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A Monomiality Principle Approach
to the Gould-Hopper Polynomials

S1viA NOSCHESE *)

SUMMARY. - We show how to derive properties of the Gould-Hopper
polynomials using operational rules associated with the monomi-
ality principle.

1. Introduction

In this paper we consider the Gould-Hopper polynomials (GHP)
which are a generalization of the Hermite polynomials { H,(z)}nen
established in [6] by H'W. Gould and A.T. Hopper essentially by re-
placing the exponent 2 in their Rodrigues formula with an arbitrary
parameter. M any authors investigated properties of these polyno-
mials (see [10, 8, 7, 1]), using classical methods well known in the
special functions theory. The GHP’s fall, with suitable choices of
additional parameters, in the families of polynomials given by fur-
ther generalizations of the Hermite polynomials generating function
introduced by M. Lahiri [8] and by R.P. Gupta and G.C. Jain in [7].
Also, in [10] H.M. Srivastava considered the general class of polyno-
mials generated by G[(p + 1)zt — tPT!] (where p is a positive integer
and G[z] has an analytical expansion at z = 0 with nonzero coeffi-
cients) and proved that the Gould-Hopper polynomials are contained
in this class. Recently, Y. Ben Cheikh and K. Douak investigated the
p-orthogonal polynomials defined by G[(p+1)xt—tPT!] and obtained,
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among other properties, that they are necessarily p-symmetric (see
[1, Theorem 1.2] ).

In this note we restrict ourselves to the Gould-Hopper generat-
ing function e(p“)‘”t_tpH, showing that the study of the properties
of the GHP’s is greatly simplified by the use of a new approach based
on the "monomiality” principle. The outline of the paper is as fol-
lows. In Section 2 we introduce the concept of quasi-monomiality
and we show that the GHP’s are quasi-monomials under the action
of two suitable operators. In Section 3, following the prescription
of the monomiality point of view, we derive most of the properties
of the GHP’s: generating function, explicit expression, hypergeo-
metric representation, differential equation, recurrence relation and
p-Symimetry property.

2. Quasi-monomiality of the GHP’s

G. Dattoli et al. in recent papers (see e.g. [2, 3, 4]) introduced the
monomiality principle. A polynomial sequence {p,(z)},en can be
considered a quasi-monomial sequence, if it is possible to define two
operators P and M in such a way that

P(pn(.’li)) = npp_1(z)
M (pn(2)) = pny1(z).
M and P play the role analogous to that of multiplicative and deriva-
tive operators respectively on monomials. Most of the properties of
families of polynomials, recognized as quasi-monomials, can be de-
duced using operational rules with the P and M operators.
Namely:

i) If M and P have a differential realization, the polynomials Pn(x)
satisfy the differential equation

MP(pp(z)) = npp(z).

ii) If po(xz) = 1, then the p,(z) can be explicitly constructed using
the the Burchnall-type equation

pn(z) = M"(1).
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iii) The multiplicative and derivative operators satisfy the commu-
tation bracket:
[P,M]=1

and the above relation of commutation displays a Weyl group
structure.

Note that the statement ii) implies that a generating function of
pn(z) can always be cast in the form e (1).

There is no theorem ensuring that it is possible to define P and
M operators for any family of polynomials. In spite of that one can
prove that most of the known families of polynomials can be treated
as quasi-monomials.

Now, for all finite z and ¢, we have

(p+1)zt—tPt+! - "
€ = ZHpn(m)m (1)
n=0 '
2xt—t>

If p is equal to 1 the function e is the one that generates the

classical Hermite polynomials Hy(z).
It follows from Eq. (1):

0 pi—gp+1 > t"
8_xe(p+1) t—tptl _ E 1Hll)’n(x)m_ (2)
n=

ie(ﬁl)xt—t]’“ =(p+ 1)t6(p+1):vt—tp+1

ox
tn+1

=(p+1) ZH ,n(m)
n=0

n!

¢ (3)
(n—1)!
=(p+1)) _nH, ,n—l(x)i_n!'

n=1

=(p+1))_ Hpn 1()

n=1

Comparing Eqs. (2) and (3), and using the identity principle for
power expansions, for n > 1, we get

(p+ Dty pn1(z) = Hy (). (4)
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Then we obtain the operator P as follows:

1 d

P=———".
p+1ldx

In order to find the operator M, iterative differentiation of Eq. (4)
yields

(p+1Pn(n—1)-- (n—p+1)Hyp_p = HP)(z). (5)

We exploit Eq. (1) again, obtaining

0 +1 > g1
7 elptDzt—tPT H ) 6
at° D Hyn(@) (n—1)! (6)
n=1
On the other hand
%éwmtw = ((p+ Do — (p+ 1)r)elrtDa—e
o tn
n=0
n=0
Equating Eqgs. (6) and (7), with suitable shift of indices we get
00 4 oo m
(p+1) Z zH, ,n(x)ﬁ_(p"i‘l) Z n(n—1)--- (n_p""l)Hp,n—p(m)m =
n=0 ’ n=p ’

o t”
= Hypii(z)=,
n!
n=0
by using again the identity principle, for n > p, we have
Hynss(a) = (p+ )(@Hpn(@) = n(n— 1)+ (n = p+ 1) Hpp()
and, recalling Eq. (5),

Hypi1(2) = (p+ DaHyn(z) — (p+ 1) PHY) (2).

3
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This gives us the operator M:

/4

~ _, d

Note that straightforwardly from [6, Eqs. (6.4) and (6.7)], we
could have deduced the quasi-monomiality of the GHP’s. Neverthe-
less it was worth outlining the above technique in order to emphasize
the effectiveness of such a procedure with the generating function as
a starting point.

Observe that M = (p + 1)z — (p + 1)PP. This implies that the
operators satisfy, as point iii) asks for, the commutation bracket:

P, 6] = [P, (p+ 1)a] = [

= 1.
ek

3. Properties of the GHP’s

In this section we show how to derive properties of the Gould-Hopper
polynomials following the prescription of the monomiality point of
view, i.e. using exponential operators, disentanglement identities
and other techniques described in [5] involving the P and M opera-
tors.

3.1. Generating function

One of the rules relevant to the action of exponential operators on a
given function is the Crofton identity:

m—1

M (@) = flo+mAT ),

where ) is a parameter and f(z) is infinitely differentiable. Applying

the above identity on f(z) = e/Pt1? (with A = —W and m =
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p+1) and the exponential expansion, we find the generating function:

N p+1
(1) = et(p+1)(m—ﬁ%)(l) _ e—mlzﬂpﬁet(pﬂ)m(l)
_ i (_W)n dr®+y) t(p+1)z
N ot n! dzn D)
o
— ﬂet(zﬁl)x

n!
n=0

_ e(p—l—l):ct—tp'H

3.2. Explicit expression

Directly from point ii), it is easy to obtain the explicit representation:

Hyn(z) =(p+1z—(p+ 1)1*1’%)“(1).

In particular, if n = 1, we have, Vp, H, 1(z) = (p+1)z (and if p = 1,
Hy(z) = 2z). If n = 2, the operator is

2p 4 p

d d
12 2 12—2p__ 12—p__ 12—p_
(p+1)%2"+ (p+ 1) — (p+ )P = (p+ 1)

where, thanks to the commutation bracket [z, d‘i—’;] = —pj;%,

get:

we

d* xdP  dP!

_ 2,2 2—-2p % 2—prot®
Hya(@) = (+1)20%+ (1) (o 12 P2 T ))(1),
If p=1, Hy(z) = 42? — 2 and, Vp > 1, Hys(z) = (p + 1)%z?.

In a similar way we could construct theoretically all the Gould-
Hopper polynomials.
Otherwise, another explicit representation of the GHP’s can be
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derived in the classical way:

e(p—l—l):ct—tp'i'1 ;1)—1—1):ct6—tp'|'1

e(

> ((p + 1)) = (—1)mpt1)m
_ Z((p )z) Z( )

! !
n=0 n. m=0 m.
00 [W] '(—l)m((p + l)x)nf(erl)m m
= E E n! v
| _ 1 1
n=0 m=0 m(n (p + l)m) n.:
where [(p-?—n} denotes the integer part of (pnTl)' Therefore

We observe that Hy,(z) is a polynomial of degree n in z and
that Hyp(z) = (p + 1)"2" + ,,_(,41)(x), where II,, ¢, 1)(7) is a
polynomial of degree n — (p + 1) in z.

With the monomiality principle approach, the proof of the rep-
resentation in (8) may be easily obtained, using the multiplicative
operator, by induction. The first step is obvious. Supposing true the
identity in (8), we get
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Hynia() = ((p+1a— (p+ ') Hy(a)

(i) _
_ () ((p + ay1-Hm
N Z n! m!(n — (p+ 1)m)! +

m=0
o)
(p+1) < n!(—l)m((p+ 1)g)n(pHm—p
= mi(n — (p+1)m — p)!
=5

= (—1)™((p + 1)z)n+1-+)m
= Z (n+1)! T G T

To get the last equality observe first of all that, for m > 1, the
m-th term of the first sum has the same power as the (m — 1)-th
term of the second one and that

T I () L
mli(n—(p+1Lm)! (m—-Dln—(p@+1)(m-1) —p)
(n+1)I(=1)™

ml(n+1—(p+ 1)m)!’

This is enough in case n = r mod (p + 1) with r < p, i.e. [ n ] =

(p+1)
there is an extra term in the second sum:

[n—ﬂ], while in case n = p mod (p + 1), i.e. [ﬁ] = [ ntl } -1,

(p+ 1)(=lEH]n Y (] P

(et -+ [2] -or o)

and this concludes the proof.

3.3. Hypergeometric representation

From the representation in (8), it is easy to derive, using the notation
(Oé)(] = 15 04750, (Oé)n :a(a+1)(a+2)(a+n_1)a n > 13

[ﬁ] —n —1)mgp—(p+1)m
Hyn(z) = ((p+Da)" ) ! )(:r:r!t;mfr 1;()P+1)m

m=0
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which gives the hypergeometric representation of the Hy, ,(z) :

((p+1)z)" p11Fo

n 0 1 0 P 1
- T + (AR + 3Ty T 1
p+1" p+1 p+1 p+1 p+1 Pt

If p=1, we have H,(z) = (2z)" o Fy [-%, -2 + %;—;—m%].

3.4. (p + 1)-order differential equation

We can find the differential equation by using the generating function
method described in the book of Rainville [9]. In the particular case
under consideration, starting by the system

ge(pﬂ):ct—tp“ = (p+ l)te(p+1)mt—tp+1

ox

%e(pﬂ)mttpﬂ = ((p+ 1)z — (p+ 1)tF)e Dot

we obtain

9 plp+zt—trtt L o p(p+1)zt—trF?

ot t Ox
and, by Eqgs. (2) and (6),

ZnH ,n(:v)t—n' — Z mH;m(m)t—n' + Z Hz',’n_p(m) ( T L= 0
n=0 n: n=0 n: =p n p)'
), () — () = mﬁ—;ﬂﬂg,n_pm) —0 (mnzp). (9)

finally, using p times Eq. (4), we get

1
oy o @) = 2+ (@) = 0. (10)
If p =1, Eq. (10) reduces to the well known second-order differential
equation satisfied by the Hermite polynomials: H) (z) — 2zH, (x) +
2nHy(z) = 0.
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On the other hand, the monomiality principle reduces a great
deal of lengthy computations. Indeed, according to property i), we
get the equation:

L1 d

=) — (Hypn(z)) = nHyp(z),

that is Eq. (10).

3.5. Recurrence relation

Examination of the defining relation (1) gives us the (p + 1)-order
recurrence relation satisfied by the GHP’s.

%e(il’-l-l)mt—tf”rl e ((p + 1)$ — (p _|_ l)tp)e(p'i'l)ivt—tfﬂrl’
ngl(n + Difpnsal2) (n+1)! (p+ l)wnz_%H (@)t
o tn
~(p+1)> H @)

n=p

Hp,n—l—l(fv) = (p+ l)pr,n(w) —(p+1)! <Z> Hp,n—p(m)a (n>p). (11)

If p = 1, we rediscover H,.1(z) = 2xHy(z) — 2nH,_1(x). Observe
that Eq. (11) alternatively follows from Egs. (4) and (9).

Also in this case the recurrence relation can be derived, recalling
the multiplicative and derivative actions of M and P, in only one
step:

Hp,n+1($) = M(Hp,n) =(p+ 1)$Hp,n -+ 1)PpHp,n =

H

(p+DzHpn — (p+ 1)@ pn—p

that is Eq. (11).
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3.6. p-symmetry property
Recall the following:

DEFINITION 3.1. A sequence {P,(x)}n,>0 is called p-symmetric if
P, (wz) = w"P,(x), where w = exp(2in/(p + 1)).

The fact that the GHP’s are p-symmetric follows essentially from the
generating function itself (see [1, Lemma 3.1] ) :

e(p-l—l)w:vt—thrl — e(p+1)wmt—(wt)P+1 ’
oo o
" (wt)™
ZHp,n(wx)m = ZHp,n(m)Ta (12)
n=0 n=0
Hp n(wr) = W'Hpn(z),

and this gives us the p-symmetry property. If p =1, we get H,(—z)=
(—1)" Ho ().

We can otherwise get the p-symmetry exploiting the monomiality
principle. To do so, we need the following;:

LEMMA 3.2. Let f be an analytic function and k be an integer such
that f(wz) = Wk f(2) where w = exp(2im/(p+1)). Then M(f)(wz) =
WM (f)(2).

This is easy to verify: differentiating p times f(wz) = w¥f(2) gives

us wP 2L (wz) = wk‘(f;—g(z), that is, being w a generator of the (p+ 1)

dzP
. P P
roots of unity, M(wz) = wk—H%

dzP
V() (w2) = (p-+ Doz f(w2) — (p+ 1)L

(z) and we get

(wz) =

P .
=+ Dt 21 () — 0+ 1) Pt T () = N ),
2z
Applying recursively the above lemma to the constant analytic
function f = 1 (that satisfies the hypothesis with & = 0), to f =
M (1) (that, thanks to the lemma, satisfies the hypothesis with £ = 1)
up to f = M" (1) (with & = n — 1), we derive M"(1)(wz) =

w"M™(1)(z). Recalling point ii), we get directly Eq. (12).



82

S. NOSCHESE

Acknowledgments

I would like to thank Professor Paolo E. Ricci for his valuable support
and fruitful discussions and the referee for having brought to my
attention Refs. [7] and [8] and for helpful suggestions and remarks.

[1]

2]
[3]
[4]
[5]

REFERENCES

Y. BEN CHEIKH AND K. DoOUAK, On the d-Orthogonal Polynomials
generated by G[(d + 1)zt — t+1] = S°°0 ¢, Py(z;d)t", Bull. Belg.
Math. Soc. 7 (2000), 107-124.

G. DatrToLl, Hermite-Bessel and Laguerre-Bessel functions: a by-
product of the monomiality principle, submitted.

G. DatToL1, C. CESARANO, AND D. SACCHETTI, A note on the
monomiality principle and generalized polynomials, submitted.

G. DATTOLI, H.M. SRIVASTAVA, AND C. CESARANO, On a new fam-
ily of Laguerre polynomials, submitted.

G. DartoLi, A. TorRRE, P.L. OTTAVIANI, AND L. VAZQUEZ,
Evolution operator equations: Integration with algebraic and finite-
difference methods. Applications to physical problems in classical and
quantum mechanics and quantum field theory, Riv. Nuovo Cimento
20 (1997), 1-133.

H.W. GourLd AND A.T. HOPPER, Operational formulas connected
with two generalizations of Hermite polynomials, Duke Math. J. 29
(1962), 51-62.

R.P. GupTA AND G.C. JAIN, A generalized Hermite distribution and
its properties, STAM J. Appl. Math. 27 ((1974), 359-363.

M. LAHIRI, On a generalization of Hermite polynomials, Proc. Amer.
Math. Soc. 27 (1971), 117-121.

E.D. RAINVILLE, Special functions, The Macmillan Co., New York,
1960.

H.M. SRIVASTAVA, A note on generating function for the generalized
Hermite polynomials, Proc. Konin. Neder. Aka. Wetens. Indag. Math.
79 (1976), no. 1, 457—46.

Received January 17, 2000.



