > 0.
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In the same way, the sets

Vy,e) ==y +V(0,¢), e>0

define a fundamental system of neighborhoods of y for every y € X.
A sequence (z,)5° ; of elements of X converges to a point z € X
if limpq(x, — x) = 0. Our basic references about quasi-metrics,
asymmetric norms and applications are [3], [9], [2], [1] and [7]. For
general questions related to norms and seminorms on linear spaces
and normed lattices see [8] and [6].

2. Extensions of asymmetric seminorms defined on
ac-spaces

Let M be an ac-space and let X = span{M}. In this section we
develop a constructive technique to obtain extensions of an asym-
metric seminorm ¢ from M to X. Two basic functions are needed
in order to construct the extension. The first one is q. The second
function that is needed is another asymmetric seminorm pg on M.
It is clear that the inversion map i(z) = —z defines a linear isomor-
phism 7 : X — X such that (M) = —-M ={—z € X :2 € M} and
then —M is also an ac-space. Thus we can use py in order to de-
fine an asymmetric seminorm p on —M as p(z) := po(—=z) for every
x € —M. The following definition gives the canonical construction
of an asymmetric seminorm from ¢ and p. Note that each element
z € X can be decomposed as a sum = = 1 + xo, where 1 € M and
T9 € —M.

DEFINITION 2.1. Let q¢ and p be asymmetric seminorms on the ac-
spaces M and —M, respectively. We define the function q ,, induced
by the couple (q,p) by mean of the expression

Qgp(x) = inflq(z1) + p(w2) : 71 € M 22 € —M, 2 = 21 + 72}
for every z € X.

It is easy to prove that g, defines an asymmetric seminorm on
X.
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DEFINITION 2.2. Let q be an asymmetric seminorm on the ac-space
M. We say that the asymmetric seminorm q* defined on X is an
extension of q if the restriction of q¢* to M coincides with q, i.e.

I =gq.

The asymmetric seminorm ¢, ,, is closely related to the possible
extensions of ¢ to X. For instance, consider the positive cone C
of a Kothe function space (E, || ||, <). A Kothe function space is
a Banach lattice of functions with its natural order (see [6]). If
(Q,%, ) is a complete o-finite measure, a Banach space E consisting
of equivalence classes, modulo equality almos everywhere of locally
integrable real valued functions is called a Kothe function space if
the following conditions hold.

1) If | f(w)| < |g(w)| a.e. on Q, with f measurable and g € E,
then f € B and ||| < .

2) For every o € ¥ with u(o) < oo, the characteristic function
Xo of o belongs to E.

An easy example of such a space is a (real) Hilbert space of
integrable functions Ly(v), where v is a finite measure.

If F is a Kothe function space, it is easy to see that the function
r(z) := ||z V 0| define an asymmetric norm. In fact, the definition
of r is given by the evaluation of the norm of the positive part of
the function. This construction provides a broad class of examples
of asymmetric normed linear spaces of the type (F,r). The reader
can find information about related examples in [2] and [1].

It is easy to see that the positive cone (C;,r) is an asymmetric
normed ac-space. Now consider the trivial seminorm p;(z) = 0 de-
fined on —C.. A direct calculation shows that gy, [c, = ¢. Another
extension of r to F is the norm || ||. Tt is also easy to prove that || || is
equivalent to gy, , where po(z) := [z A Q|| = ||z|| for every z € —C,.
Moreover, q; . lc, =T

The example above shows that we can find different extensions
of an asymmetric seminorm defined on an ac-space M to the linear
space X. In fact, the asymmetric normed linear spaces (E,gq; ,, )
and (E,q;,,) are absolutely different from a topological point of
view. (E,q; ,,) is a Hausdorff space (it is in fact a Banach space).
However, it can be easily proved that g; , does not define a Hausdorff
topology on E ([4]). Anyway, the existence of such an extension
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cannot be assured in general. The following theorem characterizes
the asymmetric seminorms defined on ac-spaces M which can be
extended to span{M}, in terms of their moduli of asymmetry.

DEFINITION 2.3. Let g be an asymmetric seminorm on the ac-space
M. We define the modulus of asymmetry of q as the real function
®,: M — R given by the formula

Dy (x) == sup{q(y) —qly + =) : y € M}
for every x € M.

Note that ®,(z) = ¢(—=z) if ¢ is a norm on X.

THEOREM 2.4. Let q be an asymmetric seminorm on the ac-space
M. Then:

1) There exists an extension of q to X if and only if there is an
asymmetric seminorm p on —M such that

D,(z) < p(—2x) for every x € M.
2) Such an extension can be obtained as the asymmetric semi-

norm q, , induced by the couple (q,p).

Proof. The proof is a direct consequence of the properties of the
asymmetric seminorm g ,. It is defined on the whole linear space
span{M}. Then we just need to show that its restriction to M is
exactly g. It is clear that g ,(z) < g(z) for every x € M, since

inf{q(z1) + p(ze) : 21 € M,z9 € —M,x = 21 + 22} <

< q(z) +p(0) = q(z).

On the other hand, consider an element z € M, an € > 0 and
a decomposition £ = x1 + x9, where 1 € M and z9 € —M, that
satisfies

q(z1) +p(z2) < gpp(7) +e

Then we obtain the following inequalities using the condition
given in 1) for @,.
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Ggp(2) +€> q(21) +p(22) = ¢(T — 22) + P(22) >
> q(z — xz2) + sup{q(y) — qly —x2) 1y € M} >
q(z — 12) + q(z) — q(z — 22) = q().

Thus, g; ,(z) = q(z) for every z € M, since the former inequali-
ties hold for each € > 0.

For the converse, consider an extension ¢* of g to span{M}. Then
for every z,y € M,

gz +y) +q¢"(—2) =¢" (. +y) + ¢"(—2) > ¢"(y) = q(v),

since z+y € M. Now let us define on —M the asymmetric seminorm
p = ¢*|-n and fix x € M. We obtain for every y € M the inequality

p(—z) > q(y) — q(z +y).
Then

p(—z) > $y(x) for every x € M.

2) is a direct consequence of the constructive procedure used in
the proof of 1). O

The next example shows that it is possible to find asymmetric
seminorms defined on ac-spaces that cannot be extended to the cor-
responding linear span. According to Theorem 2.4 we just need to
show that there is not any seminorm satisfying the required property.
In fact, it is enough to find an element € M such that ®,(z) = oo.

EXAMPLE 2.5. Consider the positive cone S, of the lattice RY whose
elements are the sequences of real numbers ()72, that are non zero
only for a finite set of indexes, with the usual order. S, is obviously
an ac-space. Let us define the asymmetric norm qy on Sy as follows.
Consider the canonical basis of RYY, {e, : n € N}. Then for every
T = (xn)0%,, if there is no X € R such that T = e, for anyn € N,
we define
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00
q+ (E) = Z Ty
n=1

and qy(Aeyp) := An in the other case.

It is easy to prove that g4 is an asymmetric norm on S;. How-
ever, the element e; satisfies that ®,, (e;) = oo since

D, (e1) = sup{q(y) —qle1 +7) 1€ Sy} >

sup{q(en) —qle1 +en) :n € N} =
=sup{n—2:n € N} = oc.

Then there is no asymmetric seminorm p on — M satisfying p(—ey)
> &, (e1). Moreover, note that this conclusion does not depend on
the separation properties of the space (Cy, ¢4 ). It is easy to see that
q+(Z) = 0 implies T = 0 in the former example. However, an easy
change of the definition of ¢ would lead to an asymmetric seminorm
which does not satisfy this separation property but does not admit
an extension yet. The conditions required for the characterization of
extensions that are asymmetric norms are different that the ones that
assures the existence of the extension. The next section is devoted
to study these conditions.

3. Extensions that satisfy the separation axiom

DEFINITION 3.1. Two asymmetric norms q and p given on the ac-
spaces M and —M respectively, define a compatible couple (q,p) if
the extension q; , evists and satisfies that q; ,|v = q and q; | v = p.

Note that any extension g, ,, of an asymmetric seminorm ¢ can
be obtained by mean of a compatible couple. It is enough to replace
the seminorm p by po = ¢, ,| n. A direct computation shows that
d3p = 3p,- Thus we can use compatible couples without loss of
generality.

DEFINITION 3.2. Consider an asymmetric seminormed ac-space(M,q)
that admits an extension by mean of the compatible couple (q,p). We
define the set Mq’p as the closure of M on the seminormed space
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(span{M}, (q;,)*). Moreover, we say that the ac-space M s closed
if M =T1,,.

For each element y € M, there exists a sequence (z,)32; such

that y € limypz,, where the limit is computed with respect to the
seminorm (g, ,)°. Then we can extend the asymmetric seminorm ¢
to M, in the following way. Note that for each n € N

(45.5)° (@0 —y) > @y, (B0 —y) > g5 p(Tn) — q; , ()

and

(29.0)° (T —Y) > @Y — Tn) > q4,(¥) — g p(Tn)-

Then it is clear that lim,q; ,(zn) = q; ,(y). Taking into account
that g; ,[m = g, we obtain that the following (topological) extension
of ¢ is well defined.

DEFINITION 3.3. Let (M, q) be an asymmetric seminormed ac-space
and let (q,p) be a compatible couple. Then we define the (topological)
extension q for each y € My, by mean of the formula

q(y) = limpq(zn),
where (2,)52, C M satisfies that y € limyzy,.

LEMMA 3.4. Let (M, q) be an asymmetric seminormed ac-space and

let (q,p) be a compatible couple. Then (My,,q) is an asymmetric
seminormed ac-space.

Proof. Consider two elements T,y € Mq’p. Then there are sequences
(Tn)pzy C M and (yn)p2y C M such that lim,(qy,)* (v, —T) = 0,
limpq(zn) = 9(T), limn(ql}k,p)s(yn —7¥) = 0 and limuq(yn) = q(7).
Then

limnqz,p(mn +yn—z—y) < limnqz,p(mn — )+ limnqz,p(yn —y) =0.

This means that x4y € Mq’p, since x,+y, € M for everyn € N.
It is also possible to prove that lim,q(zn + yn) = q; ,(z +y) in the
same way. Finally,
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6(5 + y) < lzan(xn) + llmnq(yn) = q(f) + 6(5)

The proof for the products A\Z, where A € Rt and T € M, is
similar.

O

Consider a compatible couple (¢,p). Then we can define the
corresponding closed ac-space M,, endowed with the asymmetric
seminorm g. Since (q;,)° is a seminorm, the ac-space (—M),  is

a.p
also closed and (—M), = —M,,. Thus, we can also consider the

q:p
closed ac-space —M,, endowed with the asymmetric seminorm p.

Clearly, X = span{M} = span{M,,}. Moreover, the definition of
the extension g, implies gy , > ¢7 5. This argument shows that the
separation properties that are satisfied by ¢z ; are also fulfilled by
qyp- Therefore, we can suppose that ¢ and p are seminorms defined
on the closed ac-spaces M and —M of (X, (g ,)°) in the following
theorem. In the general case, the condition that will be required in
order to assure that the separation axiom holds for extensions will
be obtained as a direct consequence.

THEOREM 3.5. Let (q,p) be a compatible couple of asymmetric norms
on the closed ac-spaces M and —M respectively. Then the following
are equivalent.

1) Y(z) := maz{q(z),p(—z)} = 0 implies = 0 for every x € M.
2) The extension q,, defined by (q,p) is an asymmetric norm.

Proof. Let us show that 1) implies 2). Suppose that for an element
r € X we have ¢, ,(z) = 0 and g; ,(—z) = 0. Then, as a consequence
of the definition of the extension ¢; ,,, there are sequences (z,,)52; C
M and (y,)52; C —M such that

(x —xp)pey € —M,  limpg(z,) =0, lim,p(x —x,) =0,

and

(_m - yn)zozl C M, limng(_x - yn) =0, limnp(yn) =0.
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Let us define the sequence (2,)22, C M, z, := x, — yp. Since
for every n € N, —x + z, = —z — (y, — z,,) € M, we have that

q(—z + 2zp) < q(zn) +q(—z — yn)

and

(T — 21)) < p(x — 2n) + P(Yn),

we deduce that lim,q(—z+2z,) = 0 and lim,p(z—2z,) = 0. Moreover,
since q; ,|pr = q and q; | = p, we get q(—z +2,) = q; (=7 + 2,)
and p(z — zp) = qz,p(ﬂf — 2zp). Then ¢p(—z + 2,) = (qz]k,p)s(_fv + zn)
and limy(q;,)°(2n — ) = 0. Therefore x € M since M is closed,
and ¢(z) = (q;,)°(z) = 0. Then an application of 1) gives 2). For
the converse we just need to note that 1 = (q; ,)*|am-

U

COROLLARY 3.6. Let (q,p) be a compatible couple of asymmetric
norms on the ac-spaces M and —M . Then the following conditions
are equivalent, and imply that g, , is an asymmetric norm:

1) For every z € M, (¢;5)°(z) = 0 implies x = 0.

2) 455 18 an asymmetric norm.

4. Applications. Extensions of increasing asymmetric
seminorms

To finish this paper we apply the results of the second and the third
sections to a particular case. We define a class of asymmetric semi-
norms that satisfy an increasing condition. Our definition is moti-
vated by the fact that many asymmetric norms that has been used
on applied contexts belongs to this class.

DEFINITION 4.1. Let q be an asymmetric seminorm defined on an
ac-space M. We say that q is an increasing asymmelric seminorm
if for every pair z,y € M, q(z) < q(z +y).

Note that this property implies a strong restriction on the value
of g(z) for the elements z € M that satisfy that z and —z belong
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to M, since g(z) < q(z + (—z)) = q(0) = 0. In particular if M is a
linear space, ¢ = 0. However, we can find a lot of examples of sub-
sets of Banach lattices that satisfy this property. In particular, the
restriction of the norm to an ac-space contained on the positive cone
of a Kéthe function space satisfies this condition (see [6] for the def-
inition of the Kothe function space). Moreover, the dual complexity
space introduced in [7] (see also [10], [5]) satisfies this property too.

COROLLARY 4.2. Let q be an increasing asymmetric seminorm on
an ac-space M. Then the extension qy, exists for each asymmetric
seminorm p defined on —M.

Proof. Since q is increasing, it is obvious that ®,(z) = sup{q(y) —
qly +x) : y € M} <0 for every z € M. Then it is clear that
each asymmetric seminorm p on —M satisfies p(—z) > ®,(z). An
application of Theorem 2.4 gives the result. O

Corollary 4.2 is true even in the trivial case p = 0. Moreover,
consider a normed lattice (E, || ||, <). Then the canonical asymmetric
norm on F is defined as qo(y) := ||y V 0|| for every y € E (see [2] and
[1]). If we define M as the positive cone of E and ¢(z) := ||z|| for
every x € M, it can be easily proved that qo(y) = gq;,(y) for every
y € E = span{M}, where p = 0.

COROLLARY 4.3. Let q be an increasing asymmelric seminorm on an
ac-space M that satisfies that for every x € M, q(x) = 0 implies © =
0. Let p be an asymmetric seminorm on —M . Then the extension
4y, ezists and defines an asymmetric norm if M is closed.

The proof is a direct consequence of Corollary 4.2 and Theorem
3.5. We can use the last result in order to extend the asymmetric
norm ¢g defined on the normed lattice E. For instance, Corollary
4.3 can be applied to each ac-space M contained in the positive cone
of a Kothe function space (E, ||.||,<). The properties of this class
of normed lattices imply that the asymmetric seminorm ¢ defined as
the restriction of ||.|| to M is increasing (see [6], p. 28). (Since the
elements of M are positive functions, we have that |f| < |f + g for
every f,g € M, and then ||f|| < | f + gl[). Moreover, z = 0 if and
only if g(x) = 0 for every x € M. If p is an asymmetric seminorm
defined on —M such that M is an ac-space, the extension g, , is an
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asymmetric norm. Of course, this is also true if p = 0. In this case,
the asymmetric norm g o is the natural extension of go.
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