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Filters and Pathwise
Connectifications

CAMILLO COSTANTINI, ALESSANDRO FEDELI
AND ATTILIO LE DONNE *)

SUMMARY. - Let p be a free open-filter on a Hausdorff space X. In
this paper we investigate when X U {p} can be densely embedded
in a pathwise connected To-space. The main part of the paper is
devoted to the cases where X 1is the rational or the real line.

1. Introduction

In the last years, the subject of connectifications has swiftly devel-
oped and expanded, proving to be one of the most attractive and
fruitful in modern general topology (as basic references, see [6], [5]
and [1]). In a similar vein, it would seem very natural to investigate
the related topic of pathwise connectifications; all the same that,
while the notions of connected and pathwise connected space are in
some sense two rather close ones, some very recent results show how
much connectfiability and pathwise connectifiability may be far to
each other (cfr., for example, [3, Remark 2.3 and Example 2.4]) Ac-
tually, pathwise connectifications still look as an almost untouched
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field, and they certainly offer an ample room for further, extensive
researches.

In this paper, we deal with the following general problem. Let
X be a Tg-space, and p a free open filter on X (so that p may
be considered, in the standard way, as a point added to X, and
XU{p} is a Ta-space): which kind of links are there between the inner
properties of p as a filter, and the (Ty)-pathwise connectifiabilty of
XU{p}? (We recall that, according to [3] and [4], a T-space is called
pathwise connectifiable if it can be densely embedded in a pathwise
connected Ta-space).

On the one hand, if the space X and the open-filter p have espe-
cially good properties, it is possible that X U{p} is already pathwise
connected. Actually, the one-point compactification of a locally com-
pact, o-compact, pathwise connected To-space X is just a space of
that kind; and the same holds for the real line R with the added
point +00. On the other hand, it is proved in [3, Example 2.1] that
if p is a maximal free open-filter on X, then X U {p} is not pathwise
connectifiable. What about other, less trivial situations?

Clearly an ideal result in this vein would be a necessary and
sufficient condition for the space X U {p} to be pathwise connectifi-
able. Such a condition should be expressed using both the topolog-
ical structure of X and the set-theoretical properties of p — which
is, after all, a collection of (open) subsets of X. This is noteworthy
because, on the contrary, the possibility of envisaging X U {p} as
a dense subset of a pathwise connected To-space is a kind of quite
outer property.

As we will see later, however, such an effective and enlightening
characterization looks really hard to be obtained, for the general case.
In this paper, after giving some very basic results valid for every
Ty-space X, we investigate in detail the cases where X is either the
rational or the real line. Even in these quite special situations (which
turn out to be essentially different from each other), we do not get
a complete characterization. But several results in both directions
show, on the one hand, how promising this line of investigation might
be; and, on the other hand, they make the complexity of the problem
stand out. Let us also observe that, for the case of the real line, it
would be trivial wondering about the connectifiability of R U {p},
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where p is a free open filter on R, because a space of this kind is
always connected.

We refer the reader to [2] for notations and terminology not ex-
plicitly given.

2. Definitions and general results

Let (X, 7) be a topological space. A collection p of open subsets of
X is said to be an open-filter if:

a)p# 0, p#

b) VA,B € p: AN B € p;

c)VAepVBeT:(ACB= B€p).

If p is a open-filter on X and B is a subcollection of p such that
every element of p contains some element of B, and for every A, B € B
there is a C' € B with C C AN B, then we say that B is a base for
p. On the other hand, given any collection B of open subsets of X,
such that for every A, B € B there exists C € B with C C AN B, it
“generates” a (unique) open-filter p on X, for which B is a base.

For p an open-filter on X, we may consider the topological space
X U {p}, where X — as a subspace of X U {p} — has the same
original topology, while the point p is endowed with the local base:
{FU{p}|F €p}.

We say that the open-filter p on X is free if

Vz € X:3V neighbourhood of z:3F € p: VN F = (.

Clearly, if X is a To-space, then the open-filter p is free if and only
if X U{p} is Ts.

Let X be a topological space, and Y a subspace of X. Then, if p
is an open-filter on X, the collection {F'NY | F' € p} is an open-filter
on Y. It will be denoted by p|y. Observe that if p is free, then p|y
is free, too.

We have already recalled the result of [3], where it is proved that
if p is a free maximal open-filter on a T9 topological space X, then
X U {p} is not pathwise connectifiable. We will prove now other
general results, using similar techniques.

Let {A, |n € N} be a cellular family in Z (i.e., a family of non-
empty open subsets of Z such that A; N A; = 0 whenever i # j),
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®, C P(Z) for every n € N and let U be a free ultrafilter on N.
For every FF € U and ¢ € & =T],, &, set Ap = J{4;|i € F} and
& = U{(G) |i € N}.

If the family {Ap 4| F € U, ¢ € @}, where A4 = (ApNg*)U{p},
is a base for the space Z at a point p, then we have the following

LEMMA 2.1. If Z is dense in a Hausdorff space Y, then there are no
sequences in'Y \ {p} converging to p.

Proof. Let us suppose that there is a sequence {g,}nen in Y\ {p}
converging to p, with g, # ¢, whenever n # m.

Without loss of generality we may assume that for every n € N
there is a pair of disjoint open subsets C,, and D,, of Y such that:
gn € Cpny, p € Dy, Choy1 UDpyy C€C Dy, DyNZ = AFn,¢n with
F,i1 CF,.

Since U is an ultrafilter, we may assume that F = U{Fs, \
Fon 1 |n € N} eU.

Let G = U{D2n N AR, \Fo,py |7 € N} U{p}. Now g2, ¢ Cly (G)
for every n € N, in fact ¢qo, € Coy, and

Con NG C <C2n N ("Ul AFm\le)) U <C2n N ( U Dm‘)) U

i=1 i>n

U (Cann{p}) =0.
Since G is a neighbourhood of p in Z, we reach a contradiction. [J

COROLLARY 2.2. Let X be a Ty topological space and { Ay, |n € N} a
discrete family of open subsets of X. Fiz a free ultrafilter U on N and
let p be the free open-filter on X generated by {U,cp An|F € U}.
Then X U {p} is not pathwise connectifiable.

Proof. Trivial. O

COROLLARY 2.3. Let X be a Ts-space and {x,|n € N} a closed
and discrete subset of X (with n — x, one-to-one). Let U be a
free wltrafilter on N, and p the (free) open-filter on X defined by:
p={Aopenin X |{n € Nz, € A} € U}. Then X U {p} is not
pathwise connectifiable.
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Proof. Since X is T3, there is a cellular family {A, |n € N} in X
such that x,, € A,, for every n € N. Take as ®,, the family of all open
neighbourhoods of z,, in X, Z = X U{p} and apply Lemma 2.1. O

We conclude this section by putting a natural general question,
which will be solved at the end of the paper. Suppose 71, 79 are two
topologies on a set X, with 7, coarser that 79: then the pathwise
connectedness of (X, 79) implies that of (X, 7). If we suppose that
(X, 7) (and hence also (X, 73)) is Tq, then does the pathwise con-
nectifiability of (X, 79) implies that of (X, 7)? In particular, if p1, po
are two free open filters on a Tsy-space X, with p; C ps, one could
ask whether the pathwise connectifiability of X U {ps} implies that
of X U {pl}-

The answer is no, in fact Example 4.10 together with Corol-
lary 2.2 will provide us with a counterexample.

3. The case of the rational line

In this section we tackle the general problem considered in the in-
troduction, in the special case when X = Q. The main result will
be that QU {p} is pathwise connectifiable, if p has a countable base
when restricted to some open subset of Q.

We need a preliminary result.

LEMMA 3.1. Let A be an open (nonempty) subset of Q, and let p be
a free open-filter on Q such that p € Clxyg A and the filter p|a has
a countable base. Then there exists a subset B of A such that:

a) B is clopen in Q;

b) pE ClXU{p}B;

c¢) there exists a countable, strictly decreasing base {B, |n € N}
for p|B, such that every By, is clopen in B (hence in Q) and B; = B.

Proof. Since the open-filter p is free, by hypothesis it is possible to
get a countable, strictly decreasing base {4, |n € N} for p|4, such
that for every n € N the set A, \ A,t1 has nonempty interior in
Q. Choosing, for every n € N, a nonempty M, C A, \ A,+1 which
is clopen in Q, we have that B = {J,,cn M), is in turn clopen in Q.
Indeed, let @ € Q\ B: then there exists a neighbourhood V of a in Q
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and an n € N such that V N A4,, = . Therefore, V N (Q'\ Uz;} My,)
is a neighbourhood of a in Q which misses B.

It is clear that B satisfies b); putting, for every n € N, B, =
Urz,, M}, we get a countable base for p|p fulfilling c). O

THEOREM 3.2. Let p be a free open-filter on Q, and suppose there
exists an open subset A of Q such that p € Clgu,A and pla has a
countable base. Then QU {p} is pathwise connectifiable.

Proof. By Lemma 3.1, there exists a clopen B C Q, with p €
Clxyu(p) B, such that p|p admits a countable, strictly decreasing base
{B,|n € N} consisting of clopen subsets of Q, with B; = B. We
may also suppose, up to replacing B with Bs, that Q \ B # 0. For
every n € N, put L, = By, \ Bp41-

Since S = Q \ B is countable and p is free, it is easy to find by
induction a sequence (S, )nen of clopen subsets of S, such that:

1) S, NSy =0 for n #n's

2) UnGN Sp =155

3) p ¢ Clqu{p}Sn for every n € N.

Let h be a dense topological embedding of Q in R such that,
for every n € N, h|z, is a (dense) topological embedding of L, in
Jn — 1,n[, while h|g, is a (dense) topological embedding of S, in
] —n,—n + 1[. Let also @ = h(Q) and p;, be the open-filter on @
defined by A € py, <= h™1(A) € p, so that QU{p;} is homeomorphic
to QU {p}.

Let p be the open-filter on R defined by:

p={Qopenin R|Q2NQ € p, and In € N: |n, +oo[C Q}.

Observe that p is free. Indeed, given any r € R, there exists a
neighbourhood V' of r such that the set T = {m € Z|VN]m —
1,m[# 0} contains either one or two consecutive numbers; then put
M={h Y m~—-1,m[)|m e T} C {L,|n € N}yU{S,|n € N}.
Since p ¢ Clqu{pyLn and p ¢ Clqup) Sy for every n € N, there exists
an element F' of p missing every element of M, so that h(F') misses
every element of {h(M)|M € M}. Let I = Clr(Upep M(M)) =
ClR(Umer Im — 1,m[ ), then I is a closed bounded interval of R
including V', and R\ I belongs to p because (R\I)NQ 2 h(F') € pp.



FILTERS AND PATHWISE CONNECTIFICATIONS 179

Since it is clear that RU{p} is pathwise connected, if we can prove
that p|g = p, we will have that RU{p} is a pathwise connectification
of QU{pn}, which is homeomorphic to QU {p}. Of course, it suffices
to show that p, C p|Q. Let F = h(F) be any element of pj,, with
F € p, and let ' be an open subset of R with ' N Q = F; since,
for some n € N, B, = U,;>, L € F, we have that h(U,,~, Ly) =
n,400[NQ C h(F) = F. Let Q = Q'U]n, +oo[, then QN Q =
F‘U(]n,+oo[ﬂQ):F', so that QEﬁandFEMQ. O

REMARK 3.3. It s easy to check that in the above result the as-
sumption that A is open may be replaced by the weaker condition:
Clq(Intq(ClqA)) = ClqA — which means that A is a dense subset
of some open B C Q. Indeed, in this case p|p has a countable base,
once pla has.

We are now going to provide two examples showing, on the one
hand, that the sufficient condition for pathwise connectifiability of
Q U {p}, given by Theorem 3.2, is not necessary; and, on the other
hand, that in such a condition we cannot drop the assumption that
A is open (or, at least, dense in an open set). Notice that another
example of the first fact — obtained by a quite different construction
— will be given at the end of the paper (cfr. Remark 4.11 after
Example 4.10).

EXAMPLE 3.4. There exists a free open-filter p on Q such that QU
{p} is pathwise connectifiable, but for every A C Q withp € Clquip 4,
pla has no countable base.

Proof. Let Y =[0,1] x[0,1] U {p} be the space in which Y \ {p} has
the euclidean topology and a base for Y at the point p consists of
the sets of the form G U {p}, where G is an open subset of Y \ {p}
containing Je, 1[ x{1} for some ¢ € [0,1] .

Clearly Q is homeomorphic to the dense subspace

X =([0,1[nQ)*

of Y and Y is a pathwise connected Hausdorff space.
It remains to show that for every A C X such that p € Clyy,) 4,
the filter p| 4 has no countable base. Let {A,, | n € w} be a countable



180 C. COSTANTINI, A. FEDELI and A. LE DONNE

subfamily of p|4 and take ¢, = (zp,yn) € Ay so that z, < z,41 for
every n € w and z, — 1. Since G =Y \ {¢n|n € w} is an open set
which includes ]0,1[ x{1} and no A,, it follows that {4, |n € w} is
not a base for p|4. O

EXAMPLE 3.5. There exist an infinite subset A of Q and a free open-
filter p on Q such that p € Clqu(pA4 and pla has a countable base,
but QU {p} is not pathwise connectifiable.

Proof. Put A = N. Let p be the free open filter on Q generated by
the family B of all open subsets of Q containing a tail of N.

Since the restriction of B to N is countable, p|n has a countable
base; also, it is clear that p € Clgu,)N. Thus, we only have to
prove that QU {p} is not pathwise connectifiable.

By contradiction, suppose Q U {p} may be envisaged as a dense
subspace of a pathwise connected, Ts-space Z. Let us fix an arc ¢
in Z, with 9(0) = 2z # p and 9(1) = p. Take a strictly increasing
sequence {s, |n € N} of elements of [0, 1, such that sup,cn sp, =1
and {¥(sp)|n € N} NN = (. Observe that K1 = {J(s,)|n €
N} U {p} and Ky = N U {p} are compact subsets of Z (the second
fact depends on the definition of the filter p). Therefore, (ClzN) N
{9(sp) |n € N} = 0 and (Clz{d(s,)|n € N}) NN = §; thus it is
possible to associate to every n € N two open subsets U,, V, of Z,
in such a way that:

1) Vn € N:(n € U,, and ¥(s,) € V,);

2) Vn,n' e N:U, NV, =0

3) Vn,n' e N: (n #n' = (U, NU,y =0 and V,, NV, = 0)).

Let U = Upen Un: since W =Y N (U U {p}) is an open neigh-
bourhood of p in Y, there exists A open in Z such that ANY = W.
Then the density of Y in Z implies that A C ClzW; since, for every
n € N, V, NClzU = 0, we have that {J(s,)|n € N} N A = 0.
Clearly, this contradicts the continuity of 9 at 1. O

4. The case of the real line

If p is a free open-filter on the real line R, the pathwise connecti-
fiability of R U {p} implies that of Q U {p|q}. The converse is not
true, as it easily follows from the main result of this section. This
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corresponds, in some sense, to our intuitive feeling that the real line
is much more “rigid” than the rational line.

Actually, we will characterize here the free open-filters p, having
a countable base, for which RU{p} is pathwise connectifiable; and we
will give an example to show that the assumption on the countable
base cannot be dropped.

LEMMA 4.1. Let Y be a Ts-space containing the real line R as a
subspace, and lety € (ClyR)\R. Then for every open neighbourhood
V of y in Y we have that V N R is unbounded.

Proof. If, by contradiction, VN R C [a,b] with a,b € R, a < b,
then U = Y \ [a,b] is an open neighbourhood of y in Y, and the
same holds for U N V. But this contradicts y € ClyR, because
(UNV)NR =0. O

LEMMA 4.2. Let X be a topological space, n € N and Ay DO Ay D
... D Ay open subsets of X. If Ay \ An has nonempty interior, then
there exists j € {0,...n — 1} such that A; \ Aji1 has nonempty
interior.

Moreover, if (X,d) is a metric space and Ay \ Ay, has unbounded
interior, then there exists j € {0,... n — 1} such that A; \ A1 has
unbounded interior.

Proof. Suppose first that there exists an open nonempty V such that
V C Ag\ Ay, and let j = max{i € {0,...,n} |V N A; # 0}: this
definition is correct because VN Ay = V # (. Moreover, j < n,
because V' C Ay \ Ap. Then j +1 € {0,...,n} and VN A1 = 0;
putting W = VNA;, we have a nonempty open set which is contained
n A]' \ A]'_|_1.

Suppose now that (X,d) is a metric space, and that the open
nonempty V above is also unbounded in (X,d). Fix an z € X, and
for every € > 0 let Sy(z,¢) = {y € X |d(z,y) < ¢}; also, for every
m € N and i € {0,...,n}, put A™ = A;\ S4(Z,m). It follows from
the above result that for every m € N there is an i,, € {0,...,n}
such that A" \ A" ., = A" \ A;, 11 has nonempty interior. Let
j € {0,...,n} such that i,, = j for infinitely many m € N: then
A; \ Aj;1 has unbounded interior. O
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DEFINITION 4.3. We will call py (respectively, p_) the free open-
filter on R having as a (countable) base the collection { Jn,+oo[|n €

N} (respectively, { ] — oo, —n[|n € N} ).

PROPOSITION 4.4. Let p be a free open-filter on R. Then X = R U
{p} is pathwise connected if and only if either p C py orp Cp_.

Proof. If p C p4, let Y =] — 00, +00] with the standard topology.
Since Y is pathwise connected, X also is, as a continuous image of
Y. If p C p_, the argument is symmetric.

Suppose now R U {p} pathwise connected and let ¢ be a one-to-
one path in R U {p} with ¢(1) = p. Then ¢|j [ is either strictly
increasing or strictly decreasing. In the first case, given any G € p,
we have that GU {p} is a neighbourhood of p in R U {p}, thus there
exists ¢ €10, 1[ such that ¢( ]¢,1]) C G U {p}, whence ¢(]t,1] ) C G.
Clearly, o( Jt,1[) =]f(t),![ for some [ €]f(t),+oc]; but it is impos-
sible that [ € R, because this would contradict the free character of
p. Therefore, ¢(]t,1]) =]¢(t), +0o[C G and G € p4.

If <p|[0’1[ is strictly decreasing, we prove symmetrically that p C
p_. ]

PROPOSITION 4.5. Let p be a free open-filter on R, contained neither
in py nor in p—, and for which there exists A € p such that for
every B € p, Int(A\ B) is bounded. Then R U {p} is not pathwise
connectifiable.

Proof. Suppose we may envisage RU{p} as a subspace of a pathwise
connected To-space Y, and fix a path ¢ in Y with ¢(0) = 0 and
(1) = p. We want to prove that, given any A € p, there exists B € p
such that Intg (A \ B) is unbounded. Let V' be an open subset of Y’
with VAR = A, and let t € [0, 1] be such that ¢([t,1]) C V: then
by Proposition 4.4 there exists y € ¢([t,1[) \ R. Let U, W be open
neighbourhoods in Y of p, 7, respectively, such that U N W = () and
U, W C V. Then by Lemma 3.1 the set C' = W N R is unbounded;
putting B=U NR, we have B € p and C C Intg (A \ B). O

LEMMA 4.6. Let A be an open subset of R with sup A = +o00. Then
there exists a To-space Y containing [—oc, +oc[ as a subspace, such
that Y \ [—00, +00[ is homeomorphic to [0,1], AU (Y \ [—o0, +00])
is open in Y and R is open and dense in Y.
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Proof. Up to strictly increasing auto-homeomorphisms of [—o0, +00],
we may suppose A 2 U,en[2n,2n +1]. Let Y = (I x {0}) U
[—00,400[, where I = [0,1], and o be the topology of the disjoint
sum on Y. We put

T={B€o|V(t0) € B:3k € N:{t+2i|i € N,i >k} C B}.

It is easily seen that 7 is a topology on Y, and is Tsy. As for the
last fact, observe in particular that if #,#"” are distinct elements of
I, then for § < |t' —t"|/2 we have that

(] =6,¢ +o[nI) x {0} U [JI' +2i—6,¢' +2i + 4]
1€EN

and

((]¢" = 6,¢" 4+ 6[nI) x {0}) U |J]t" + 20 — 6,¢" + 2i + 0]
1€EN

are disjoint (open) 7-neighbourhoods of (#,0) and (#”,0), respec-
tively. Moreover, by the definition of 7 it is apparent that

Y\ [=00, +oo[= I x {0}

is homeomorphic to I, that 7 induces on [—oc, +00o[ the usual topol-
ogy of the extended real line, that R is open and dense in (Y, 7), and
that AU (Y \ ([—o0, +00[) is T-open. O

REMARK 4.7. A symmetric statement to that of the above lemma
holds if A is an open subset of R with inf A = —o0.

THEOREM 4.8. Let p be a free open-filter on R, such that RU{p} is
not pathwise connected. Then, if R U {p} is pathwise connectifiable,
the following hold:

1) either | — 00,0[ € p or |0, +o0[ € p;

2)VA € p:3B € p:Int(A \ B) is unbounded.

On the other hand, if 1), 2) hold and p has a countable base, then
R U {p} is pathwise connectifiable.
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Proof. Suppose first R U {p} pathwise connectifiable; then 2) holds
by Proposition 4.5. To prove 1), let Y be a pathwise connected
Ty-space containing R U {p} as a dense subspace, and fix a one-to-
one path ¢ on Y with ¢(0) = 0 and ¢(1) = p. Then there is a
t € [0,1] such that p(f) = ¢ R and ¢(t) € R for every ¢t < t. To
prove the existence of such a Z, observe that ¢([0,1]) is not entirely
contained in R U {p}, and # = inf{t € [0,1]|p(t) ¢ R U {p}} must
in fact be a minimum; otherwise, fixing an open neighbourhood V/
of ¢(f) in Y such that V N R is bounded, we would have that V is
a neighbourhood also for some o(t) € Y \ (R U {p}) (with t €]¢,1]),
contradicting Lemma 3.1.

Now, if |y 5 is strictly increasing, then lim, ,;o(t) = 400 (by
the free character of p). Thus g = ¢fj [0,] — [0, 4+0c0[U{7} is
a homeomorphism; in particular, each neighbourhood of ¢ contains
some set of the kind ]a, +oo[ with a € R. Since Y is T, p must have
a neighbourhood disjoint from some Ja, +00[; hence | — 00, 0] € p.

If <p|[0,£[ is strictly decreasing, then we get symmetrically |0, +oo[€
p.

Suppose now that 1), 2) hold and p has a countable base {B,, | n €
N}; we may restrict ourselves to the case where ]0, +oo[ € p (the case
] — 00,0[ € p is symmetric, and uses Remark 4.7). Let {Bj}nen be
a decreasing countable base of p, such that B; C]0,+oo[ and, for
every n € N, B, \ Bp+1 2 A4, with A,, open unbounded in R.

For every n € N, let Y,, = [—00, +00[UI,, with I, = I x {n}, and
let o, be the topology on Y,, for which the conclusions of Lemma 4.2
are fulfilled for A = A,,. Let

Z = [~o0, +oo[U ( U In) U{p} = (U Yn) U{p},

neN neN

and 7 be the topology on Z defined by:

i) T|z\{py = G, where ¢ is the topology generated by the base S =
U\EN o\ (to prove that S is closed with respect to finite intersections,
observe in particular that if A, is o,/-open and A, is o,,7-open, with
n' #n”, then A, N A,r is open in [—o0, 4+00[ with respect to the
topology of the extended real line, and hence is o,-open for every
n € N);
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ii) the collection of the open neighbourhoods for p in (Z, 1) is:

{A U {p}

AE&,AOREp,EIkEN:UIngA}.
n>k

Observe that (Z,7) is Ty. Indeed, given z,y € Z, if z,y € Y,
for some n € N, we use the fact that (Y,,0,) is To; if z € Iy
and y € I,,» with n' # n”, then A,, U I, and A,» U I, are disjoint
neighbourhoods of z and y, respectively; if x = p and y € I, for some
n € N, then B, U (U,y>, In) U {p} and A, U I,, do the job; finally,
if z = p and y € [~o0, +oo[ , then since the open-filter p is free and
10, +o0[€ p, choosing V' open neighbourhood of y in [—oo, +o0[ and
n € N with V. N By = 0 we have that By U (U,,>7 In) and V are
disjoints neighbourhoods of z and y in Z. -

Let Y = Z/ ~, where the equivalence classes of ~ are the set
{—00,(0,1)}, the sets {(1,k),(0,k + 1)} with £ € N, and the sin-
gletons of all the other points; let also j: Z — Y be the quotient
mapping. Observe that Y inheredits from Z the Ty character, be-
cause every equivalence class of ~ has a finite number of elements
(actually, one or two), and each point z of Z has a fundamental sys-
tem of neighbourhoods of the kind {z} U W, where W is an open
saturated set. Indeed, for z = p we may consider the neighbourhoods
of the form {p} U B, U(]0,1] x {n})U (U, >pn In), with n € N, while
for z € I,, we may consider only neighbourhoods contained in A,UI,
and not containing both the points (0,n) and (1,n).

Clearly, Y \ {j(p)} is pathwise connected; also, if 7 is a strictly
increasing homeomorphism from [0, 1] onto [1, +00] and h: [1, +00] —
J(Unen Tn) U {p}) is defined by: h(+00) = j(p) and h(z) = j(z —
[z], [z]) if z # +o0.

Then hon is a path in Y connecting 5(0,1) with j(p). Therefore
Y is pathwise connected.

Finally, it is easily seen that the subspace j(RU{p}) of Y is dense
in Y and is homeomorphic to R U {p}; therefore, Y is a pathwise
connectification of R U {p}. O

COROLLARY 4.9. Let p be a free open-filter on R having a countable
base { By, | n € N}, such that RU{p} is not pathwise connected. Then
R U {p} is pathwise connectifiable if and only if the following hold:
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1) either | — 00,0[ € p or ]0,+o0[ € p;
2) the set {n € N |Intr (B \ Bn+1) is unbounded in R} is infi-
nite.

Proof. On the one hand, it is clear that 1), 2) above imply conditions
1), 2) of Theorem 4.8. On the other hand, suppose condition 2)
above fails: then there exists 7 € N such that Intg(B, \ Bnt1)
is bounded for n > n. We claim that for every A € p, the set
Intg(B5 \ A) is bounded. Suppose not, and let A € p be such
that Intg (B \ A) is unbounded: taking n! > 7@ with B,; C A,
we have that Intg(Bj \ B,:) is unbounded. Hence, by Lemma 4.1,
Intr (B, \ Bpy1) is unbounded for some n with n < n < n¥: a
contradiction. O

Observe that in Theorem 4.8 we cannot drop the assumption
that the open-filter p has a countable base, to show that conditions
1),2) imply the pathwise connectifiability of R U {p}. Indeed, every
maximal free open-filter on R satisfies conditions 1),2) above, but
R U {p} is not pathwise connectifiable by Example 2.1 in [3].

On the other hand, we will show now that having a countable
base is not a necessary condition for an open-filter p on R, to give
rise to a pathwise connectifiable R U {p}.

EXAMPLE 4.10. Fiz a free ultrafilter U on N, and let p be the free
open-filter on R generated by the base:

B:{U]n—&t,n+6[

nelF

FEU,6>0}.

Then:

1) for every A C R with p € Clrygy A, the filter pla has no
countable base;

2) RU {p} is pathwise connectifiable.

Proof. Let NU{U} be endowed with the topology in which the points

of N are isolated and a base for NU{U/} at the point U consists of all

sets of the form GU{U} where G € U, and let X = (NU{U})x[-1,1].
Let also Y = X/ ~, where the equivalence classes of ~ are

{(Oa _1)7 (ua 1)}
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and the sets {(n,1),(n +1,—1)} with n € N.
Clearly R U {p} is homeomorphic to the dense subspace ((N x
[—1,1]) U{(U,0)})/ ~ of the pathwise connected Th-space Y.
Moreover it is straightforward to see that for every A C R, with
p € Clryu{p)4, the filter p|a has no countable base. O

REMARK 4.11. The restriction of the above filter p to Q gives an-
other filter satisfying the statement of Example 5.4.

REMARK 4.12. LetU be a free ultrafilter on N, and for every n € N
let A, =|n—(1/4),n+(1/4)[. Then, by Corollary 2.2, if p' is the free
open-filter on R generated by the base B = { U, cp An | F € U}, the
space RU{p'} is not pathwise connectifiable. On the other hand, such
a filter p' is coarser than the filter p defined in the above example,
and R U {p} is pathwise connectifiable. Thus, we have a negative
answer to the question put at the end of §1.

Observe also that the restrictions of p and p' to Q give an anal-
ogous example for the rational line.
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