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Existence and Uniqueness of
Periodic Solutions for a
Quasilinear Parabolic Problem

MAURIZIO Bapm *)

SUMMARY. - We are concerned with the existence and uniqueness of
the nonnegative periodic weak solution to a quasilinear parabolic
problem of degenerate type, which describes a mathematical model
in petroleum engineering. The existence of periodic solutions is
established by means of the Schauder fixed point Theorem applied
to the Poincaré map. Instead, the uniqueness of the periodic
solution is proved under the assumption that b(o~"') is Hélder
continuous of order 1/2, adapting a technique utilized in the study
of nonlinear hyperbolic equations.

1. Introduction

We are interested to study the existence and uniqueness of the non-
negative periodic weak solution for the parabolic degenerate problem

up = @) g — b(u)y in Qr :=(0,1) x (0,7) (1)
p(u(0,t)) =0 Vite (0,T) (2)
p(u(l,t)s — b(u(l,1)) = —q(t) , Ve (0,T) (3)
u(z,t+w)=u(z,t) , v>0 , w>0inQr, T >w.(4)
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This problem, under the assumptions (H,) and (Hp) see Sect. 2,
is utilized in petroleum engineering to describe the simplest mathe-
matical model in the secondary recovery of oil by means of an amount
on injected water in the oil reservoir.

In this type of model, u(z,t) denotes for any = € (0,1), the
saturation of oil at the time ¢, while ¢(¢) measure the quantity of
injected water into the reservoir. The assumptions that shall be done
on ¢'(u), ¢'(u) vanishes when the saturation v is minimal v = 0 and
maximal 4 = 1, reflect the immiscible character of water—oil fluids
and make the problem degenerate (see [3]).

The problem of secondary recovery of oil, has been extensively
studied in [5, 6, 7] where the existence of strong global solutions and
some its properties as regularity and dependence on initial data for a
nonlinear degenerate diffusion—convection variational inequality, has
been shown. In [6], the uniqueness of the solution is proven in the
BYV spaces, under the assumption that b(¢~"') is Holder continuous of
order 1/2. In [7], besides to derive on physical grounds the equations
of the oil recovery, are studied various models utilized in petroleum
engineering. The uniqueness of the weak solution for a problem
similar to our, is established adapting a technique used to study the
nonlinear hyperbolic equations. This approach shall be followed in
our paper to show the uniqueness of the periodic solution.

To deal with the periodic solutions, we begin to consider a quasi-
linear parabolic problem of nondegenerated type, approximating prob-
lem (1)—(4). This nondegenerate problem, is obtained adding a so
called artificial viscosity term, substituting ¢ with ¢.(s) := ¢(s)+es,
for any ¢ > 0. The variational formulation of the approximating
problem is:

To find u., periodic with respect to ¢, such that for a.e. ¢t € (0,7

1 1
(et )y + 6((u5,'u))—|—/0 go(ug)mfumdx—/o bu)vpdz + (5)
+ q®)v(l,t) =0 , Vu(,t)eV

where V' is a suitable Hilbert space (see Sect. 2).

Existence of periodic solutions to (5) shall be obtained utiliz-
ing the Schauder fixed point theorem for the Poincaré map of the
associated initial-boundary value problem for all T' > w.
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To find u, such that for a.e. ¢t € (0,7)

(ol + el(uero) + [ () gvpde / ' b(ue)vpdz + (5)
+ q(®)v(l,t) =0 , Vo(,t)eV

ue(z,0) =up: , a.e in (0,1), (6)

with ug. € L*(0,1), 0 < ug: <1 a.e. in (0,1).

For (5)—(6) we show the existence and uniqueness of the solution
u.. To prove the existence of u., we use a classical variational ap-
proach, while the uniqueness shall be obtained choosing a suitable
test function in (5).

After proving that the Poincaré map for (5)-(6) has a fixed point
ue, the existence of periodic solutions for (1)—(4) is obtained passing
to the limit as ¢ — 0 on u.. This is the reason why we look for
estimates independent of €.

Finally, the uniqueness of the periodic solution, is showed by
means of the assumption

b(e™") (7)
is Holder continuous of order 1/2.

2. Variational Formulation

a) Assumptions

The following assumptions will be made throughout

{90 € C%([0,1]) , ¢(0) = ¢'(0) = ¢'(1) =0, ¢(s) >0 for 0< s <1
and ¢! is Holder continuous of order o € (0, 1)

(Hy)
be C™(]0,1]) , such that b(0) = —1 <b(s) <b(1) =1,

for all s € [0, 1] (Hp)

q € CH[0,T)), q(t) >0, q(t+w) =q(t), forallte[0,T]. (H,)

b) Functional Framework of Modelling
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Let V be the Hilbert space defined by
V:={ve H(0,1):v(0) =0}

with inner product

((u,v)) = /01 Ug Ve dT .

Let H = L?(0,1), since H = H', its dual, we can identify V', the
dual space of V, to a super space containing H i.e. V. C H C V.
The embedding of V' in H is dense with continuous injection. Denote
with |-| the norm in V" and with (., .)y+y the pairing of duality V', V.
The norm and the inner product in H are denoted respectively with
|| - || and (.,.). Consider the Hilbert space

W(0,T) := {v e L*(0,T;V) , vy € L*(0,T;V')}

endowed with the usual norm (see [9]).
The variational formulation for problem (1)—(4) is the following:
To find u € L®(Qr) N C([0,T]; L*(0,1)), 0 < u < 1, u(z,t +
w) = u(z,t), Vt € [0,T] and a.e. = € (0,1), p(u) € L?(0,T;V),
ug € L%(0,T; V') such that for a.e. ¢t € (0,7)

1 1
(wohry + [ plwavada = [ bujoads +qftyo(Lt) =0,
Vol t) €V . (8)

To solve (8), we consider the approximating problem, obtained adding
the artificial viscosity term:

To find u. € W(0,7), 0 < us <1, ue(z,t + w) = u:(z,t), Vt €
[0,7] and a.e. z € (0,1), ¢-(us) € L?(0,T;V) such that for a.e.
te€(0,7T)

1 1
(uet, vV)vry  +  e((ue,v)) +/0 o(ue)pvpdx —/0 b(ug)vzdr +
+ q®)v(l,t) =0 , Vu(,t)eV (5)

The existence of periodic solutions for (5) shall be proved by means
of the Schauder fixed point theorem for the Poincaré map of the
associated initial-boundary value problem for all T' > w.
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To find u. € W(0,7T), 0 < u. <1Vt € [0,7T] and a.e. in (0,1),
be(us) € L2(0,T; V) such that for a.e. t € (0,7)

1 1
(uet, V)vry  +  e((ue,v)) +/0 o(ue)pvpd —/0 b(ug)vzdr +
+ q®)v(l,t) =0 , Vu(,t)eV (5)

ue(z,0) = ups(z) , a.e. in (0,1) 9)

with ug. € L*>(0,1), 0 < ugs(z) <1, a.e. in (0,1).
We begin our study, resolving the problem (5)—(9).

3. Existence of periodic solutions for the
approximating problem

PROPOSITION 3.1. If (H,)—(Hg) hold, ug. € L*(0,1), 0 < ug.(z) <
1 a.e. in (0,1), there exists at least a solution u. for (5)—(9).

Proof. By classical results (see [7]), one knows that for all ¢ > 0 and
forallg € W(0,7),0 < g <1 a.e. in Qp, there exists a unique U.(g)
such that: Us(g) € W(0,T), 0 < U.(g9) <1 a.e. in Qr verifying for
a.e. t € (0,7)

1 1
Ul + e(Ua0)) + [ @ (0)Vesvsde— [ bgvsda +
+ qt)v(l,t) =0 , VYu(,t)eV (10)

Uc(z,0) =upe(z) , ae in(0,1). (11)

The existence of solutions u. for (5)—(9) follows by the Schauder fixed
point theorem, after proving that the map from W (0,T) into itself,
which transforms g to U.(g) is such that

a) it leaves invariant the nonempty, convex, weakly compact set
K :={veW(0,T),0<v<1ae inQr, v(0) = up a.e.
in (0,1), |vllrzrv) < e, llvillz2ryry < 2}y with e, e,
suitable constants.

b) it is weakly—sequentially continuous from K to K for the (W (0,T);
W'(0,T)) topology.
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Taking v = ¢.(u:) as test function in (5) (see [12]), by a result
of [1] one has

ue(x,t)
(Uet, e (ue))vrv = 0/0t </01 </0 ¢g(7—)d7—) dm) .

If we integrate (5) on (0,7") we will have

[Fon([ (" si0s)as [ f i

/ / b(us)be (ue) dxdt—i—/ (t)pe(us(1,t))dt =0, (12)

by which

//' (7)drda + e () 320,71y =
_/0 /OuOE( )¢E(T)d7dx+/0 /0 b(ue) de (ue) o didz —
~ [ a0-tuer, 0 (13)

Since fol fous(m’T) ¢e(T)drdr > 0, and ||¢e||L>°(0, |uge|) is bounded
independently of ¢, the Young inequality gives us

1
- 207y < [ eltoe(o) e (a)ds +

1/2/ /bue ) dzdt + ( 1/2/ / |pe (ue) |2 ddt +

+QT¢:(1) , (14)
(Q := max{q(t), in [0,T]})
thus
(1/2)ll e (W) 1720,y < be(1) + (1/2)T + QTh(1)  (15)
that is

e (o)l 02y < C (16)

with C independent of . (Later on, we shall denote with C various
constants independent of €).
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Moreover, from (16) we get

lpua)lZ20.v) + € luellzzoray < C (17)
( ) ( )

and from (5) one has

wetll 20,y < C - (18)

By (17) it follows that ¢(u.) is bounded in L?(0,T; V), therefore it is

bounded in L2(0, T; W*2(0,1)), Vs € (0,1). Since o~ is Holder con-

tinuous of order o € (0,1) and ¢~ (0) = 0, then u, € W*2/%(0,1)

for a.e. t € (0,T). By classical results (see [10], [2]), one has that u, is

bounded in L?/® (0, T; W52/%(0,1)) and because of the compactness

theorem (see [10]), the injection J of {v € L*/®(0,T; We2/%(0,1)),

vy € L2/*(0,T; L?/*(0,1))} in L?/®(0,T; L?/*(0,1)) is compact.
Therefore

ue — u , in L*(Qr) and a.e. in Qp with 0 <u <1

a.e. in Qr (19)

Ueg = ug , in L?(0,T; V) (20)

plu) = p(u) , in LX0,T;V) (21)

fe(uc) = (u) . in L*(0,T;V) (22)

¢ (us)e — @(u)y , in L*(Qr) (23)

PROPOSITION 3.2. If the assumptions (H,) — (Hg) hold and ug. €
L*>°(0,1), 0 < upe < 1 a.e. in (0,1), then there exists a unique
solution ues to (5)—(9).

Proof. If u. and w, solve (5)—(9), then

1
(e = w0y + (= we ) + [ () = pw)a)vada -

a0 [ b bz =0 (21)
For 1 > 0 define
=1, z>n9
sgn,(#) = 5 . el < (25)

= -1, z<-—7m.
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Choosing v = sgn, (¢e(us) — ¢e(we)) in (24), this yields

1
/0 (¢5(U5) - Qbe(wa))m'umdm >0 (26)

[ 0t~ b s, (92(0) — )| <

<

¢
- |ze = 8¢l |(2e — 8¢)aldz <
N J{|ze—sc|<n}

8 / (2 — 5.)a|dz (27)
{2 sel<n}

IN

(¢ is the Lipschitz constant of b(¢. ') and z: = ¢.(us), s: = ¢p-(w:)).
By a result of [11],

lim Ze — S¢)gldx =0,
n=0% J{|ze 5. <n} ze = se)el

hence, integrating (24) on (0,¢) and passing to the limit as n — 07,
because of (26) and (27), we obtain

1
/0 (ue (2, ) — we(x, 2))sgn(de (ue (2, 1)) = ¢e(we(x, 1)) dz <0, (28)
since sgn(z) — sgn(z) in LP(0,1), V1 < p < oo when  — 07 (see

[11]). Since ¢-(-) is an increasing function, sgn(¢(u:) — ¢ (w:)) =
sgn(us, — w.). Thus (28) gives us

1
/0 e (2, 1) — wo(z, )|dz < 0 | (29)

this conclude the prove. ]

We write the nonvariational formulation of (5)—(9) as follows

Cs(lua)t = Vega — b(ce ('Ua))m s in QT (30)
0 (0,6) =0 ,  Vte(0,T) (31)
Vex(1,1) — b(ce(ve(1,1)) = —q(t) Vte (0,7) (32)
ve(z,0) = voe(z) Ve (0,1) (33)
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where ¢.(u:) = v and u. = ¢ 1 (v:) = co(ve).
Define the closed and convex set

A={weC(0,1]):0<w(z) <M , Vzel01]}
and the Poincaré map defined by
F(voe(+)) = ve (-, w)

where v.(z,t) is the unique solution of (30)—(33).
Then, the map F' verifies

i) F(A) C A;
ii) F|4 is continuous;
iii) F is relatively compact in C([0, 1]).

Condition i) it follows by Proposition 3.1. To show ii) we need
of the following result.

PROPOSITION 3.3. Assume the assumptions of Proposition 3.2 and
let v, voe € A with vy, — v uniformly on [0,1] asn — oco. Then, if
v, ve are the solutions of (30)—(33) with initial data v{., respectively,
voe, we get that vl (z,t) — ve(z,t) uniformly on [0,1] as n — oo,
Vtel0,T].

Proof. By
1
(e(02)e = eaw)i€) + [ (0 = v)aCade -
1
- /0 (b(ee(vz)) = blez(v:)))Cad = 0 (34)
with ¢ = sgn, (v —v.), where sgn, (-) has been given in (25), one has
1 1

[ e @) = el < [ of(@) = v0c(o)lda . (35)
Therefore, c.(v"(.,t)) strongly converges to c.(v.(.,t)) in L'(0,1)

and a.e. in (0,1) when n — oo. Since 0 < v(.,t) < M, by the
Lebesgue theorem, we conclude that v?(.,t) — v.(.,t) in LP(0,1),
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V1 < p < oo. Moreover, v7(.,t),ve(.,t) € C([0,1]) which implies the
uniform convergence.
Finally, we prove that F is relatively compact in C([0, 1]).
Using regularization arguments i.e. convolutions with mollifiers
functions, it is possible to approximate vg. and b as follows

vg. € C*([0,1]) , 0<wvi(z) <1, Vzel0,1], v§(0)=0

v3e — voe uniformly on [0, 1]

(05 (2))'| < M,V €0,1]

bs € C1([0,1]) , bs —> b uniformly on the compact sets

(95 (1)) = bs(ee(vge (1)) = —q(0) -

(36)

Under this assumptions, by classical results (see [8]), there exists a
unique solution v¥ € C*+®1+2/2(Qr), « € (0,1) for the problem

Ce(V2)t = vy — bs(ce (VD)) in Qr (37)
v2(0,t) =0 Vte (0,T) (38)
ver(1,1) = bs(v2(1,8)) = —q(t) . Vte(0,T) (39)
v (z,0) = voe(x) in [0, 1] (40)
we can prove this result. O

LEMMA 3.4. There exists a constant My > 0 such that
o, ) <My, inQr (1)

Proof. Define V(z,1) = v, — bs(ce(v?)), thus V(z,1) satisfies V,, =
(US:L‘ — by (Cg ('U:)))g; and

Vi = 02y — b (ce(v2)) (ce (07))1 - (42)
Deriving (37) with respect to z, one has
el (V) 02,02 + L (VD) vl = Via (43)
by (42) we get
et (v2) Vi + bl (ce (v2)) L (v2) (ce (v2))1 + € (v2) 02,05y = Via
which implies

cL(W2)Ve = Vi — €L (v2) b5 (ce (v2)) (ce (v2))e — L (v w2,
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Vi = (Vi /¢4 (v2)) = Va (bl (cx (v2)) + (c (v2)02,) 2 (02)) -

By our assumptions, V € C*Y(Qr) N C(Qr) (see [4]), since V (z,t)
is also a weak solution, by Proposition 3.1 we have that V(0,¢) > 0,
V(1,t) <0 and V(z,0) = v{.(z) — q(0)bs(ce(vos(z)) is bounded on
(0,1) by assumption (36). V(z,t) is uniformly bounded with respect
to s and e.

Hence,

max{|V (z,t)| in Qr} < L

which implies
|U:m(.’13‘,t)| <M .

Because of (41) and the boundedness of by, we can apply a result
of [13] (see Proposition 3.1) where it was showed that c.(vi(z,t)) is
Lipschitz continuous in z uniformly w.r.t. s, and Holder continuous
in ¢ uniformly w.r.t. s. Therefore, for a subsequence, we have that
ce(v?) = ce () in CP(Qr), B € (0,1), as s — oc. Moreover, v5 — o,
pointwise and in LP(Q7), 1 < p < oo by the Lebesgue theorem. Tt
is very easy to prove that 0. solves (37)-(40).

By the uniqueness of the solution to (37)-(40), it follows that
ve = 0. Since (41) is stable with respect to the weak convergence in
L?(Qr), one has

|vea (2, t)| < My . (44)

The estimate (44) implies that v.(.,w) is Lipschitz continuous, hence
the Poincaré map F' is relatively compact in C([0, 1]). To this point,
we can conclude with the following O

THEOREM 3.5. If H,) — (Hy) hold, then there exists at least one
w—periodic solution for (5).

Proof. We have proved that F' is continuous and relatively compact
hence, by the Schauder fixed point theorem, there exists a fixed point
v for the Poincaré map F'. This fixed point is an w—periodic solution
to the approximated problem (5). O
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4. Existence and uniqueness of the periodic solution

Because of (19)-(23) and by the Lebesgue theorem, which implies
that b(u.) — b(u) a.e. and in L?(Qr), it follows that u is an w—
periodic solution to (8) such that u € L>(Q7) N C([0,T]; L3(R)).

To show the uniqueness of the periodic solution to (1)-(4), we
use the condition

(™" (1) = bl (5))] < elt = s]'/? (7)
then,

THEOREM 4.1. Let u, 4 be two periodic solutions for (1)—(4) and (7)
holds, then

8/815/1 (u(z,t) — a(z, )T dz <0 in the sense of D'(0,T) .
0
(45)

Proof. As it is usual for nonlinear first order hyperbolic problem (see
[7]), we introduce two arbitrary instants ¢t and 7 in (0,7) x (0,7
and consider v and 4 defined on (0,1) x (0,7) x (0,T) as follows
u(z,t, 7) = u(x,t), a(z,t,7) = a(z, 7).

Let £ € D(0,T) such that £ > 0 and for any 6 > 0 let ps be a
regularizing sequence, such that p; € D(R), p; > 0, R ps(z)dz =
1, ps, pj5 uniformly bounded w.r.t. ¢ and supp ps, supp pjy C [—9, d].

For ¢ sufficiently small, define

&(t,7) = E((E+7)/2)ps((t —7)/2) € D((0,T) x (0,T)) .

Let 7 := p(u) — o(4) and H.(r) := (r*)?/(r? +¢), € > 0, it is easy
verify that for all € R

lim rH.(r) =0, 0<rH.(r)<1/2, H. >0and 0 < H.(r) <1.

e—0+t
(46)
Since u, @ are solutions of (1) we get

1

=i hon + [ (o)~ p@)sads — [ (o) — bla)ende +

+ q@)v(l,t,7) —q(m)v(l,t,7) =0, (47)
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for any v(-,t,7) € V a.e. (t,7) € (0,T) x (0,7T).
Multiplying (47) by & > 0 and choosing v = H.(r), after an
integration on (0,7") x (0,7T), one has

| ' X e — s Ho () — p()) )y sdidr +
+ / / / (¢ )ol?H.(p(w) — (1) ésdadtdr -
- / / / (u) — (@) (ip(u) — (2))s HL(p(u) — o (d)) -
Lsdxdtdr +
N / / (u(1, 1)) — pla(1,7))) -
Lodtdr =0 . (48)

Now, estimate

T T
/0 /0 /ol(b(“) — b(2)) (p(u) — () H(p(u) — (@) ésdzdtdr <
T T 1
cls — &|"?%|(s — 3 (s — 4 cdtdr
< [7 [ els =072 = ulits — 8)ésdorar <

T T 1
< (1/2) / / / (s — 8)o2H! (s — §)¢sdudtdr +
0 0 0
T T 1
+c’/ / / |s — 8|H.(s — 8)¢sdzdtdr
0 0 0

by (7) with s = p(u), § = ¢(4) and the Young inequality.
Thus, (48) yields

[ v How) — @) e +
+(1/2) /0 /0 /0 (5 — 8)PH (5 — 8)&sdudtdr +
T T
[ a0 — ) He(olu(1,0) — i1, 7)) st <
0 0
T T 1
gc'/o /0 /0 |s — 8| H! (s — 3)ésddtdr . (49)
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Setting for any € > 0
X

oe1(z,y) / H( ))ds , oco(z,y) = / H_ (o(x)—p(s))ds
y

lim o(u,4) = (u—a)" ae. in (0,1)x (0,7)x (0,T), i=1,2.

e—0t

By a result of [1],

T T rl
|t Hetptw) = @)oot == [ [ 0,0 0t dd
0 0 0
(50)
and

T T 1
/ (s Ho (0(w) — (@) oy Eadt = / / 020 (u, )0 07¢5 dodr .
0 0 0 (51)
Substituting (50), (51) in (49) we have

T Tl
_/0 /0 /0(ng(u,ﬂ)8/8755+Ug1(U,ﬂ)3/3t§5)d$dth+
T [T
+/0 /0 (q(t) = (7)) He(p(u(1, 1)) — @(a(1,7)))&s dtdr <
T T 1
SC/O /0 /0 |s — 8|H.(s — 8)&s dxdtdT . (52)

Going to the limit as § — 07 in (52) one has

[ / 0))/2 = ((0)0(0)) /202 +
+((€'(1)p(0))/2 + (£(1)p'(0)) /2) 01 )dwdt <
<CT/ /|S—S|H (s —38)&(t)p(0)dzdt . (53)

Since H.(r) is an C'-approximation of the Heaviside function, by
the Lebesgue theorem and (46) we conclude that

/ / () (u(z, t) — a(z,t)) Tdedt <0 (54)
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because He (p(u(1, 1)) —¢(i(1,1))) — sgn™ (o(u)—p(d)) = sgn™ (u—
@) as € goes to zero and

T 1
hm/0 /0 |s — 8| H.(s — $)&(t)p(0)dzdt =0 .

e—0t

Therefore,

T 1
/0 /0 () (uw, t) — (z, ) dodt > 0 . (55)

For any t € [0,T], u(.,t) € L'(0,1) consequently, the bounded func-
tion t — [ (u(.,t) —(.,t)) T dz define a distribution. Thus, there ex-
ists 9/t [y (u(x,t) —a(z,t))*dz and 8/t [y (u(x,t) —a(z,t))Tdr <
0.

Finally, we obtain the uniqueness of the periodic solution, be-
cause (45) implies that (u(z,.) — 4(z,.))" as function of ¢ is nonin-
creasing.

Moreover t — (u(x,t) —a(x,t))" is periodical, so that it must be
constant i.e. u < 4. Changing u with @, the same argument proves
that u > 4, i.e. u = 4. Concluding, our main result is U

THEOREM 4.2. If (H,) — (Hy) and (7) hold, there exists a unique
w—periodic solution for (1)—(4).
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