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Relaxed Parabolic Problems
MACIEJ SMOLKA *)

SUMMARY. - Let G, be a sequence of open subsets of a given open
and bounded Q C RN . We study the asymptotic behaviour of the
solutions of parabolic equations u,, + Au, = fn on G,. Assuming
that the right-hand sides f, and the initial conditions converge in
a proper way we find the form of the limit problem without any
additional hypothesis on Gy. Our method is based on the notion
of elliptic v*-convergence.

1. Introduction

The base of this work is the following problem: having a sequence
(G,,) of open subsets of a fixed open and bounded  C R" describe
the asymptotic behaviour (as n — o) of the sequence of solutions
of parabolic equations

up + Aup, = fn in (0,T) X G,
U (0) = ud in Gy, (1)
u=0 on (0,T) x (2\ Gp).

In the elliptic case this problem has been thoroughly investigated in
many works, starting from [5], through [10], [11], [6], [2], to [8], [9],
[12], [13], [3] and others. There is also a paper [4] concerning the
hyperbolic case. In both cases, as well as in ours, the limit of (uy,)
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(if it exists) in general does not satisfy the equation of the type (1),
but instead, under some assumptions, it appears to be a solution of
the equation

u +Au+pu=f
u(0) = uf
u=0on (0,7) x 0

for a suitable measure pu. Such an equation is called the relaxed
parabolic problem.

The present paper contains the basic theory of relaxed parabolic
problems. In particular we show the existence and the uniqueness
of solutions of such problems, along with some regularity properties.
The main goal is to prove the stability of the class of relaxed parabolic
problems under the elliptic y“-convergence and this is achieved in
Theorem 3.10. When this paper was completed, I came across a
work by J.-P. Raymond (private communication) containing similar
results and also one by R. Toader (PhD. thesis, SISSA, Trieste) con-
cerning hyperbolic equations, but using the same evolution triplet
and similar assumptions in the convergence theorem.

In order to achieve our goals, we adapt the techniques contained
in the papers mentioned at the beginning from elliptic and hyperbolic
cases.

The results of this work are interesting in themselves and have
applications e.g. in homogenization, but they are in fact thought
to be applied in shape optimization. Therefore this paper can be
considered as the first part of a bigger entirety, [16] being the second
part.

The plan of the work is the following. In section 1 we recall
some notations, definitions and basic properties from the elliptic case.
For convenience of the reader we also show there the separability of
V. (€). Section 2 contains the main results of the paper (mentioned
above) as well as some useful facts concerning the relaxed parabolic
problems and related notions (e.g. a characterization of the pivot
space H,(12)).
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2. Preliminaries. Relaxed Dirichlet problems

Let Q be an open and bounded subset of RN, N > 2. We denote by
H'(Q) and H}(Q) the usual Sobolev spaces on €2, and by H ()
the dual of H}(£2). On the latter space we consider the norm

1/2
loll 3 = ( / |Dv|2dm) .

By LL(©), 1 < p < 400 we denote the usual Lebesgue space with
respect to a measure p on 2. If y is the N-dimensional Lebesgue
measure 2, we shall use the standard notation LP(€2). The Lebesgue
measure of a set F we denote simply by |E|.

For every E C Q the (harmonic) capacity of E in Q is defined in
the following way

cap(E, Q) = inf{||v||§lol(m cv e HY(Q),
v > 1 a.e. in the neighbourhood of E}

We say that a property holds quasi-everywhere (q.e.) in a set
E if it holds everywhere in £\ N with cap(NV,Q) = 0. A function
v : 0 — R is said to be quasi-continuous if for any ¢ > 0 there
exists £ C 2 with cap(E,Q) < ¢, such that the restriction of u to
O\ E is continuous. We say that G C Q is quasi-open if for every
e > 0 there exists an open subset U, of Q such that cap(U., Q) < e
and G U U, is open.

From [18] we know that for v € H*(Q) the limit

1
r—1>%1+|B:vr|/xr

exists and is finite quasi-everywhere in 2. So if we adopt the follow-
ing convention concerning pointwise values of v

liminf ———— / y)dy < v(z)
m ,r| .',C'/'

r—04 |
< lim sup / y)dy,
r—0+ ‘/E r | (z,r)
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then we obtain a representative of the equivalence class v defined
uniquely up to a set of capacity 0; moreover this representative is
quasi-continuous on Q. Also from [18] we know that if a sequence
(vn) converges to v in H'(£2), then a subsequence of (v,) converges
to v pointwise g.e. in ).

For a quasi-open subset G of Q, we denote by H}(G) the space
of all such functions v € H}(2) that v = 0 q.e. in Q\ G, with the
Hilbert space structure inherited from H}(2). If G is open, then
this definition is equivalent to the standard one provided we use the
convention that every v € H}(Q) is extended by 0 outside G in order
to obtain an element of H}(£2). The following fact may be found in
[8] (Lemma 2.1).

PROPOSITION 2.1. For every quasi-open subset G of Q) there exists
an increasing sequence of nonnegative functions of Hl(G) converging
to 1g pointwise q.e. in €.

We denote by M(€2) the set of (nonnegative) Borel measures
on {2 such that:

(M1) wu(B) = 0 for every Borel set B C Q with cap(B,Q) = 0;

(M2) for every Borel set B C 2

u(B) =inf{u(G) : B C G, G quasi-open} .

EXAMPLE 2.2. If u = oLV for a nonnegative function ¢ € L*®(12),
then p € Mo(Q2). It can also be shown (compare [18]) that for N —
2 < a < N the restriction of the a-dimensional Hausdorff measure
to a Borel set E with H*(E) < +o0o belongs to Mo(?). In general,
any Radon measure which belongs to H=1(2), belongs to Mqy(Q) as
well.

EXAMPLE 2.3. Another example of an element of My(Q2), which will

be useful in the sequel is the measure defined for any quasi-closed
subset S of Q0 by the formula

0 if cap(BN S, Q) =0,

+o0o  otherwise.

o0g(B) = {
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For 11 € My(Q2) we consider the space
V() = Hg () N L2(Q).

endowed with the scalar product

(u, )y, () :/ (Du, Dv) d:B—l—/uvd,u.
Q Q

From [2, Proposition 2.1] we know that V,(€) is a Hilbert space.

EXAMPLE 2.4. If p = oLV for ¢ € L®(Q), ¢ > 0, then V, () =
H} () with the equivalence of the norms.

EXAMPLE 2.5. If G C ) is quasi-open and j1 = oo\, then V() =
H(G) and the respective norms are equal.

By V,(2) we denote the dual of V,(©2) and by (-,-),, the duality
pairing between those spaces (when p is the Lebesgue measure we
shall use the standard notation (-,-)). We have two natural embed-
dings

i1:V(Q) — Hy(Q)
i Vu(Q) — L(9Q).

In general neither of them is dense (see below), so the transposed
’embeddings’

i HY Q) — VI(Q
iy LA(Q) — Vi(Q)

may not be injective.

EXAMPLE 2.6. If p = ooq, then V,(Q) = V() = {0}, so we have
it(f) =0 for every f € H71(9).

Nevertheless we shall write f instead of i} (f) for f € H ().
Due to this convention, for such f we have

(fro)u=(f,0) VoeVu(Q).

For g € Li(Q) we use the notation ug = i5(g), i.e.

(Bg,v), = /ngdu Yo € V,(Q).
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Let A: H () — H () be a linear symmetric elliptic operator
of the divergence form

N
Au = — Z D;(a;jDju),
t,j=1
where (a;;) is a (symmetric) N x N matrix of functions of L*°(2)
satisfying, for a positive constant «, the coercivity condition
N

> aij()88 > o)

ij=1
for almost every z € Q and all ¢ € RY. Let us also introduce the

notation

Cy= i .
0 ”gllaXN ||alj||L°°(Q)

Let € Moy(Q), f € H Q). The following problem is called
relazed Dirichlet problem:

{Au—i—,uu:f

u € V,(82). @)

The above problem, due to the convention concerning the mappings
i} and i3 should be understood as follows: find u € V},(£2) such that

(Au,v) + /Q'wudp = (f,v)

for every v € V,(Q). A straightforward application of Lax-Milgram
Lemma is the following theorem.

THEOREM 2.7. For every f € H () there ezists a unique solution
of problem (2).

REMARK 2.8. If G is an open subset of 2 and p = ooq\q, then it
is easy to show that u € H{(Q) is the solution of problem (2) if
and only if u =10 g.e. in Q\ G and u is a solution of the classical
(homogeneous) Dirichlet problem in G

Au = fla
u € HY(G).
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REMARK 2.9. It is obvious that Theorem 2.7 remains true if as the
right-hand side of equation (2) we take f € V,(Q).

The following relaxed problem is especially important in the se-
quel

(3)

Aw + pw =1
w € V, ().

There is a close connection between a measure p and the solution of
this problem (see [3], [8], [13], [12] for details). Here we recall only a
few basic properties of w. First of all from the comparison principle
([8, Proposition 2.4]) we know that w € L>(2) and w > 0 g.e. in Q.
Let us define the sets

Alp) = {z€Q:w(z) >0}
S() = 9\ AQH) = {z € Q: wiz) = 0},

w can be considered quasi-continuous, so A(u) is quasi-open and
S(u) quasi-closed (both are defined up to null-capacity sets). A(u)
is called the regular set of the measure p and S(u) the singular set

of .

EXAMPLE 2.10. If G is an open subset of X and p = coq\q, then
from the strong mazimum principle it follows that A(u) = G.

PROPOSITION 2.11. If u € My(R2), then pu(B) = +oo for any Borel
subset B of Q such that cap(B N S(u), ) > 0.

Proof. See [8, Lemma 3.2]. O

A straightforward consequence of this proposition is the following
fact.

COROLLARY 2.12. V,,(2) C H}(A(w)).
Moreover it is known that
LEMMA 2.13. H}(A(p)) is the closure of V() in H(Q).

Proof. See [2, Lemma 2.5]. O
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The following very useful fact has been proved in [13] (Proposition
5.5).

PROPOSITION 2.14. Let w be the solution of problem (3) and let 3 >
1. Then the set w’C§(Q) is dense in V().

COROLLARY 2.15. The Hilbert space V,,(2) is separable.
Proof. First of all note that the space C'(2) endowed with the norm

HwHZSgﬂﬂ+ﬂgﬂDw%=Hﬂmemy (4)

can be identified by means of the isometry
A:CYQ) 3 v+ (v,Dv) € C(Q) x C(QRY),

with a subspace of the separable Banach space C(Q) x C(;RY),
therefore it is separable. Furthermore the space C§°(2) with the
norm (4) is separable as a subspace of the separable normed space
cl(Q).

Let {pn}o2; be a countable and dense subset of C§°(£2). Take
arbitrary v € V,(€2) and € > 0. From Proposition 2.14 we know that
there exists such ¢ € C§°(f2) that

v — w‘PHVu(Q) <e&.

Furthermore we can find n € N such that

o — onl| <e.

Hence

|[u —welly, @) + [lwe — wen|lv, (@)

e+ [|D(wp) — D(wey)||L2(q)

+|wep — U’(PnHLﬁ(Q)

e +|[(¢ — ¢n) Dwl|12(0)

+lw(Dy — Don)l|r2(0)

+wllzz @)lle = enllze @)

e+ [|[Dwl[ L2yl — @nllre (@
+l|wllr2(9)l1De — Denl| 1o @) + llwll 1z ()€

(14 IDwllzz) + ol ey + ol ) &

v — w‘PnHVM(Q)

IN N

IN

IN

IN
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This means that the set {we,} is dense in V,(€2), which concludes
the proof. O

DEFINITION 2.16. Let (i) be a sequence of measures of Mq(£2) and
let 1 € Mo(Q). We say that (u,) y3-converges to p if for every
f € H Q) the sequence of the solutions of problems

(5)

Au,, + Pty = f
un, € Vy,,, (22)

converges weakly in H} () to the solution of problem (2).

REMARK 2.17. It should be noted that v*-limit depends on the op-
erator A (for details see e.g. [8, Chapter 6]).

The paper [8] contains the following conditions equivalent to the
yA-convergence.

THEOREM 2.18. Let i, € Mo(2). Let w,wy, be the solutions of
problems, respectively, (3) and

{Awn + ppwp =1 (6)

wy, € V), (2).
Then the following conditions are equivalent
1. (pn) yA-converges to p;
2. (wy) converges to w weakly in H}();

Proof. See [8, Theorem 4.3]. O

Main properties of the topology of 74-convergence are contained
in the following propositions.

PROPOSITION 2.19. Each sequence of measures of Mq(Q2) contains
a y*-convergent subsequence.

Proof. See [8, Theorem 4.5]. O
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PROPOSITION 2.20. Let A be a nonnegative Radon measure. For
every p € Mo(SQ) there exists a sequence (Ey) of compact subsets
of Q such that the corresponding sequence of measures oop, is y-
convergent to p and \(E,) =0 for n € N.

Proof. See [3, Proposition 1.10]. O

The notion of *y*-convergence’ was first defined in [11] in terms
of I'-convergence of energy functionals. In our case there is also a
connection between these two types of convergence. Let us recall
that if X is (for simplicity) a Banach space, then we say that a
sequence of functionals Fy, : X — R is '-convergent to F : X — R if
and only if two following conditions hold:

1. if ,, — z in X then

F(z) < liminf F,,(z,);
n—o0

2. for every z € X there exists a sequence (z,) convergent to
in X such that
F(z) = lim F,(z,).

n—oo

More information about the theory of I'-convergence can be found
in [7].
For 1 € My(Q) we define the energy functional

F,:L*(Q) —R

by the formula

Fuv) {(Av,v) + [qvidp ifv e Hj(Q),

400 otherwise.

Then, analogously to [11], we can show the following fact.

PROPOSITION 2.21. A sequence () of measures of Mo(Q) is y4-
convergent to p if and only if the corresponding sequence of energy
functionals (F,,) is I'-convergent to F),.

Let us conclude this section with another property of the topology
of y4-convergence, which can be proved as in [11, Proposition 4.9].

PROPOSITION 2.22. y-convergence in My(Q) is metrizable.
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3. Main results

Let us fix 0 < T < 400 and denote @) = (0,7) x €. The present
section contains the generalization of results of the previous one to
the case of first order evolution equations. For an arbitrary measure
€ Mo(2) we introduce the following triplet of Hilbert spaces

Vu(Q) € Hu() C V,(9), (7)

where H, () is the closure of V,,(2) in the strong topology of L*(12).
Thus it is a separable Hilbert space with the inherited structure, so

it can be identified with its dual by means of the same isometry as
L?(Q).

PROPOSITION 3.1. Both embeddings in (7) are continuous, dense
and compact.

Proof. Due to the identification of H,(£2) with its dual it will be
sufficient to prove these properties for first embedding. Its density
is a straightforward consequence of the definition of H,(€2), its con-
tinuity follows from Poincaré inequality (see the proof of Corollary
3.4). To prove its compactness let us take a sequence (v,) bounded
in V,,(2). But

om0y = lonl gy + | o3 > 1ol

so (vp,) is also bounded in H} (), therefore it contains a subsequence
convergent (strongly) in L*(Q2). But since H, () is closed, the limit
of this subsequence must belong to H,(€2). O

The next proposition gives some characterization of functions of
H, ().

PROPOSITION 3.2. In the situation above
H,(Q) ={vel*): v=0 ae.in S(u)}
Proof. Define

Y={velL*(Q): v=0 aeinS(u)}.
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Y is a closed subspace of L?(£2). Hence the inclusion V,(Q) C Y,
which is a simple consequence of Corollary 2.12, implies that

H,(Q)CY.

In order to prove the opposite inclusion let us recall that Hg(A(u))
is the closure of V,,(2) in H}(f2) (Lemma 2.13), so it suffices to show
that every function of Y may be approximated in L?(Q) by elements
of H}(A(p)). Fix then arbitrary v € Y. Thanks to Proposition 2.1
we know that there exists an increasing sequence z, € H{(A(u))
such that

0<2z,<1 qe. in A(p) (8)

and z, — 1,(,) pointwise g.e. in RN . From the dominated conver-
gence theorem it follows that

|[v —vznllr2(0) — 0. (9)

On the other hand it is well known that we can find such ¢,, € C§°(2)
that

on — v in L2(Q). (10)

Note that
ZnPn € H(} (A(N))

Moreover from (8), (9) and (10) we have

v — zn‘PnHL?(Q) < - Uzn”L‘—’(Q) + [|vzn — ‘PnanL‘—’(Q)
< v —wvznllzz) + lznllLe@)llv — @nllr2 ()
< v =vznllr2@) + v = enllzz@) — 0,
which concludes the proof. ]

We shall use the notation
Wu(0,T) = {u € L*(0,T;V,(Q)) : v’ € L*(0,T; V() }

where u/ is the derivative in the sense of distributions with values in
the Banach space VI:(Q) If p is Lebesgue measure, we shall adopt
the standard notation W(0,T').
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PROPOSITION 3.3. Let V and H be two Hilbert spaces such that V
is dense in H and

[l < Cvmllollv, YveV.
Then every function v € L*(0,T;V) such that v' € L?(0,T;V") is
a.e. in (0,T) equal to a function
i € (0.7 1),

with
) CYn
& o7y < (2 7 ) (||u||%2(0,T;V) + ||ul||%‘—’(0,T;V’)> - (11)

Proof. The existence of 4 is proved e.g. in [1, Proposition 3.2]. The
following equality, holding for s, € [0, T, is also shown in the proof
of this proposition

t
lla@)E - llas)IE = 2/ (' (1), u())y dr. (12)

Fix t € [0,T]. From the above equality it follows in particular that

t
la(t)| |mwm%+2/kvaMﬂWdT
0

T
S|mwm%+2A (@ (7). ulr))vi|dr

T
< LI +2 [l @llvlfut)llvar
Holder inequality implies that
la@E < [[@O)1F + 2l Il 20,z ull 2 0109
< |a(0)| 7 + ||ul||%2(0,T;V’) + ||u||%2(O,T;V)' (13)
On the other hand

12(0)|17

I
=
=
S

|

ro

S—
/\ﬁ

:\
S
=
2
<

QU

\]
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and, similarly as before, we compute

12 ()17 < CEalla®ly + |1 l122 oz + lullZe 0750
Taking the average over (0,7") we obtain

2

|a(0)|[7 < 1l 05y + 116120 0y + lull 2o vy (14)

But
u(t) = u(t), a.e. in (0,7),

hence, in particular,
||ﬂ||L2(0,T;V) = ||u||L2(0,T;V)a

so0 joining (13), (14) and this equality we have finally that

) i
[a(t)| [ < (2 + %) (11120, + Ml 220,20) - (15)

for every t € [0,T]. To conclude the proof let us recall that

lallcqory;my = sup ||@(t)]|m,
0<t<T

therefore (11) is a simple consequence of (15). O

Of course u is the representative of the class u, thus in the sequel
we shall identify w with this representative. In our situation due to
Proposition 3.3 we have the following corollary.

COROLLARY 3.4. The space W,(0,T) is continuously embedded in
C(0. T H,() and

[ulleqo.r:m,. @) = Nulleqo,mez @) < CULL N, T)||ullw, 0.)- (16)
Proof. Take arbitrary v € V,(£2). Then we have
10l m,0) = 1vllz2(0) < CURL NPl ) < CUQL N)ollv, ),

where C is the constant from Poincaré inequality. Therefore, using
the notation from Proposition 3.3 we may write

Cv, @), m.@) = C(IQ,N)
and applying Propositions 3.1 and 3.3 we finish the proof. U
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Let
A:H{(Q) — H'(Q)

be an elliptic operator such as in the previous section. We define a
new operator

AV (Q) — V(Q)

by the formula

(Ayu,v), = (Au,v) + /qud,u

for every u,v € V,(2). We consider the following first order evolution
problem

u'(t) + Ayu(t) = f(t)
u(0) = u®
u € L?(0,T;V,(2))

for some f € L*(0,T;V,/(Q)) and u® € H,(£2), where the first equal-
ity is the equality of elements of V() for almost every ¢ € (0,7).
Due to our convention concerning the ’embedding’ 45 we may rewrite
the above problem in the following way

u + Au+ pu = f
u(0) = u° (17)
u € 170, TV, ()

From the form of the problem it is clear that we should look for
solutions in the class W,(0,T). According to what is written above
a function v € W,(0,T), which in particular is continuous function
with values in H,(Q2) (see Corollary 3.4 together with the preceding
remark), is a solution of (17) if it satisfies the initial condition (a.e.
in Q) and the equation

(' (), ) + (Au(t), v) +/ u(t)vdp = (f(t),v)u

Q
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for each v € V,(?) almost everywhere in (0,7') or, equivalently, the
equation

T T
| o.ov),a [ auw, o)
0 0
-l-/ u(t, z)v(z)p(t)du(x)dt
Q

T
= [t vsoy,a

for every v € V,(R2) and 4 € C§°((0,T)).

From the theory of abstract parabolic problems we can derive the
following theorem, which assures the existence and the uniqueness
of the solution of (17).

THEOREM 3.5. Let f € L*(0,T;V, () and u® € H,(Q). Then the
problem (17) admits a unique solution, which belongs to W, (0,T).
Moreover, the mapping

L0, V() x Hu() 3 (f,u’) — u € W,(0,T) (18)
s a topological isomorphism.
Proof. See e.g. [14, Vol. I, Chapter 3, Theorem 1.1]. O

REMARK 3.6. In fact we can prove the existence and the uniqueness
of the solution for (17) in much more general situation, e.g. when
A(t) is nonlinear time-dependent operator satisfying the following
conditions:

(A1) for every vi,ve € H}(Q) the function (A(-)v1,v2) is Lebesgue
measurable on (0,T);

(A2) for a.e. t € (0,T) operator A(t) is monotone and demicontin-
uous;

(A83) there exists a positive constant C such that

1A@l -1 < € (1+ 1ol )

for v e H}(Q);
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(A4) there exist such constants a > 0, w € R that
(A(t)v, ) + wllllZ2q) 2 allvllF o)
for an arbitrary v € H}(Q).

In this case we simply need to apply, e.g. [1, Theorem 4.5].

The special form of the operator A enables us to increase the regu-
larity of the solution of (17), which will be important in the sequel.

PROPOSITION 3.7. Let u® € V,(), f € L*(0,T;H,()) and let
u be the solution of (17). Then u' € L?(0,T;H, () and u €
C([0,T); V(). Moreover the following estimates hold:

1830w, + 118120y < Cr (11, 0 + 1132y

and
1013, < Co (1601, 0y + 1/ B2

where the constants C1 and Cy depend only upon o, Cy, T, N and
1€2].

Proof. From [1, Corollary 4.3 and Remark 4.4] we know that in our
situation u' € L?(0,T; H,(2)) and

101y e = 112y < € (1001, oy + 11y ) - (19)
From (17), using the inequality (12) and the coercivity of A we obtain
1

<

||u||%2(0,T;Vu(Q)) =52 <||U0||%1u(sz) + ||f||%2(o,T;vl;(Q)))

where & = min{a, 1}, and, furthermore,
[l Z20,75v,,09) < €" (||U0||%/,L(Q) + ||f||%2(0,T;HM(Q))> - (20)

Joining (19) and (20) we obtain the first inequality from the thesis.
From (19) and (17) it follows that A,u € L?(0,T; H,(?)) and

NAuull 20,750, 0 < 11|22 0,750, 0y + Nl L200,03m,.09)) -
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It means that u € L?(0,7; D(A,)), where
D(A,) ={veV,(Q): Av+pv € H,(Q)}

is the domain of the operator A,. Therefore the remaining part of
our thesis is a consequence of Theorem 3.1 and Proposition 2.1 from
Chapter 1 of [14, Vol. I]. O

We call the problem (17) the relazed parabolic problem, analogously
to relaxed Dirichlet problems considered in the previous section. Like
there, this terminology is justified by the fact that problems (17) can
be considered as a generalization of classical parabolic problems of
the type

W+ Au=f in(0,T)xG
u(0) = u® in G (21)
u=0 on (0,T) x 0G

where G is an open subset of € (see remark below), while with some
natural assumptions the limit of a sequence of the solutions of prob-
lems (21) on varying domains is the solution of (17) (see Theorem
3.10) and, conversely, the solution of (17) can be approximated by
the solutions of (21).

REMARK 3.8. Let G be an open subset of Q. If i is the measure
from Ezample 2.3, then u is the solution of (21) if and only if 4 is
the solution of (17), where u(t) is the extension of u(t) by 0 outside
G.

REMARK 3.9. We can exchange the right-hand side of (17) for an
arbitrary f € L*(Q) such that

F@)ag = FE)]ag

(i.e. f(t) = lA(M)f_(t)) with no influence on the solution. It is so
because both functions give the same element in L?(0, T; V() (this

is a consequence of Proposition 2.13 and the density of H}(A(w)) in
H,(92)).
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We are now able to state the main result of this paper, showing

the stability of the class of relaxed parabolic problems under the

yA-convergence. We consider the following sequence of problems

U;L + Auy + HnlUp = fn
un (0) = ud (22)
Uy € LQ(O,T; Vi, ().

THEOREM 3.10. Let u, uy be the solutions of problems (17) and

(22), respectively, for some p,pn € Mo(R), f,fa € L*(Q), u® €
V() and ul €V, (). Take M > 0 and assume that

L pin AN 14

2. fn — [ weakly in L?(Q),

3. ud — u® weakly in H}(Q) and
4. ||u?l||Lin(Q) <M,VneN.

Then
up, — u  weakly in W(0,T).

REMARK 3.11. If p,, = oo\, for some open G C , then the
condition u9 € Lin(Q) means simply that

ud =0 gqe inQ\Gp,
hence, in particular,
[ 18P =0,
Q
therefore in this case assumption 4 holds automatically.

Proof of Theorem 3.10. From Proposition 3.7 it follows that

u, € L*0,T;V,, () C L*(0,T; Hy(Q))
u, € L*0,T;H,,(Q) C L*(Q) C L*(0,T; H (),
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hence u,, € W(0,T). The same proposition gives us also the following
estimates

||un||%/V(O,T) = ||u”||%2(0,T;H3(Q)) + ||“%||%2(0,T;H‘1(Q))
< ||un||%2(0,T;VM(Q)) + a”%“%?(@)
< T (11, @ + 7ali32g))

Cr (1613 0y + 1S (0 + 11l
and

o1y < Co (1161 230y + 13125 0 + 1l 2y ) -
Therefore assumptions 2—4 imply

|[un|lw o,y < const

|| 12(g) < const (23)
lunlleqomym)) < llunlleqorv, @) < const.
The last inequality means in particular that
et (8)]| 73y < comst

for every t € [0,T] as well as

||un||L°°(0,T;H6(Q)) < const.

The above estimates imply that there exists a sequence of (uy) (still
denoted by the same symbol) convergent weakly in W (0,7T) to a
function u. We may also assume (perhaps passing to a further sub-
sequence) that

! — ' weakly in L*(Q) (24)

Up,

and

u, — u weakly * in L>°(0,T; HL () (25)
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Moreover, due to (24), (25) and [15, Corollary 4] we may assume
that

u, — u strongly (uniformly) in C([0,T]; L?(£2)). (26)
This implies in particular that for every ¢ € [0,T]
Un(t) — u(t) weakly in H} (). (27)
Furthermore, assumption 1 is equivalent to the condition
F_nh—{goF‘u" = F,
(see Proposition 2.21), hence from (27) it follows that
Fyu(®) < lim inf £, (un (0) (28)

But since
&loll3,, () < Fulv) = (Av,0) + / vidp < Collvl[3, 0y;
0

where the constants & and Cj depend only on a and Cj, so (28) and
the last inequality from (23) imply that
u € L>(0,T;V,(2)).

Let us consider the problem (22) in the integral form with the test
function (t)p(z)wy,(x), where ¢p € C§°((0,T)), ¢ € C°(2) and
wy, € V,, () is the solution of the equation Aw, + p,w, = 1:

N
/u;z/wwndtdm—i—/ Z a;j D jun, D; (how, )dtde
Q Q

ij=1

+ / upPpwndtdjiy,
Q

:/fnz/)tpwndtdx. (29)
Q
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A
Since pn —— p, from Theorem 2.18 it follows that (w,) converges
weakly in H}(2), hence also strongly in L?(Q2), to the solution of
relaxed Dirichlet problem

Aw + pw =1
w € V,(9).

Therefore, from (24) and assumption 2 we have
/ unpowpdtds — / u'ppwdtde,
Q Q
/ Jfnppwndtde  — / fyowdtdz.
Q Q

Because 1 does not depend on z, the following equalities hold:

DjunDi(1ppwn) = 1 Djuy Di(pwy)
= z/)(:ODju'nl)iwn + "/)wnD]’unDi@
=D, (Youn) Diwy, — Yy Do Diwy + 1w D ju, Dip.

On the other hand, using Fubini Theorem, we obtain

N
/ Z aiij(z/)goun)Diwndtdm+/ wwunwndtdun:/z/)goundtdx.
Q2 Q Q

Hence

J

N
Z aij Djun Di (1w, )dtdr + / uptpwy, ditdpy,
ij=1 Q

N
:/z,b@undtdx—l-/ Z a;jpwy D ju, Dipdtdx
Q Qi,j:l
N
- Z a;jpunDjoDjwypdtdz.  (30)
Q=1



RELAXED PARABOLIC PROBLEMS 169

From the weak convergence of (u,) in W(0,7T) and from (26)) it
follows that
u, — u strongly in L*(Q) and
Dju, — D;u  weakly in L*(Q),

so the right-hand side of (30) converges to

N
/Q/)goudtdm—l-/ Z a;jpwDjuD;pdtdx
Q Q=1

N

— / Z a;jpuDjpDiwdtdz.
,j=1
Gathering together the above results and using the inequality anal-

ogous to (30) for w we draw a conclusion that the sequence of equa-
tions (29) is convergent sidewise to

/u'z/)gowdtdm+/
Q Q

N
Z aijDjuD;(¢pow)dtde +/ uppwdtdp
1,j=1 Q

= / fowdtdr.
Q

1) is arbitrary, so we may write
(u'(t),uxp)# + (Au(t), wp) —|—/Qu(t)w<pdu = /Qf(t)uxpdx,

but this, due to the density of wC§°(€2) in V,(Q) (Proposition 2.14)
means that
u 4+ Au+ pu = f.
Furthermore, note that (27) implies in particular that
1y (0) — u(0) weakly in H{(Q),
hence from assumption 3 it follows that
u(0) = u°.

To conclude the proof let us note that from the uniqueness of the
solution of (17) it follows that in fact the whole sequence (u,) con-
verges to u. U



170

MACIEJ SMOLKA

REMARK 3.12. From the proof of Theorem 3.10 we can obtain in
fact some additional convergence conditions:

Up — u strongly in L*(Q),
un, — u strongly in C([0,T]; L*(Q)),
Uy — u weakly * in L*°(0,T; Hi (),
ul — ' weakly in L*(Q),
Un(t) — u(t)  weakly in Hy(Q) for every t € [0,T).

Moreover for every t € [0,T] we have

F(u(t)) <liminf F, (un()).

n—o0

As a conclusion, let us state the following corollary, which is a
straightforward consequence of Proposition 2.20 and Theorem 3.10.

COROLLARY 3.13. For every solution of the relazed problem (17)
there ezists a sequence of solutions of problems (21) convergent to it

weakly in W(0,T).
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