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An Analytical Introduction to
Stochastic Differential Equations:
Part I — The Langevin Equation

PH. CLEMENT AND O.W. VAN GAANs (*)

SUMMARY. - We present an introduction to the theory of stochastic

differential equations, motivating and explaining ideas from the
point of view of analysis. First the notion of white noise is de-
veloped, introducing at the same time probabilistic tools. Then
the one dimensional Langevin equation is formulated as a de-
terministic integral equation with a parameter. Its solution leads
to stochastic convolution, which is defined as a Riemann-Stieltjes
integral. It is shown that the parameter dependence yields a Gaus-
stan system, of which the means and covariances are computed.
We conclude by introducing briefly the notion of invariant mea-
sure and the associated Kolmogorov equations.
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1. Introduction

The goal of this text is to give an introduction from an analytical
point of view to the theory of differential equations perturbed with
noise. As a first step we shall consider the Langevin equation, which
is an equation of the form

G (1) = F(X (1)) + “noise”, >0, (1)
X(0) = =,



AN ANALYTICAL INTRODUCTION TO etc 219

where f: R — R is an affine function and £ € R. The “noise” term
will be a Gaussian process. The study of such equations inevitably
needs concepts and results from probability theory. We start with
the notion of noise and some tools to work with it. Then we will
discuss existence, uniqueness, and some properties of solutions to
the Langevin equation.

We aim at readers who are not familiar with probability theory,
but who do have a background in analysis. Our focus is on explaining
ideas and motivating the mathematical concepts to describe them.
Accordingly, we give detailed statements but leave many of the proofs
to the reader or refer to the literature.

1.1. Langevin Equation I

Let ¢,0 € R, and let f(u) = ¢(6 —u) (u € R). Then problem (1)
becomes:

{ %(t) =c(0 — X(t)) + “noise”, t >0,

Fo) = @)

We write X for the solution to the problem without noise:

{ AX (1) =c(@— X (1), t>0,

It can directly be verified that
Xt)y=e %+ (1—-ehs, >0, (4)

is a solution to (3). We see that for ¢ > 0, X (¢) is a convex combi-
nation of z and 0, for ¢ = 0 starting at z and transforming to 6 as
t — 00.

1.2. How to model noise?

Intuitively, the "noise” in problem (2) is a random influence on the
system, as if at every moment a coin is tossed to decide in which
way the influence will be. A proper mathematical description of
noise is rather involved. It brings us to the Brownian Motion and
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stochastic processes in general. Before we introduce the specialities
of probability theory, we elaborate a little more at an intuitive level.

As there is no obvious direct way, a natural approach to introduc-
ing noise in problem (2) is to consider discretizations. Indeed, even
by definition, the derivative term is a limit of difference quotients.

Divide the interval [0,7T] in n subintervals of length h = T'/n.
Consider the step function X as an approximation of X of (4),
given by the FEuler implicit scheme:

):((n)(tJrhlzfX(n)(t) =c(0— XM (t+h)), t>h, (5)
XM () =, 0<t<h,
forn =1,2,.... From these expressions we can recollect the solution

of (3) by rewriting and passing to the limit. We find
(14 ch) XM (t 4+ h) = XM (&) 4+ ch,  t>h,
so that for all ¢ € [kh, (k + 1)h):
k

X™(t) = (1+ ch) Fa+chfy (1 +ch) ™,
=1

which leads to
{ XM () = (1 + ch)~Fa + 079 LD Ly [kh, (k + 1)h),

- 1+ch 1—(1+ch)~1?
XM(t) =z, t € [0, h).

In particular, for t =T
el 11—+l
T T\_1"
]. +c ]. — (]. + Cﬁ) 1

n

X1y = <1+cz) z + 6
n

(6)

Letting n — oo, we find X("/(T) — e=Tz + (1 — e=T)6, which is
the solution to (3).

Our approach now is to add a noise term to (5), to rewrite in the
same way as above, and to see what happens if n tends to infinity.
Consider

AEM=XD _ (g — X (¢ + b)) + aMED (), ¢ > h,
X®(t) =, 0<t<h,
(7)
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where o™ are real numbers to be chosen later on for suitable scal-
ing and where £ (t) represents the randomness. In view of the
discretization, we take the functions £ constant on each interval
[kh, (k + 1)h) and equal to +1 or —1 with equal probability:

o [0, teloh),
() _{ e, t € [kh, (k + 1)h),

where the random wvariables 7y are, independently, +1 or —1 both
with probability 1/2.
Rewriting (7) yields:

(14 ch)X™ (¢ 4+ h) = X (t) + chf + ha™eP (1), > h,

SO

XM (t) = (14ch) Fztchdy (1+ch) " +> (1+ch) " ha™ng ),
=1 =1

and thus

_ n T ,T
(n) — y(n) Lkl (n)
X"(T)=X (T)+k§1(1+cn) — 0 1)~k (8)

with X given by (6). Our objective is to give a meaning to prob-
lem (2) as a limit of (7), starting from (8) and its limit for n — oo.
As we have seen, this approach will involve:

e the notion of random variable
e the notion of independence of random variables

e existence of a sequence {n;}72, of independent random vari-
ables such that each 7 takes values 1 or —1 both with proba-
bility 1/2

e interpretation of limy, o0 Y p_y 51(:)"719 for certain sequences of
numbers {ﬁ,ﬁn)}zzl, n=12,....

We will now present the ideas and tools from probability theory that
address the above issues.
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2. Probability theory

We assume that the reader is familiar with elementary measure and
integration theory. For reference we mention: [1], [5], [11], and [7].
Recall that a o-algebra (o-field) in a set S is a collection F of subsets
of S such that (i) § € F, (ii) A° € F for all A € F, and (iii)
URe Ay € F for all A, As,... € F. If S is a topological space, for
instance a metric space, then the Borel o-algebra is the o-algebra
generated by the open sets, i.e. the smallest o-algebra containing all
open sets of S. The members of the Borel o-algebra are called the
Borel sets of S. The Borel o-algebra of R is denoted by B.

A measure on a o-algebra F is a mapping u: F — [0, oo] that is
0 at () and o-additive: p(U2,Ag) = > po pu(Ay) for every pairwise
disjoint collection {A, Ag,...} in F. If u(S) =1, then u is called a
(Borel) probability measure on F, or, less precisely, on S.

2.1. Random variables

DEFINITION 2.1. A probability space consists of a triple (Q, F,P)
where

(i) 2 is a non empty set of points w, called the sample space and
sample points,

(ii) F is a o-algebra of subsets of ); these subsets are called events,
(iii) P(.) is a probability measure or briefly probability on F.

EXAMPLE 2.2. Let Q = {a,b}, let F be the o-algebra of all subsets
of Q and let P be defined by

P@) = o
P({a}) = P({b}) 1/2,
P({a,b}) = 1.
Then (2, F,P) is a probability space.

DEFINITION 2.3. Let (Q,F,IP) be a probability space. A function
X: Q — R is called a random variable if X is measurable, that
means: for every Borel set B in R the set

{we: X(w) € B} € F.
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We will denote
{X eB} :={weN: X(w) € B}
and, accordingly,
{X <z} :={weQ: X(w) <z}, zeR

Every random variable induces a o-algebra in 2 and a measure
on the Borel sets of R:

DEFINITION 2.4. Let (2, F,P) be a probability space and let
X: (Q,F) = R be a random variable. Then:

(i) The collection of subsets of Q of the form {X € B}, B € B,
is a o-algebra, denoted by F(X) or o(X), called the o-algebra
generated by X. Note that F(X) is a subcollection of F, since
X is Borel measurable.

(ii) The image measure of P under X, given by
(X oP)(B) :=P({X € B}), Be€B,

is called the law of the random wvariable X or the probability
distribution of X.

(iii) The function F': R — [0,1] defined by
F(z) =PH{X < =z})
1s called the distribution function of X.

EXAMPLE 2.5. Let (Q, F,P) be as in Example 2.2. Let &: Q — R be
defined by

{(a) = _17
() = +1.

Then & is a random variable and its distribution function is given in
figure 1.
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Figure 1: The distribution function of &.

PROPOSITION 2.6. A function F': R — [0,1] is the distribution func-
tion of a random wvariable if and only if the following holds:

(i) F is nondecreasing,
(ii) F(—o0) =0, F(o0) =1,
(iii) F' is right continuous or, equivalently,

F(z) = inf F(y), for allxz € R
y>x

(See [1, Prop. 2.25 and Thm 2.26, p. 27-28].)

We shall denote by N the set of all distribution functions on R.
For F € N, its set of discontinuities is at most countable and hence
the set of continuity C(F) is dense in R ([11, Thm 9-1.1, p. 380]). A
function F € N is uniquely determined by its restriction to C(F).
More generally, if F,G € N and F(z) = G(x) for every z in a dense
subset A of R, then F' = G (compare with [1, Problem 8.2, p. 160]).
We remark that given a function F € N there exists a unique Borel
probability measure pr on R such that

pr((—oo, z]) = F(x), z R

(See [7, Prop. 12.12, p. 301], [8, Thm 1, p. 150].) Let us denote by
P(R) the set of Borel probability measures on R.
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2.2. Stieltjes integrals

Calculations with random variables can usually be done in terms
of probability distributions or distribution functions. The former
usually involve Lebesgue integrals, the latter Stieltjes integrals. Let
us summarize some of the main properties of Stieltjes integrals.

Let a,b € R, a < b and let f,g: [a,b] — R (or C) be arbitrary
functions. For a partition a = tg < t1 <ty < --- < t, = b and
intermediate points s with t;_1 < sp < i, k =1,...,n, the corre-
sponding Riemann-Stieltjes sum is defined as

S™ F(si)(g(te) — glte1)-
k=1

If there exists a number I such that for every ¢ > 0 there is a
0 > 0 such that for any partition a = g < t; < --- < t, = b
with maxy (tx — tx_1) < ¢ and any choice of intermediate points the
corresponding Riemann-Stieltjes sum differs less than € from I, then
f is called Stieltjes integrable with respect to g and the number I,
which is denoted by fab f(t)dg(t), is called the Stieltjes integral of f
with respect to g.

Let BVJa,b] denote the space of all real (or complex) valued
functions on [a, b] with bounded variation. Recall that BV[a,b] is
the vector space generated by the nondecreasing functions, and that
C'a,b] C BV][a,b].

PROPOSITION 2.7. Let f,g: [a,b] = R (or C).

(i) If f is Stieltjes integrable with respect to g, then g is Stieltjes
integrable with respect to f and

b b
/ f(t)dg(t) +/ g@)df (t) = f(b)g(b) — f(a)g(a).
(Integration by parts)

(ii) If f € Cla,b] and g € BV][a,b|, then f is Stieltjes integrable
with respect to g and

b
| / F@dg(®)] < 1Flloo Vi (9),

where Vi, 4(g) denotes the total variation of g.
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(iii) If f € Cla,b] and g € C'[a,b], then

[ o=

(See [11, Thm 9-5.LI1, p. 394].)

EXERCISE 2.8: (A substitution rule) Let T > 0 and let

: [0, T] — R be such that f is Stieltjes integrable with respect to
gLetf—f( — ) and §(t) := g(T —t), 0 < ¢t < T. Show that f
is Stieltjes integrable with respect to g and that

/Ofdg /f 0

2.3. Independence

The idea of independence of random variables is not easily catched
in terms of measure theory. Let us therefore say some words about
the stochastic intuition behind it.

The probability of an event can be interpreted as the relative
frequency of occurences in a (infinitely) large number of samples.
Thinking of two events, A and B, and a large number of samples,
we can consider the probabilistic relationship between A and B by
comparing the relative frequency of occurences of B among all the
samples and among only those where A occurs. One extreme case we
can imagine is that B occurs then and only then when A occurs. An
other extreme case is that B occurs with the same frequency among
the samples where A occurs as among all samples. Whether A occurs
or not seems then of no importance to B. In the latter case, A and
B are called independent. Since the fraction of the samples where
both A and B occur equals the fraction of occurence of A times the
fraction of occurence of B among these where A occurs, we see that
for independent A and B we have: P(A N B) = P(A)P(B). Thus we
arrive at the common definition of independency.

DEFINITION 2.9. Let (2, F,P) be a probability space. oc-algebras
Fi,y... ,Fn contained in F are said to be independent if for any
choice of sets Ay € Fi,..., Ay € Fpn one has that

P(A; N...N Ap) = I, P(Ay).
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Random wvariables X1,... , X, on (Q,F,P) are said to be indepen-
dent if the o-algebras F(X1),... ,F(X,) are independent.
Clearly, X1,....X, are independent if and only if

P({X:, € By,...,X, € By}) =I;_P({X) € By})

for any sets By,... ,B, € B.
A sequence X1, Xo,... of random variables is called independent
if for everyn > 2, the random variables X1, ... , X, are independent.

PROPOSITION 2.10. Let (Q,F,P) be a probability space and let
{Xn}o2, be a sequence of random variables. A necessary and suffi-
cient condition for these random variables to be independent is that
for every n, and n-tuple (z1,... ,x,) € R™ one has that

]P’({Xl S Llye-- ,Xn S :En}) = FXl(fL'l) "'FXn(fL'n)a (9)

where F, denotes the distribution function of X;, 1 =1,2,... ,n.
(See [1, Thm 3.7, p. 38]).

COROLLARY 2.11. If {X,,}°%, are independent random wvariables,
then

PH{ X1 <z1,X2 <x9,...}) =172, Fx, (21), (10)

where x1,Ta,... s an arbitrary sequence in R.

2.4. Product spaces

Given a sequence of distribution functions {£,}5°, in A/ one may
ask whether there exist a probability space (2, F,P) and random
variables {X,,}5%; such that (10) holds. In this respect the notion
of countable product of probability spaces will be useful.

For probability spaces (Q, Fi,Pr), & = 1,2,..., we will con-
struct a product space as follows. Take €2 :=TIP2 ) = Qy X Qg x-- -,
the cartesian product. A subset of Q is called a (rectangular) cylinder
set if it is of the form A x Q11 X Qg ioXx -+, where A = A; x--- X Ay,
with Ay € Fy... , A € Fr and k > 1. Let F be the o-algebra in
Q) generated by the cylinder sets. A probability measure P on F
is called a product measure if P(A; X --- X Ap X Qpy1 X -++) =



228 PH. CLEMENT AND O.W. VAN GAANS

Pi(Ay)--- Py(A,) for every n > 1 and Ay € Fy,... , A, € Fp.
that case, (2, F, ]P’) is called the product of the probablhty spaces
(Qk,}"k,IP’k) k=1,2 . Does such a measure P always exist and,

if so, is it unique?

THEOREM 2.12. Let (Qp, Fi,Pr), k = 1,2,... be probability spaces,
let Q = 1132, and let F be the o-algebra in ) generated by the

cylinder sets. Then there exists a unique probability measure P, de-
noted by @ Py, on (2, F) such that

P(A; X Ag X -+ X Ap X Qi1 X Qpyo x -+ ) =1E_ Pr(Ag), (11)

for every n > 1 and every sets Ay € Fy,--- ,Ap € Fp.

(See [5, §38 Thm B, p.157]; if Q; = R for all k£ then special case of
Kolmogorov’s extension theorem, [1, Cor. 2.19, p. 24], [8, Thm 3,
p. 161].)

EXAMPLE 2.13. (sequel to Example 2.5) Take for every n > 1:

Q, = {a, b},
Fn = {07 {a}, {b},{a,b}},
P, such that P, ({a}) = P, ({b}) = 1/2.

Let (2, F,P) be the product of the spaces (p, Fpn,Pp), n=1,2,....
For w = (wy,wa,...) € Q, set for k> 1

s ={ 77 o)

Then &1,&o, ... are random variables on (2, F,P). They are inde-
pendent and identically distributed, and

0 ifx<—1,
Fe(x)=1% 1/2 if —1<z <1,
1 ifz>1.

Moreover, we have F_¢, () = Fg, (x), z € R.

The above example may seem rather simple. However, it has strong
consequences. In the next Exercise it is concluded that it entails
existence of the Lebesgue measure on [0,1).
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EXERCISE 2.14: Let (Q,F,P) and {£}72, be as in the previous
example. Set

Q' :={w € Q: w contains an infinite number of a’s}.
1. Show that Q' € F and P(QY') = 1.

2. Show that the map j defined by j(w) = Y 50, 27 (& (w) +
1)27% for w € Q' is a bijection from €’ onto [0, 1).

3. Let 7/ .= {A' Cc Q': A/ =Q'NAforan A € F}. Show that
F' is a o-algebra in (V.

4. Let Ay, Ay € F be such that Q' N A; = Q' N Ay. Show that
P(A;) = P(Ay). Define P’ : 7' — [0,1] by

P(A') := P(A)

where A € F such that A’ = Q' N A and show that (', F', )
is a probability space.

5. Let B denote the Borel o-algebra of [0,1). Show that
371([0,2)) € F' for every z € [0,1] and that j 1(B) € F'
for every B € B.

6. Show that P'(51([0,x))) = = for every z € [0,1].

7. Show that there exists at most one Borel measure y on [0,1)
such that p([0,z)) = z for every z € [0,1].

8. Show that P'(j1(B)) = m(B) for every B € B where m is the
Lebesgue measure on [0,1).

EXAMPLE 2.15. The space (RY, B(RY), ®%°  uy). Let {F}32, be a
sequence of distribution functions in N'. Let {ug}°, be the corre-
sponding Borel probability measures on (R, B(R)). Applying Theo-
rem 2.12 with

Q = R,
Fi = B[R, k>1,
Pk = Mk,

we obtain a probability space (RN, F,®%° ), satisfying (11). The
o-algebra F, which is the o-algebra generated by the cylinder sets in
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RN, turns out to be the Borel o-algebra for the following metric on
RN

oo
1wk — il N
)=y — Wk peRY.

Equipped with this metric, RY is complete and separable, in other
words: a Polish space. A sequence {w(")}zozl converges to w with
respect to p if and only if limy,_, w]gn) = wy, for every k > 1, which
is pointwise convergence of {w(™ 1>, to w. It can be shown that F
is precisely the o-algebra of Borel sets of (RY, p), denoted by B(RY)
(see Ezercise 2.16).

EXERCISE 2.16: Show that F of the previous example equals the
Borel o-algebra on (RY, p), i.e. the o-algebra generated by the open
(or, equivalently, closed) sets of (RN, p). Show that F is also the
o-algebra generated by cylinders in RV, i.e. the sets of the form
[a1,b1] X [a2,ba] X -+ X [ap,bp] X R x R x --- where n > 1 and
A1y e Ay, b1, ... by € R with ap < by,... ,a, < by,.

Observe that if X}, (w) = wp, w € RY, k =1,2,..., then the func-
tions X;: Q — R, k£ > 1, are continuous, hence Borel measurable,
independent as random variables, and the corresponding distribution
functions are Fj, k=1,2,....

2.5. Sequences of independent random variables

Similar to the definition of the law of a random variable, we will
associate with a sequence of random variables a measure on RY if
the sequence is infinite and on R" if the sequence is finite and of
length n.

Let (92, F,P) be a probability space. Analogously to the defini-
tion of random variable (Definition 2.3), we will call a measurable
map from Q to R" a random vector and a measurable map from {2
to RN a random sequence, where RY is equipped with the Borel-o-
algebra induced by the metric of Example 2.15.

If X4,...,X, are random variables on (), we can associate
with the vector of random variables (Xi,...,X,) the vector val-
ued function X (i.e. a map from Q to R") given by X(w) =
(X1 (w),..., Xp(w)), w € Q. If Ay,... A, € B(R), then {A; x
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- x Ap} € F. Moreover the class of all A € B(R") such that
{X € A} € F is a o-algebra in B(R"). Since it contains the
n-dimensional rectangles, it contains B(R™). Therefore we have
{X € A} € F, for every A € B(R"). This means that X is measur-
able, so that it is a random vector.

Similarly, a sequence of random variables is a random sequence.
Indeed, if {X}}?°, is a sequence of random variables on €2, then
the map X: Q — R" given by X (w) = (X1(w), X2(w),...), w € Q,
satisfies {X € A} € F for every A € B(RY), so that it is measurable.

Thus we are in a position to define the following.

DEFINITION 2.17. Let (Q,F,P) be a probability space.

(i) Let X = (X1,...,Xy) be a random vector. The (image) mea-
sure (X o P)(A) :=P({X € A}), A € B(R"), on (R*, B(R"))
is called the law or distribution of X.

(ii) Let {X,}n>1 be a sequence of random wvariables. The (im-
age) measure (X o P)(A) := P({X € A}), A € B(RY), on
(RN, B(RY)) is called the law or distribution of the sequence
{ Xk}t

(iii) Two sequences (possibly of the same finite length) {X,} on
(Q,F,P) and {X],} on (¥, F',P') are said to have the same
law (or distribution) if

(X o P)(A) = (X' o P)(A), for all A€ B(RY) (4 € B(R")).

(iv) The functions

Fk({L‘l,... ,ka) = ]P’({Xl S .’L‘l,XQ S Ly e e ,Xk S ZEk}),
(12)

fork=1,... ,nif X =(Xy1,...,X,) is a random vector and
fork=1,2,... if {Xy} is a sequence of random variables, are
called the k-dimensional (joint) distribution functions of X or
the sequence { X}, respectively.

In the sequel we will sometimes use the notations of infinite se-
quences for finite sequences as well. They should then be interpreted
in the above way.
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The law of the sequence { X} contains all the information which
is relevant to probability theory. For instance, random variables
X1, Xo,... are independent if and only if the law of the sequence
is a product measure. The sequence is i.i.d. (independent, identi-
cally distributed) if and only if the law is given by ®32,uk, with
e = w1 for all k> 1. Tt follows from the uniqueness part of Theo-
rem 2.12 that if the random variables are independent, then the law
of the sequence is completely determined by its finite dimensional
joint distribution functions.

2.6. Functionals of a sequence of random variables

Let (€,F,P) be a probability space. Let {Xp}r>1 be a se-
quence of random variables and let ¢: RY — R be Borel mea-
surable, i.e. ¢~'(A) € B(RY) for every A € B(R). Then ¢ o
(X1,X9,...): € — R is a random variable. If ¢ is nonnegative,
then [, ¢(X)dP is well-defined (possibly co). We can rewrite this
integral by means of the law of the sequence:

PROPOSITION 2.18. Let (2, F,P) be a probability space, { X, }n>1 a
sequence of random variables, and ¢: RY — R a Borel measurable
nonnegative function. Let P denote the law of the sequence. Then

/¢(X)d]P’:/ (x1, T, ... )P(dzy, das, ... ).
Q RN

Consequently, if the random variables are independent:

/ H(X)dP = / B, o2, ) 2 (),
Q RN

where g, is the probability distribution of Xy, k > 1.
(See [1, Cor. 2.4.1, p. 32]).

COROLLARY 2.19. Let (Q,F,P) be a probability space, d € N, and
X1,...,Xq be random wvariables with corresponding probability dis-
tributions p1,. .. ,jq. Let P be the law of (Xq,...,X,).

1. If p: RY = R, is Borel measurable, then

/¢(X1,... ,Xd)dP:/ d(z1,. .., xq)P(dzy,. ..  dzg).
Q Rd
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2. If X1,...,Xq are independent and ¢1,... ,pq: R — Ry are
Borel measurable, then

/Q¢1(X1)"‘¢d(Xd)d]P
- / $1(21) -+ pa(wa)p1(dr1) ® - -+ @ pra(dza)

= </¢1 1) dfvl) </¢d e dwd))
</ $1(z1)dFy (1) > (/ $i(Ta dFd(fEd))

where Fy, is the distribution function of Xy, k=1,... ,d.

3. If Xy...,X4 are independent, then

/Qei(u1X1+---+udXd)d]P>:HzI/Rewkmkpk(dmk),

for every uy, ... ,uq € R

4. If X1 and X9 are independent and Fy and Fy are the corre-
sponding distribution functions, then for every t € R:

Fx,i1x,(t) = /Q Lix,+x,<tydP

= /1{x1+x2<t}dF1(fE1)dF2($2)

- //t mdFl (21)dFy(w2) = /R 1(t — z)dFy(z).

2.7. Expectation and variance

Let X be a random variable such that X is nonnegative or
Jo | X|dP < oo. Then the expectation of X is given by E(X) =
Jo XdP. In view of Corollary 2.19, we have

E(X) = /R sy (de),
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where px is the law of X. If F is the distribution of X, then

M

E(X) = /RmdF(:v) = M%gm deF(:v),

where fi\/]fv zdF(z) is a Stieltjes integral.

IfE(X) is the expectation of X and E (| X|) < oo, then var (X) :=
E((X —E(X))?) is called the variance of X, also denoted by o%(X).
We have

var (X) = /QXQd]P’ — (E(X))2.

If Xq,...,X, are random variables, then the covariance matriz
of Xi,...,X,, denoted by cov (X1,...,X,) is defined by

cov (X1, s Xn)iy = E((Xi—E(X)(X;—E(X)))), 6,j=1,....n

provided that E(X?) < oo, i = 1,...,n. If the random variables
{Xk}}_, are independent, then the covariance matrix is diagonal
with diagonal elements d; = var (X;), i =1,... ,n.

In Example 2.13, E(¢,) =0, k =1,2,..., and cov ({1,... ,&,) =
I, the unit matrix.

3. Convergence of random vectors

3.1. Langevin Equation II

We now come back to our discretized Langevin equation (equation
(7)) with ¢ =0 and z = 0:

7 =

X0 (t4h)— XM (1) a(”)f(”) (t), t>h, (13)
XM () =0, 0<t<h.

We have presented the notions to describe the random behaviour of
X ™) (), in particular of X (T). We have

X(1) =Ly g, (14)
k=1
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where the sequence {fk}kzl is the sequence of random variables on
(Q,F,P) of Example 2.13. In order to obtain a meaning of the non-
discretized problem, we want to let the stepsize tend to zero, i.e. n —
oo, and consider “the limit of X(™(T)”. In view of the idea that
all relevant information about the random behaviour is contained
in the distribution, our primary interest is the determination of the
distribution of { X (™ (T)},,>; and of its limitary behaviour as n — oo.
We introduce some definitions and theorems which are useful for this
purpose. After that, we are going to vary T and we will consider joint
distributions of {X™(#)};>0 and their limiting behaviour.

3.2. Convergence of random variables

If X,,, X, n > 1, are random variables on (2, F,P), a natural candi-
date for the definition of convergence of the sequence {X,},>1 to X
“in law” or “in distribution” is that lim, . P{X, < z}) = P({X <
z}) for every = € R, or, equivalently, Fx, (z) — Fx(z), for allz € R.
It appears, however, that the requirement “for all z € R” is too re-
strictive. Indeed, if X, (w) = 1/n for all w € Q and all n > 1, then
Fx, (x) — Fx(x) for every z € R ezcept at 0. Observe that 0 is a
point of discontinuity of Fx. If we denote by N the set of all dis-
tribution functions (see Definition 2.4 and Proposition 2.6) and for
F € N by C(F) the set of continuity of F' (which is dense in R), we
have:

DEFINITION 3.1. A sequence of distribution functions {Fy}n>1 in N
is said to converge to F € N (notation F, 2 F or F, = F) if, as
n — oo,

F,(z) = F(zx) for each x € C(F). (15)

A sequence { X, }n>1 of random variables is said to converge in law
(in distribution) to a random variable X (also denoted by X, 2 X or
X, = X)if B, 2 F, where F,, and F are the distribution functions
of X, and X, respectively.

REMARK 3.2. (i) If FipPF and Fp»PG, F,,F,G € N, then
F=aG.
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(i) If F is continuous, i.e. C(F) = R and (15) holds, then the
sequence {F,,} converges to F' not only pointwise, but even uni-
formly on R.

We now give equivalent forms of the convergence defined by (15).
In order to do so, we introduce the following classes of functions on
R:

BC(R) := {u:R— R (or C): u is bounded and continuous},
BUC(R) := {ue€ BC(R): u is uniformly continuous}.

The space BC(R) equipped with the pointwise addition and multipli-
cation by a scalar becomes a vector space over R (or C). Equipped
with the supremum norm |ju| := sup,cg |u(z)|, v € BC(R), the
space BC(R) is a Banach space and BUC(R) is a closed linear sub-
space of it.

Given f € BC(R) and F € N, for every a < b the function f is
Stieltjes integrable on [a, b] with respect to F' and

b oo
lim f(x)dF(z) = / f(x)dF(x) exists.

e a -
On the other hand, if 4 denotes the unique Borel probability meaure
on R (u € P(R)) such that p((—oc,z]) = F(z) for all z € R, we
have that f € LY(R, B(R),u), since u(R) = 1 and f is bounded
and Borel measurable. It follows that fR fdu is well-defined as a
Lebesgue integral and we have:

/fd,u = /OO f(z)dF(z), for all f € BC(R). (16)
R —00

Thus, given F € N, we can define a map f — ¢p(f) € R from
BC(R) to R by setting ¢p(f) := [ f(z)dF(z). Clearly, ¢r is a
linear functional on BC(R) and from |pr(f)| < || fll, f € BC(R), ¢r
is a bounded linear functional. Denoting by (BC(R))’ the dual space
of (BC(R), ||.|l), F + ¢p is a map from N into (BC(R))'. It appears
that this map is injective, i.e. if F,G € N and ¢ = ¢, then F = G.
In other words [, f(z)dF(z) = [; f(2)dG(x), F,G € N for every
f € BC(R) implies F = G.

A stronger result holds.
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PROPOSITION 3.3. Let F,G € N (resp. pu,v € P(R)) be such that

/ T dF (x) = / e dG(z) for all u € R

— 00 — 00

(resp. [z e u(dr) = [pe™v(dz) for all u € R), then F = G
(resp. p=v).
(See [L, Thm 8.24, p. 170].)

Observe that the functions {¢*},cgr belong to BUC(R).
The next proposition gives equivalent forms of condition (15).

PROPOSITION 3.4. Let F,F\,F,,... € N. The following statements
are equivalent:

(i) F, > F

(it) |7 f(@)dFy(z) — [ f(z)dF(z) for all f € BO(R)
(iii) [*° e"TdF,(z) — [* €"“dF(z) for all u € R.
(See [1, Prop. 8.19, p. 167 and Cor. 8.30, p. 172].)

It follows from Propositions 3.3 and 3.4 that the function F': R —
C defined by

F(u) := / edF(z), uwERF €N, (17)
R

is useful for studying convergence in distribution.

DEFINITION 3.5. Given a distribution function F € N, its charac-
teristic function F': R — C is the function defined by (17).

We postpone mentioning important properties and characteriza-
tions of characteristic functions to § 3.4, where we state them in the
more general context of random vectors.
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3.3. Langevin Equation III

We return to the problem of convergence in distribution of
{X™)(T)}p>1 as n — oco. We recall that

XOUT) = 50 Y g
k=1

with g™ = ha(® = %a("), and £1,&s,... as in Example 2.13. Let
F, denote the distribution funtion of X (T), let F denote the dis-
tribution function of & and let u denote the corresponding Borel
probability measure on R (u = %6_1 + %(51, where 0, denotes the
Dirac measure at a € R). For n > 1, the characteristic function of
F, is:

Fo(u) = E(eMP™ Eizite)

N / MO i @Iy pi(day)

= Zl/ReiUﬂ(n)mde(wk)

— n l(eiuﬂ(") +e—iu6("))

k=12
= (cos(B™u))", u € R

What can we say about £, as n — co? If we take the scaling factors
a™ such that ™) — 0, then we have for an arbitrary u € R and
large n that

(cos(8™u))" = explnlog(1 + (cos(6u) —1))]

and
log(1 + (cos(B™u) — 1)) ~ =1 (8™ u)?, as n — co.
Hence
(cos(B™u))™ — 1 if (8)%n — 0,
(cos(ﬁ(")u))" —0 if (ﬁ("))Qn — 00,
(cos(B™u))™ — e 2%7" if (BM)2n — 0% > 0.
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So if we want a nondegenerate (“nondeterministic”) limit distribu-
tion, we need 5" ~ ﬁ, as n — oo, for some o > 0. Then we have
X™)(T) 2 X, where X is a random variable with characteristic
function e~2°°%’, That means that X is Gaussian with mean 0 and
variance o2, see Definition 4.1. In terms of a(™, the choice of 5"
reads (™ = %ﬁ(”) ~ Z+/n as n — oo.

EXERCISE 3.6: Compute the limiting distribution as n — oo of
X0)(T) with o™ = Z/n, ¢ > 0, and z # 0 in (14).

REMARK 3.7. In the above considerations we have used Proposi-
tion 3.4 in an essential way. We also used the fact that for F € N
and m € R, 0 > 0 one has that

F(u) = eim“e_%”2“2, for all u € R,
if and only if
casec=0: 0 forxz <m,

1 forx>m;
F(z) = case 0 > 0: (18)

)2

1 (y—m

z - )
\/ﬁaf—ooe w2 dy, x€TR

From now on we assume that a(™ = F+/n, where 0 > 0. Let us

investigate the asymptotic distributions of X (¢), t > 0, as n — oco.

Recall that we have (with h = T/n):
XM =0 if £ € [0,h),
M () = (D)™ S e (19)
X" (t) = (H)a " Zk:l 6/97 if ¢ > h7

where [r] denotes the greatest integer < r.
Let t > 0. For any ng > T/t we have for every n > ng that

[#]
XMy = oL g
k=1
[%]
= %\/E 1@ gk
T k=1
[nt] [n?t]
_ a T 1
= Vi EXVEPI%
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As above, we find X" () 2 X,, where X, is a Gaussian variable
with mean 0 and variance ”—TQt, i.e. a random variable with a distri-
bution function satisfying (18) with mean m = 0 and o replaced by
%\/E Before studying the joint distributions of {X (™ (t) }i>0 we
mention:

THEOREM 3.8. 1. Central limit theorem for i.i.d. random
variables
Let &1,&, ..., be a sequence of i.i.d. nondegenerate random
variables with BE? < oo and B¢ = 0. Set Sy, i= & + -+ + &,
Then as n — oo:

A=

P({ ﬁSn <z}) = ®(z), for allz € R (20)

where o = (EE)'/? and

1 z 2
@(m)zﬁ/met /2dt, z € R
(See [8, Thm 3, p. 324].)

2. Law of the iterated logarithm
Under the same assumptions:

V2 a.s. (21)

: 1 1 _

h;njgp log(log n) 7v/n [Snl =

(See [1, Thm 3.52, p. 64, Thm 13.25, p. 291], [8, Thm 1, p.372
and Rem. 1, p. 374].)

3.4. Convergence of random vectors

In what follows we shall study the limiting behaviour of the joint
distributions of {X (™) (¢)};59. We are interested in the “convergence
in distribution” of the random vectors (X (t;),..., X" (t,)),
where 0 < t; < .-+ < t,. The law of the random vector
(XM (1),...,X™(¢t,,)) is the Borel probability measure s, on
(R™, B(R™)) (see Definition 2.17(i)) satisfying

pa(A) = PUX (1), . X (tn)) € 4}), A€ BR™).
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We are looking for a measure p on (R™, B(R™)) which is a limit of
4y, in some appropriate sense. As for m = 1, it is in general to much
to ask that u,(A) — p(A) for every A € B(R™). We will consider
a notion of convergence that is similar to (15) and use characteristic
functions again as a major tool.

Let us denote by P(R™) the set of Borel probability measures on
(R™, B(R™)). There is the following analogue of Proposition 3.3.

PROPOSITION 3.9. Let p,v € P(R™) be such that

/ eizznl“kxk,u(d:v):/ e! 2k=1 Wk ()

for every uy, ... ,upym €R, then u =v.
(See [1, Thm 11.4, p. 235].)

Let BC(R™) denote the space of bounded, continuous functions
from R™ to C.

PROPOSITION 3.10. Let i, pi1, pia, ... € P(R™). The following state-
ments are equivalent:

(i) Jam f(@)pn(dz) = [gn f(2)p(dz), for all f € BCR™),

(ii) fom SR 031y (dz) = [ €SI U (da),  for all
Uly.nn Uy, € R

(See [9, Cor. 2.8, p. 25].)

A sequence of random vectors is said to converge in distribu-
tion if their distribution functions converge in the sense of Proposi-
tion 3.10(i). There is a more direct way to state this. For a proba-
bility space (2, F,P) and a random vector X on ) taking values in
R™ with law py, we have that

B0 = [ 100 = [ flon aux o)

for all f € BC(R™).

So we can rewrite the convergence of Proposition 3.10(i) in terms of
random vectors in the following way.
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DEFINITION 3.11. Let X, XMW, X® ... be random vectors taking
values in R™. The sequence {X™},>1 converges in law (in dis-
tribution) to X, notation X = X or X(") Dy X if

E(f(X™)) = E(f(X)), for every f € BC(R™). (22)

REMARK 3.12. Proposition 3.10 implies Levy’s Theorem: X (n) Dy
X if and only if E(é Z:lelukxlgn)) — E(e! Zr=1%Xk) for all
Ut, ... Um € R, where X and X are random vectors taking values
imn R™.

DEFINITION 3.13. Given a Borel probability measure p € P(R™), its
characteristic function fi: R™ — C is defined by

(g, ... ) ::/ e LR=1 TRy (dr), ug,. .. U, €R.(23)

The function /i has a property that is called positive definiteness,
wich means the following.

DEFINITION 3.14. A function f: R™ — C is called positive def-
inite (sometimes positive semi-definite) if for every n > 1 and
Upyenn Uy €RT

Z Z f(ﬂk - Mg)ZkZl eR

k=1 1=1
and
n n
SN fluy, — )z >0
k=11=1
forall z,... ,z, € C.

Let (2, F,P) be a probability space and let X = (Xq,...,X,,)
be a random vector. If ux € P(R™) denotes the law of X, we have
in view of Proposition 2.18 that

E (¢! Zk=14Xk) = / e Lk=1%k )y (dz)

= ﬂx(ul,...,um), Uly... Uy € R
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DEFINITION 3.15. The function (u1,... ,um) — B (e 2k=19Xk) 45
called the characteristic function of the random wvector X.

We are now in a position to state important properties of charac-
teristic functions, convergence in distribution, and their relationship.

THEOREM 3.16. I. Let X be a random vector with values in R™
and let (uy,... ,Um) — ¢x(u1,...,uy) be its characteristic
function. Then:

(i) ¢x is positive definite, in particular

(a) |dx(u)| < ¢x(0) =1 for all u € R™ (hence ¢px is
bounded),

(b) dx(—u) = dx(u) for all u € R™,

(ii) ¢x 1is uniformly continuous on R™.

(iii) If E(|| X||") < oo for some n > 1, then ¢x € C™(R™,C),
i.e. ¢x 15 n times continuously differentiable, and:

(%) (52) " ox(w)
=K ((iX(l))” e (A M)yrm el X UkX(n)> . (24)

uERm, U)ithT1+“‘+71m§n7
m
w=1+iYy EX®)u+oflul),  (25)

if E(| X)) < oo, and

m

dx(u) =1 +iZ]E(X(k))uk

Y E(X Nurw + of||ul]?), (26)

=1

N[ —
M 3

Il
—

k
i E(|X]?) < oo

(See [6, Prop. 4.1.3.4, p. 201-202], [8, §IL.12.8, p. 287-288];
1-dim also [1, Prop. 8.27, p. 171, Prop. 8.44, p.180].)
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II. (i) (Bochner’s Theorem) Let f: R™ — C be a positive def-
inite function satisfying f(0) = 1. Then the following
statements are equivalent:

(a) f = ¢x for some random vector X,
(b) f is continuous,
(¢) f is uniformly continuous.

(ii) (Continuity Theorem) Let X, X2 .. be random vec-
tors with values in R™. Let h: R™ — C be such that

dxm (u) = h(u), for all u e R™.

Then there exists a random vector X : Q@ — R™ with char-
acteristic function h if and only if h is continuous at Q.

(See [1, Problem 17, p.173, Thm 11.6, p. 236].)

3.5. Langevin Equation IV

We proceed with our investigation of the Langevin equation. For
n > 1 and h = T/n we have (19):

{ XM () =0 if + € 0, h),

nt
X () = g0 ST 6, if >,
with ﬂ(") = ﬁ, >0 Let 0 =ty < t; < --- < ty,. In order to
determine the limiting distribution of {(X™ (to),... , X™ (t,,))}n,
we will first consider the increments

v o= X)) - X (t), k=1,...,m,
Y™ = ™, v,

We have for the characteristic function of Y (™):

by (u) = /eiZZ”:1uk(X(”)(tk)—X(”)(tk—l))(w)]p(dw)
Q

‘ S S5
_ / ¢ ST S (S 6= TnT )@ p(gy)
Q

ntk71]

o o7k [
_ /RNeZZk1“kﬂ(n)(Zl=€ &=t xj)ﬂ(dx)a
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where p(dz) = @, (30_1 + £61) (dzy).

Now we choose n; > max{%,titl,... '3 _Tt’ 1} such that
m m—

ntkT‘l] < [%] for all 1 < kK <m and n > ny. Then for n > ni:

ntp
-]

(DY up, B Z[ ntp_q Tl
¢Y(”) (u) = / e I=[—7—1+1 /.l(dZE)
RN
nty
iuy B Z[ Tn2k71 x
= e T )
RN
m [%] iup By 1 1
= kilHl* ntp_q e’k 1(5(571 + 5(51)((155[)
=[——1+1 JRr
— m H[nqt“k] COS(U /B(n))
= k=1 l:[ntl,;,_l k

t ntp_1
-

= I}, [cos(u8™))]

Since A" = ﬁ, we have

lim [cos(ukﬁ(”))][%]’[mlgl] = e*%“zUZ(Li;k*l)’ k=1,...,m.
n—r00
Hence
tp—tg _
lim ¢y (u) = Iy 3% 70w e R™. (27)

n—oo

We arrive at the conclusion that the joint distributions of
(XM (1), XM (ty) — X (t1),... , X (t,,) = X (t;n_1)) converge
to the joint distribution of m independent Gaussian variables
Yi,...,Y,, with mean 0 and variance 0,% = ”TQ(tk — t_1) for ev-
ery 0 =ty <t; < --- < ty,. This leads us to the important notion of
Gaussian measure, Gaussian random variable, and Gaussian system
(family).

4. Gaussian systems

DEFINITION 4.1. (i) A Gaussian measure p on R¢ is a Borel prob-
ability measure on R (i.e. p € P(RY)) with characteristic func-
tion fi: RY — C of the form

fur, ... ug) = et St weme— 5 % 1 Criugu

pi<um>— 3 <Cuu>
7
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where m = (my,... ,mq) € R and {Cy;} is a symmetric non-
negative definite d X d matriz. The measure p is denoted by
N(m,C)(dz). (Observe that the function [i is positive definite,
uniformly continuous, C*°, and satisfies i(0) = 1).

(ii) A random vector (X1,...,Xy) on a probability space (2, F,P)
is called Gaussian (or normally distributed) if its distribution
is a Gaussian measure on R%.

(iii) A collection of random wvariables {X,}tacz on a probabil-
ity space (2, F,P), indexed by a nonempty index set I, is
called a Gaussian system (or family) if the random wvector
(Xays--- s Xa, ) is Gaussian for every n > 1 and all indices
ai, ... ,ay chosen from I.

PROPOSITION 4.2. If (X1,... ,Xy) is a Gaussian vector with charac-
teristic function ¢(x, .. x,(u1,... uq) = exp(i < u,m > —%QTCQ),
u € R, then

mg = /Xkd]P’, kzl,...,d, and
Q

Oy = /(Xk—mk)(Xl—ml)dIP’, 1 <k1<d.
Q

Hence m = (mq, ... ,mq) is the mean value of (X1,...,Xq) and C
is the covariance matriz of (X1,...,Xq). If m =0, then the random
vector 1s called centered.

(See [8, §I1.13.3, p. 298-299].)

PROPOSITION 4.3. Let i € P(R?) be a Gaussian measure with mean
value m € R? and covariance (matriz) C. Then u is absolutely
continuous with respect to the Lebesque measure on R if and only if
C is regular. In that case the density of i is given by

1

P@) = G (et 0)

73 exp{—3(z — m)IC Yz —m)}, zeR?

(See [8, §11.13.2, p. 296-298].)
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PROPOSITION 4.4. Let i € P(R?) be a Gaussian measure with mean
value m € R? and covariance C. Let ¢: R? — R™ be defined by
d(x) = a+ Az where a € R" and A is an n X d matriz. Then the
image measure (¢ o ) on R is Gaussian with mean value a + Am
and covariance matriz ACAT.

Proof. Let u € R", then

—

(pop)(u) = "<V (¢ o ) (dy)

n

) ei<¢(m),u>u(d$)

ei<a,u>ei<Am,u>M(dm)

d

I
T~

i<a,u>ei<m,AT’u>ef%<C’ATU,ATU>

Il
o

i<a+Am,u>f%<AC’ATu,u>

9y

O

COROLLARY 4.5. If we take in Proposition 4.4 n =1, a = 0, and
Az = Mz + - + Mzg, © € RY, then (Ao p) is Gaussian. As
a consequence, if (X1,...,Xy) is a Gaussian random vector, then
MX14- -+ g Xy is a Gaussian random variable. In particular with
i = 0ij, X; is a Gaussian random variable for alli=1,... ,d.

Conversely, if Xq,..., Xy are Gaussian random variables, then
M X1+ -+ XXy may not be Gaussian.

EXAMPLE 4.6. If X1, X9 are independent N(0,1) and

_ ) (X, [Xe])  if X >0,
(X’Y) . { (le_|X2|) if X1 <0,

then X and'Y are both Gaussian but (X,Y) is not.

PROPOSITION 4.7. (i) Let (X1,...,Xq) be a random vector. Then
(X1,...,Xy) is a Gaussian random vector if and only if \y X1+

-+ A Xg s a Gaussian random variable for every A1, ... ,Ag €
R.
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(ii) Let (X1,...,Xq) be Gaussian. Then Xq,..., Xy are indepen-
dent if and only if they are uncorrelated, i.e.

(iii) If X1,...,Xq are independent Gaussian random wvariables,
then (X1,...,Xy) is Gaussian.
(See [8, Thm 1, p.299].)

EXERCISE 4.8: (S.N. Bernstein) Let X and Y be independent iden-
tically distributed random variables with finite variance. Show that
if X +Y and X —Y are independent, then X and Y are Gaussian.
(See [9, Thm 5.23, p. 102].)

PROPOSITION 4.9. Let {jin}n>1 be a sequence of Gaussian measures
on R¢ with expectations {my,}, and covariances {Cp}n. Then pu, 2 p
for some p € P(RY) if and only if m, — m and C, — C for some
m € R? and some d x d matriz C. If this is the case, then i is
Gaussian with expectation m and covariance C.

(See [8, §I1.13.5, p. 302-303].)

4.1. Multidimensional central limit theorem

THEOREM 4.10. Let {(X{”),Xén),... ,Xén))}n21 be a sequence of
independent random wvectors, all having the same distribution with
zero mean and covariance matriz C. Then

n n
k k
+ <§ xM 3 xS )> D (Xy,. .., Xy),
k=1 k=1

where (X1, ... ,Xy4) is a Gaussian random vector with mean zero and
covariance matriz C.

(See [1, Thm 11.10, p. 238].)
4.2. Langevin Equation V

We return to our sequence {X ™ (¢)},>1, again. Let 0 =ty < t; <
-++ < tyy. Then the sequence of random vectors { (X (1), X (t5)—
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XM (1), ..., X (b)) =X ™ (t,_1)) }n converges in law to the Gaus-
sian random vector (Y7, ...
trix

,Y,,) with mean zero and covariance ma-

131

tm'_tm—l

It follows that {(X(™(t;),..., X" (¢,,))}, converges in law to the
random vector (X1, Xo,... , X)) = (Y1, Y1+Yo, ... V1 +Yo+ -+
Y;n), which is also a Gaussian random vector, with mean zero. We
have for 1 <1 < j:

i J i ]
E(XiX;) = EQ_ %) Y)=) Y EMY)
k=1 =1 k=1 I=1
1 1 i
= E(ViY) =Y E(V{)
k=1 1=1 k=1
0'2 : 0'2 0'2
= T (tk — tkfl) = th =T mln{tz,tj}
k=1

We now want to vary the ; and think of finer and finer partitions
of the interval [0,T]. A natural question then is to know whether it
is possible to view the limits of the finite dimensional distributions
of {X™(t)},>1 as the finite dimensional distributions of a Gaus-
sian system {X(t)};>0. That means: is there a Gaussian system
{X (t)}1>0 such that {(X™(t1),..., X™(t,;,))}, converges in law to
(X(t1),... ,X(tm)) for each partition 0 = ¢y < t1 < -+ < t,, of
[0,7]? By the above calculation, this system should have covari-
ances E (X (t)X(s)) = min{t,s}%, t,s > 0. Thus, we arrive at the
question: does there ezist a probability space (2, F,P) and a centered
Gaussian system {X (t)};>0 on it satisfying

E(X(t)X(s)) = min{t,s}, t,s >0, together with X(0) =07

The next theorem gives an answer to this question together with an
additional and useful property of such a Gaussian system.
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THEOREM 4.11. Let Q = Cy([0,00)) be the space of continuous func-

tions on [0,00) wvanishing at 0 equipped with the metric d(w,n) =

Soy g pektetl s where dy (w, ) 1= maxo<i<k |w(t) ~n(t)], w,n € Q.

(Then (2, d) is a complete separable metric space). Let B(S2) be the
Borel o-algebra on (Q,d). Then there exists a unique Borel probabil-
ity measure P on (Q, B(Q)) such that the system of random variables
{Xi}ti>o defined by Xi(w) =w(t), t >0, w € Q, is a centered Gaus-
sian system satisfying [ X X,dP = min{t,s}, t,s > 0. Such a
measure is called the Wiener measure and the corresponding system
the normalized Brownian motion. We shall denote this system by
{Witizo-

(One of many proofs is to apply Theorem 2.1.6, p. 51 of [10].)

REMARK 4.12. The Brownian motion has a very important property:
the independence of its increments. Let 0 < tg < t1 < to < t3. Then

E(ths _Xt2)(Xt1 _Xto)
= ]E(Xt3 Xt1) + E(th Xto) - E(th Xto) - ]E(Xt2 Xt1)
=t +tg—tg—t1 =0.

Since E(Xy, ) =0, k= 1,2,3, the variables Xy, — Xy, and Xy, — Xy,
are uncorrelated and since the system is Gaussian, they are indepen-
dent. Moreover, the law of Xy1p — Xy, t,h > 0, is Gaussian with
mean 0 and variance:

E(Xiin — X1)? = E(Xpyn)? +E(X;)? = 2B (Xp 4 X0)
= t+h+t—2t=h.

Therefore the variance and consequently the law of the increments
Xiyn — Xy is independent of t. We say that the process {X;}i>0 has
stationary independent increments.

Let us compute the finite dimensional distributions of X;. Let
0=ty <t1 <ty < <ty m>1 and let A € B(R™). Set
Y1 = th, Y2 = th — th, ey Ym = Xtm — Xtm—l- Then
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P{(X;,, Xyy,... , X ) € A}
= ]P{(Yl,Y1+Y2,... ,Y1+Y2+"'+Ym) EA}

- / La(1, 91+ Yo 91+ + y)iava (dn) - - 1y, ()

1 /
B Talyrsyr + Y2, sy1 4+ + Ym)
VIR 27 (ty, — tg—1) Jrm m

2
_lym o Y
e 2 Zk:l 2(“‘kitk—l)dyl [P dy

m
1

= Ta(21, 22, )
VIR 27 (8 — t—1) /m "

_ 1 Zm (zkfmk—1)2
-e 2 k=1 2(t—tp—1) dml [P dxm

1 m (zk_zk—l)Q
_ _ 1 / 6—52k=1 Wdibl"'dwm-
VITE 27 (t, — te—1) Ja

In particular, if A =1; X Iy x --- X I, we get:

]P({th S Il,... ;Xtm S Im})

:/ w0 IS (b — tk—15 Tk—1, Tk )dT1 - - - AT,
no Jin

where

p(s;m,y) = \/21%6 5, 5>0, yeR
This formula for P({X,, € I1,... ,X;,, € I,y}) is called the Einstein-
Smoluchowski formula.

Finally, we note that there may be other probability spaces then
the one of Theorem 4.11 with systems of random variables on it that
constitute centered Gaussian systems with the same covariances as
{Wi}i>0. One can introduce the notion of ‘stochastic equivalence’
of stochastic systems, which yields a notion of uniqueness without
specifying the underlying space. We will use the normalized Brow-
nian motion {W;};>0 on € as defined in the theorem. The usual
definition of Brownian motion is the following.

DEFINITION 4.13. A normalized Brownian motion (or Wiener pro-
cess) in R is a family of random variables {W;}i>0 on a probability
space (2, F,P) such that
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(i) Wo(w) =0 for all w € Q,

(ii) for every s,t > 0, Wiy — Wy is a Gaussian random variable
with mean 0 and variance t,

(iit) for every 0 =ty < t; < --- < t, the random variables Wy, —
Wy, , k=1,...,n, are independent,

(iv) for every w € ) the sample path ¢t — Wi(w) from [0,00) to R
18 continuous.

(See [9, Def. 8.1, p. 220].)

5. Solution of the Langevin Equation

5.1. Langevin Equation VI

Let us collect the above presented notions and results in view of our
initial problem: the Langevin equation. Consider first the case ¢ =0
and z = 0. Then the equation is

dX
E(t) = “noise”, t>0. (28)

To mathematically describe the randomness in the function X, we
have introduced the notion of random variable. For every ¢ > 0, X (t)
will be a random variable. We made a specific choice of randomness
to model the ‘complete random influence’ expressed by the word
‘noise’. We have done so using discretizations and obtained

n—1
t
xM(t) = Ea(”) E L, (k+1)n) () >0,
k=1

where {{;}7°, is a sequence of independent random variables on a
probability space (9, F,P) such that P({¢, = 1}) = P({&, = —1}) =
1/2. To construct such a sequence, we used the notion of a product
of a sequence of probability spaces. In order to get a non-degenerate
limit as n — oo, we have chosen

al® = Zv/n, neN
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As a limit of {X(”) (t)}¢>0,n>1 we have the system {W(t)};>0 from
Theorem 4.11: for any partition 0 = tg < 1 < -+ < t,, < T the
joint distributions of (X™(¢1),..., X (¢,,)), n > 1, converge to
the joint distribution of (W (t1),... ,W(ty,)). Thus, we say that we
have the normalized Brownian motion as a limit of {X (n) () }e>0,n>1-
Accordingly, we find that the random function we meant to describe
by (28) is the normalized Brownian motion {W (%) }:>0.

One may observe that we have given a meaning to the solution of
(28) rather than to the equation itself. We could think of differenti-
ating X to really obtain the “noise”. For a fixed w € Q, t — X (t)(w)
is a continuous function. If it is differentiable for sufficiently many w,
this would yield the noise term explicitly. However, it turns out that
with probability 1 the function ¢ — X (¢)(w) is not differentiable,
even nowhere differentiable! On the one hand it is disappointing
that we do not get a direct meaning of the equation, on the other it
clearly expresses the irregularity of noise!

Let us now consider the general Langevin equation with arbitrary
c,x e R

ax — _ M A Tan?
{ - (t): ;(0 X(t)) +"noise”, t>0, (29)

X(0)

We know now how to interpret this equation in an integrated form:
t

X (1) ::v—l—c/ (0= X(s))ds + oW (t), t>0.  (30)
0

(Note that we have introduced an extra parameter o € R.) For fixed
t, W (t) and hence X (t) are random variables on the probability space
(Q, F,P) of the Brownian motion of Theorem 4.11, i.e. W (¢) and
X (t) are measurable functions from © to R. So (30) is an equation
of real valued functions on €. Explicitly,

X(t)(w)=z+ c/ﬂ (0 —X(s)(w)ds +oW(t)(w), we, t>0,
or, in other words,

X(t)(w) == —|—c/0 (0 — X(s)(w))ds +ow(t), t >0, w e Q.
(31)
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If we fix w € Q, we can think of it as a parameter and (31) is
then a deterministic integral equation of Volterra type, to which
deterministic theory can be applied.

5.2. Volterra integral equations

Let T' > 0. For a, f € C[0,T] consider the Volterra integral equation
t

u(t) +/ a(t — s)u(s)ds = f(t), 0<t<T. (32)
0

For a,b € C[0,T] define the convolution of a with b as

t
(axb)(t) = /0 a(t — s)b(s)ds. (33)

Observe that
(1) axbe C[0,T]
(2) axb=bxa

(3) (a%b)xc=ax*(b*c)
(4) [l(ax*b)l[oc < llall1/10]lco,

where ||.||1 and ||.||cc denote the integral norm and the supremum
norm on C|0, T], respectively. With this notation (32) becomes u +
axu=f.

PROPOSITION 5.1. Let T' > 0 and let a, f € C[0,T]. There ezists
one and only one function u € C[0,T] such that

utaxu=f. (34)
Let r € C[0,T] be such that

r+axr=a.
Then the solution to (34) is given by

u=f—rx*f. (35)
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Proof. To prove existence and uniqueness, the idea is to use Banach’s
fixed point theorem. Observe that for any o € R, (34) is equivalent
to

t
e“u(t) +/ =)t — s)e®u(s)ds = e f(t), t € [0, T,
0
or
i+ ax i = (36)

f,
with the notation #(t) := e*v(t), t € [0,T], for v € C[0,T].
Define Tv := f —ax v, v € C[0,T], then
[Tv1 = Tvzlloe < lall1][v1 — valloo,  v1,v2 € C[O,T].

Choose a < 0 such that ||a]l; < 1. Then T is a strict contraction, so
that (36) and therefore (34) have a unique solution in C[0,T.
The last assertion follows from straightforward substitutions:
(f=rxfltax(f—rxf)=f-r*xftaxf—(a—r)*f=]
O

The function r of the proposition is called the resolvent of equa-
tion (34). The second part of the proposition says that once the
resolvent is solved from the equation, for any right hand side the
solution can be computed from the resolvent by formula (35). For
our purposes it is more convenient to use another function than r.

PROPOSITION 5.2. Let T > 0 and let a, f € C[0,T]. Let s € C[0,T]
be such that
s+axs=1.

Then the solution u € C[0,T] of
ut+axu=f
s given by
t
u(t) = s(t)f(0) + / s(t—m7)df(r), T€1l0,T],
0

where the integral is a Stieltjes integral.
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Proof. According to Proposition 5.1, s = 1 — r * 1, which is a C'-
function since 1 % r is a primitive of r. In particular, s is of bounded
variation and the Stieltjes integral exists for all £. Moreover, s’ = —r
and s(0) = 1.

By integration by parts and a substitution (see Exercise 2.8),

SHF0) + / s(t — 7)df (7)
= S()£(0) + 5(0)£(£) — s(5)£(0) — / F(r)ds(t - 7)

= /ft—Tds T) = f(t) + /Of(t_T)S’(T)dT
= —(fxr)(t) =u(t), tel0,T].

O

5.3. Langevin equation VII

In the case of our Langevin equation (31), we have for any fixed
w € Q a Volterra integral equation with kernel a(¢) = ¢ and right
hand side f(t) = ¢ft 4+ ow(t), t > 0. The equation for the function s
of Proposition 5.2 is

s+ (cl) xs=1,

or, equivalently, s’ + ¢s = 0 and s(0) = 1, so that
s(ty=e" te[0,T).

According to Propositions 5.1 and 5.2 we may conclude that equa-
tion (31) has a unique continuous solution, given by

t t
Xt)(w) = e%z4o {/ e==5)ch dt —I—/ e_c(t_s)dw(s)}
0 0

t
= e+ (1-e Mo+ 0/ e U= duw(s),
0
t>0,we Q. (37)

For ¢ = 0 we find again the solution of the problem without noise
(cf. (4)). For o # 0, we get an additional term due to the noise.
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To find out the probabilistic nature of this term, we want to fix a ¢
and see X (t)(w) as function of w. Is it measurable? What can be
said about its distribution? These questions will be dealt with in the
next section.

6. Stochastic convolution

Let (2,B(2),P) be the probability space of Brownian motion as
defined in Theorem 4.11. Every w € 2 is a continuous function
from [0,00) to R and w(0) = 0. Therefore, for any 7' > 0 and any
function f: [0,7] — R that has bounded variation, w is Stieltjes
integrable with respect to f and, therefore, f is Stieltjes integrable
with respect to w on [0, T]. Define

W (f)(t)(w) ::/0 f(s)dw(s), weQ,tel0,T], fe BVI[0,T],

where BV[0,T] denotes the class of all real valued functions of
bounded variation on [0,7]. (Recall that C'[0,7] C BV[0,T].) For
f€BVI0,T], W(f(t—e))(t)(w) = fgf(t—s)dw(s), we N tel0,T]
is called stochastic convolution of f with Brownian motion.

The map (w,t) = W(f)(t)(w) is continuous from Q2 x [0,7] to R
—where (2 is equipped with the metric of Theorem 4.11— for any
f € BV|[0,T], because for wg € Q and ty € [0,T]:
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|/ﬁ F(s)do(s) = [ Fle)din(s)

Sl/f Jdo(s /f Jdwo(s)] + | fummn
SIU@@ﬂMW-A@@-%@W@I
ﬂmwwrﬁwwwwi/w@#@|

to

[fO)llw(t) = wo(t)] + max |w(s) = wols)[Vio,r1(f)

IN

t

+| [ (wo(to) —wo(s))df (s) — wol(to) f(£) + f(H)wo(t)]

to

max_|w(s) — w0(8)|(”f”oo + V[U,T](f))

s€[0,T7]

+ nax, lwo(s) — wo(to)] (V[O,T](f) + ||f||oo>,

weN0<tg<t<T,

IN

where V|o 71(f) denotes the total variation of f on [0,77], and a similar
estimate holds for ¢ < t,.

Consequently, w — W(f)(t)(w) is a random variable for any
f € BVI[0,T] and t € [0,T], and it is denoted by

Aﬂwww:wmm.

What is its distribution? By definition, the Stieltjes integral is a
limit of Riemann-Stieltjes sums. Let f € BV[0,7]. Then we have
for any w € Q and n > 1:

T NS kT k k=1
| rwastey = ﬁ&}:ﬂWKM#m—wFrﬂ>

where
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Since Yy, ) := W(%T) — W(%T), k = 1,...,n, are independent
Gaussian random variables with mean 0 and variance T'/n, then, by
Proposition 4.7, each Z,, is a Gaussian random variable, EZ, = 0,
and

var Z, = E(Zf(k%)Yn,k> ZZfTT % E(YnxYn,)
k=1 k=1 1=1
= Y DL

Since f is of bounded variation, so is f2 and hence f? is Riemann
integrable, and it follows that var Z,, — fo f%(t)dt as n — oo. Appli-
cation of Proposition 4.9 yields that the sequence {Z,},, converges in
distribution to a Gaussian random variable with mean zero and vari-
ance fOT f(t)2dt. More explicitly, we can look at the characteristic
function of Z,:

. 2 kTy2T
EeiZnt — ¢~ '5 Zimi FG% . 4 e R

by Proposition 4.2. Since Z,(w) — fo (t)dw(t) for all w € Q,
Lebesgue’s dominated convergence theorem yields that

EeiJo fOWOu =y EeiZnu = **fo Pt for all u € R.
n—oQ
Thus, fo (t)dW (t) is a Gaussian random variable with mean 0 and

variance equal to fo f(t)2dt.

PROPOSITION 6.1. Let T > 0 and f € BV[0,T]. Let

/f )dW (s /f Jdw(s), we€ N tel0,T].
Then
(i) fg W (s) is a Gaussian random variable with mean 0 and
variance equal to fo s)?ds, for every t € [0,T).

(ii) If g € BV[0,T], then

]E(/Otf(T)dW(T)/O / f(r)g(r)dr,

for every t € [0, 7).
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(iii) {fo W (s)}iecpo,r] is a Gaussian system with

E /tf(T)dW(T) =0 forallte|0,T]
0

E(/Otf(T)dW(T) /Osf(a)dW(a)) T )

0

Proof. (i) Apply the above results to the bounded variation function
s+ f(s)1p(s) instead of f.

(ii) Note first that g — fo 5)dW (s) is linear and that ¢ €
BVI[0,T] for every g € BV[0,T]. By polarization, we obtain from

(1):

B[ ' Fr)aw () / ()W (7))
=12 ( [ 0w+ omaw )’ 1= ( [ (o) - grnaw )
- l/t(f( ) + g(r)2dr —i/otu(f) ~ o)

/f

(iii) Let 0 < 1 < tg < «++- < t, < T. We have to show that
(it f(s)dW (s), ..., [a" f(s)dW (s)) is a Gaussian random vector.
This follows with Proposition 4.7 from the observation that

2

Zxk/ F(s)dw (s /Zxkf )00 (5))dW (5)

is a Gaussian random variable (by (i)) for every Ay,... .\, € R
Moreover, its mean is 0. Similarly, by (ii):
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]E( /Otf(T)dW(T) /Usf(U)dW(g)> _

T T
= E( /0 f(T)Ljo(7)dr /0 f(a)]l[o’s](g)dg)
T tAs
= /0 f(T)Q]l[o,t](7)11[0,3](7)d7: i (1)%dr, t,s€0,T).

O

6.1. Langevin Equation VIII

Formula (37) gives the solution to the Langevin equation:

t

Xt)(w)=e 2+ (1-eo+ O'/ e =) dw(s), t>0,we .
0

(38)

The last term is a stochastic convolution. According to Proposi-
tion 6.1, it is a Gaussian random variable with mean 0 and variance
equal to f(f(oe_c(t_s))st =2 (1—e2),¢t>0,if c #0 and ot if
c=0.

PROPOSITION 6.2. The Langevin equation (2), which is to be inter-
preted in integrated form (30):

t
X(t)(w) = :v—i—c/o (0 —X(s)(w))ds + oW (t)(w), we t>0,

has solution {X(t)}i>0 given by (38), which is a Gaussian system
defined on the probability space (2, B(Q2),P) of Theorem 4.11, ifc # 0
with
EX(t) = e x4+ (1—-—eho, t>0,
cov (X(1),X(s)) = Gfeei=l— et} ¢ 5>0,
and if ¢ = 0 with
EX(t) = =z, t>0,
cov (X (t),X(s)) = o*(tAs), t,s>0.
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In particular, if ¢ # 0,

2

var X (t) = §-(1 — e 2, >0,

2

and if ¢ > 0 then L(X(t)) > N(0,%;) as t — oc.

Proof. Assume ¢ # 0. According to Proposition 6.1,
cov (X (1), X(s)) = E((X(t)—EX(t))(X(s) —]EX(s)))
t s
= E(/O aec(tT)tdW(T)/U aesC(ST)dW(T)>
= 0'266(t+s)]E</0 eCTdW(T)/O e”dW(ﬂ)

tAs
_ 0_2670(t+s) / 2T dr
0

= g—i{e_c‘t_s| - e_c(t"'s)}, t,s > 0.

If ¢ >0, then EX () — 6 and var X (¢) — ‘;—i, so that Proposition 4.9
yields that X (¢) converges in distribution to a Gaussian with mean

. 2
6 and variance g—c O

7. Stochastic initial conditions and invariant measure

As the solution of the Langevin equation is at every ¢ a random
variable, we may as well want to start with an initial condition that
is a random variable. To stay within our framework, we assume
it Gaussian and stochastically independent of the Brownian motion
involved. In view of our construction of independent random vari-
ables by means of products of probability spaces, we will construct
a new probability space ) (as a product of R and Q) and consider
the random variables in the Langevin equation as functions on this
space.

Let (2, B(22),P) be the probability space of normalized Brownian
motion of Theorem 4.11 and let R be equipped with a Gaussian
measure N(z,p?). Let Q=R x Q be the product space, that means
that it is equipped with the o-algebra B(R) ® B(f2) and the measure
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N(z,p?) ® P. Let

X(](’}’,Cd) = (’Yaw) € R x Qa
Wt)(y,w) = w(t), (y,w)eERXxQ, t>0;

then X is an N(z, p?) distributed random variable on Q independent
of W (t) for every t > 0. We can now consider the Langevin equation

with stochastic initial condition Xy as an equation of functions on
Q:

X(t) = Xo + c/ﬂt(H — X(s))ds + oW (t), t>0.

(Note that if p = 0 we have the deterministic initial value z.) As in
§ 5.1, the equation can be seen as a deterministic Volterra integral
equation with parameter (y,w) € Q. Tt has a unique continuous
solution given by

¢
Xt (y,w) =e “Xo(y,w) + (1 —e o+ O’/ efc(tfs)dw(s),

0

(39)

t >0, (v,w) € RxQ. The first and last term, seen as functions on €,

are independent Gaussian random variables, hence X (t) is Gaussian

for every t > 0. {X(t)}s>0 is even a Gaussian system. The mean
and variance are given by

EX(t) = e x4+ (1—e 0, (40)

cov (X(£), X(s) = pPem(+0) 4 @ femcli=sl _ ety 4>,

in particular

var X (t) = p?e 2 + g—i(l — e 2
if ¢ # 0 and
cov (X (1), X(s)) = p?+0%(tAs),
varX(t) = p’>+ 0%t

if ¢ = 0. The Gaussian system given by (39), at least for § = 0, is
called an Ornstein- Uhlenbeck proces (see [1, Def. 16.4, p. 349]). If
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¢ > 0, we find as limit distribution for ¢ — oo (with aid of Propo-
sition 4.9) a Gaussian distribution with mean 6 and variance g—z,
which does not depend on the initial condition. If we choose the
limit distribution as initial condition, i.e. z = § and p? = %, then
the formulas (40) show that the distribution of X (¢) is the same for
every t > 0. Such a distribution is called a stationary distribution
or invariant measure for the equation and the system {X(t)};>¢ is
called a stationary process.

8. Kolmogorov equations

There is a remarkable connection between stochastic differential
equations and deterministic partial differential equations. We will
show this for the Langevin equation:

X(t)y=z+ c/ot(e — X(s))ds + oW (t), t>0. (41)

Let {X(t,7)}:>0 be the solution to this equation with initial condi-
tion z(€ R). From Proposition 6.2 we know that X (¢, z) is Gaussian
with mean

EX(t,z) = (z—0)e ' + 6

and variance

2

|Q

1—e 2t ifc#£0
C( # I
2t if c=0.

var X (t, z) = {

Q

Fix a £ € R and denote the characteristic function of X (¢, z) at £ by
u(t,z). With aid of Proposition 4.2 we have if ¢ # 0:

u(t, ) 1= B XL — gila=0)e e 3 S (1" 45 0 0 e

Differentiation of u yields:

up = {ic(z —0)e ¢ — Sote 2 u,
ie “Léu,

Upy = —e 2%,

Uy
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Further, u(0,z) = €*¢, z € R. Hence we obtain that

u(t,x) = 50%uga(t, ) + (0 — 2)ug(t,z), >0,z €R,
u(0,z) = €7 z e R

In other words, we have that the function

ut.a) i= Bo(X(t2)) = [ o) o)) (42)
,%#
/(p(eCt:E +(1—e N +y) —— 1 e Ty
_ R 271’02—6(178_2Ct)
) ife#0,
_13%
\/ﬁe 257 ifc=0,

with @(y) = €%, y € R, satisfies
up = %UQUM +c(d —x)ug, t>0,2€R, (43)
u(0,z) = ¢(z), z€eR

These equations are called the Kolmogorov equations associated
with (41). By direct verification one can show that the function
u given by (42) satisfies (43) for any ¢ € BC?(R). Furthermore, it
can be shown that as t — 0, u(t,z) — ¢(z) uniformly on bounded
intervals and if in addition ¢ € BUC(R) and ¢ = 0, then uniformly
on all of R.

If 0 = 0, then problem (43) is a first order partial differential
equation of hyperbolic type. The corresponding stochastic differen-
tial equation (41) is then in fact deterministic and for all w € €,
X(t,z)(w) satisfies

{%(t) = ¢(0—-X(t), t>0,
X(0) = =

So in this case, the above considerations reduce to the conclusion
that u(t,z) = E@(X (t,z)) = ¢(X (¢, z)) is a solution to (43), which
is actually the method of characteristics. If o # 0, (43) is a second
order parabolic equation and we can use the genuinely stochastic
equation (41) to find a solution u(t, z) = E@(X (¢, x)). This approach
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may be interpreted as a method of characteristics for the stochastic
flow.

There is also a connection of the invariant measure for the
Langevin equation introduced in § 7 with the Kolmogorov equations.
Let us introduce the class

U :={u e C((0,00) x R): uy,uy, uy, exist and are continuous
on (0,00) x R},

and denote the differential operator at the right hand side of the
Kolmogorov equation (43) by

Lu:= %a2um +c(@ —x)uy,, u€el.

Assume that ¢ > 0. If we multiply Lu by a test function v € C}(R)
(i.e. v is a C'-function with compact support) and integrate with
respect to the invariant measure N (6, ‘;—z) of the Langevin equation,

1 (2—6)2
then we obtain, with the abbreviation p(z) := —~—-e 2 %
25
/ L(u)oN(8, %) (d)
R
N
- M’%nim M(%U%m +¢(0 — z)ug)op de
. N
— 1. {— d 9 _ d }
N o L -
Lo (N N
= MIJ{TIE)OO{ 50 / dx+/_Mc(0—x)umvpd:p}
: 1.2
- M,llifrgoo{ 29 / UgUzp dT
+/ uzv(—20%py + (0 — 7)p) d:v}
M
- _%02/umvmpd$,
R

because
—20%p, + (0 — 2)p = 0.
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Hence with aid of the invariant measure we find a weak formulation
of the Kolmogorov equation:

/ ugvp dr + %02/ ugvepdr =0, Yo € CH(R).
R R
Moreover, if u,v € U N CL(R), we have

/C(u)vpd:v:—%UQ/Umvmpdx:/uﬁ(v)pdm,
R R R

which means that the invariant measure ‘symmetrizes’ the differen-
tial operator £. These observation can be used to prove uniqueness
of solutions of (43) in a certain class. It is, however, not our goal to go
further in that direction. We conclude with the remark that exploita-
tion of the above ideas together yields a probabilistic method to solve
and prove properties of deterministic partial differential equations.

Finally, we state as an exercise that the previous results concern-
ing the Langevin equation can be generalized to RY.

EXERCISE 8.1: Let d,n € N Let Wi,... , W, be n in-
dependent Brownian Motions (on Q"), and denote W (t) :=
(Wi(t),... ,W,(#)T, t > 0. Let C be a d x d-matrix, o a d X n-
matrix, and z,0 € R?. Consider the stochastic differential equation

“X'(t)y=-CO—-X(t)+oW'(t)”, t>0,
which means
t
X(t) =+ / C0— X(s))ds + oW (t), t>0.  (44)
0
At every t, X has to be a random vector (X1,...,Xy) on Q".
1. Show that

t
X(t)=e Yz + (T —e )0+ / e =Cqaw (s), ¢ >0,
0

where the integral is a matrix-vector Stieltjes integral:

</0t e_(t_S)CUdW(S))k _ jil/ot(e_(t_S)Ca)kdej(s)’

k=1,....d
(See [4].)
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2. Show that {X(¢)}s>0 is a Gaussian system with

EX(t) =e “z4+ (I —e )0

and
tAs T
cov (Xi(t), X;(s)) = </ o~ (t=7)C o T o= (s=7)C d7> ’
0 ij
1,7=1,...,d,
in particular,

cov (Xi(t), X;(t)) = ( /0 t eT%UTeTCTdT) "

Show that the Kolmogorov equation associated with (44) is
w(t, z) = 1Trace (00’ D*u) + < C(0 — z), Du > (45)

where

Du= (2%, ..., 24T and (D?u);j = ﬂ, ,j=1,...,d.

ox1” Y Oxg

Verify that the function u given by
uta) = Eo(X(ta)) = [ el (d)

- /Rd o(e x4+ (I —e7'9)0 £ y)N(0, Q1) (dy),

where

t
T
Q: :/ e *Coole ¢ ds, t>0,
0

and ¢ € BC?(RY) satisfies (45) for ¢ > 0.
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