Rend. Istit. Mat. Univ. Trieste
Vol. XXXTI, 65-102 (2000)

Positive Solutions of Quasilinear

Elliptic Systems with the Natural
Growth in the Gradient

DARKO ZUBRINIG ()

SUMMARY. - We study the problem of existence and nonezistence of
positive, spherically symmetric solutions of a quasilinear elliptic
system involving p-Laplacians, with the natural growth in the gra-
dient on the right-hand side. The existence proof is constructive,
with solutions possessing explicit integral representation. We also
obtain various qualitative results. The elliptic system is studied
by relating it to the corresponding system of singular ODE’s of
the first order.

1. Introduction

In the course of the preceding decade there has been a consider-
able progress in the study of existence and nonexistence of positive
solutions of nonlinear elliptic systems involving two nonlinear ellip-
tic equations, see a survey article by De Figueiredo [4], Clement,
Manésevich, Mitidieri [3], and the references therein. In [3] a class
of problems is considered involving systems with p-Laplace opera-
tors, also in [4, Lecture 4]. These articles deal with problems where
the right-hand side of the system does not depend on the gradient
of unknown functions. Here we study quasilinear elliptic systems
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which have the natural growth in the gradient on the right-hand
side. Our approach is based on the reduction of such problem to
a system of two singular ODE’s of the first order, using a suitable
integral representation of solutions. This method was introduced in
Korkut, Pagi¢, Zubrini¢ [11] in the scalar case. Quasilinear elliptic
problems for scalar equations and systems with gradient terms on
right-hand sides are studied also in Serrin, Zou [14], Jie Jiang [8],
Furusho, Takasi, Ogata [5], and Caristi, Mitidieri [2].

The paper is organized as follows: 1. Introduction; 2. A system
of two singular ODE’s of the first order; 3. Nonexistence of strong
solutions; 4. Qualitative properties of solutions; 5. Approximation of
solutions; 6. Weak solutions of quasilinear elliptic systems, singular-
ities; 7. Appendix.

We study the problem of existence, nonexistence, and qualitative
properties of solutions of the following quasilinear elliptic system:

—Apu = golz|™ + foVol? in B\ {0},

—Agv = gilz|™ + fi|VulP in B\ {0},
u >0, v > 0 on B, spherically symmetric, decreasing,
u=v =0 on JB.

(1)

In Section 7 we consider a class of much more general problems, see
(87). Here 1 < p < 00, 1 < g < 00, B = Bp(0) is a ball of radius R in
RY, N>1,m; €R, f; >0, 3 >0,i=0,1, and A, is p-Laplacian,
Apu = d1v(|Vu|f” 2Vu). The Lebesgue measure (volume) of B will
be denoted by |B|, and the volume of the unit ball in RY by Cly.
The conjugate exponent of p is defined by p’ = %1. We identify
spherically symmetric functions u(z) and v(z) with u(r) and v(r)
respectively, where r = |z|.

Here we study strong solutions of (1), which we define as pairs
of functions u,v € C?(B \ {0}) satisfying (1) pointwise. Keeping
fo and fi fixed, our goal is to show that problem (1) possesses at
least one strong solution provided gy and g; are small enough (see
Theorem 1.1), and has no strong solutions if parameters gy or g;
are large enough (see Theorem 1.4). Also, if we keep fl, go and g1
fixed, then for f; small enough there exists a strong solution, while
for fo large enough there is no solution. Analogously for fi, see
Remarks 1.3 and 1.5. Our existence proof are constructive in the
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sense that there exists a sequence (uy,,v,) of monotone iterations
converging to a solution (u,v) pointwise, sometimes even in C2(B) x
C?(B), see Theorem 5.1.

In Section 6 we shall deal with problem of finding weak solu-
tions of (1), i.e./ spherically symmetric, decreasing functions u €
Wol’p(B) NL>®(B),v € Wol’q(B) N L°>°(B), satisfying both equations
in (1) in the weak sense. We show that under certain conditions some
strong solutions of (1) are also weak solutions, see Theorem 6.2.

It is easy to see that constants fo and fl can be eliminated from
(1) by scaling u — Au, v — pv, with a suitable choice of A > 0 and
w>0:

—Apu = golz|™ 4+ |Vo|? in B\ {0},

—Agv = gi|z|™ + |VulP  in B\ {0},
u > 0, v > 0 on B, spherically symmetric, decreasing,
u=v=0on JdB.

(2)

Indeed, assume that (u,v) is a solution of (1). Defining @ = Au,
v = uv we obtain that

(3)

~ 71 f g—

{ — Ay = N o™ + 2oy,
— ag— =1 e

—AF = i1 gy ™+ Bl vap.

If we take
~ o~ g—1 ~ o~ p—1
A:(foff)erqfl’ N:(flfé])qﬂjfl

then the pair of functions (@, v) satisfies elliptic system of the form (2)
with AP~1gg and p971§; instead of §y and §; respectively. Therefore
it suffices to study elliptic systems of the form (2). We can assume
without loss of generality that mg > m;. The main existence result
of this paper is the following (its proof is given in Section 2).

THEOREM 1.1. (existence result) Assume that 1 < p < o0, 1 < ¢ <
m)

/ 4
my > max{—gq, —M}. (4)

{ mg > mq > max{—1— g,—N},
e
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Then there exist two explicit positive constants a and I;, see Appendix
(A), such that if

a- b(s’il S (55/ ) (5)

where & = p'q’ > 1, then problem (2) possesses at least one strong
solution. It can be obtained constructively, using method of monotone
iterations.

Moreover, we shall prove existence of a strong solution (u,v) of
elliptic system (2) which has a specific integral representation. It is
described in Lemma 2.1 below, where a system of singular ODE’s
of the first order plays a crucial role, see (12). Strong solutions of
system (2) obtained in this way will be called (w, p)-solutions. Precise
definition is given after Lemma 2.1.

REMARK 1.2. Note that our solvability condition (5) in Theorem 1.1
can be written in the following form:

do < C — D, (6)

where C and D are positive constants depending on p, ¢, N, | B,
mo, m1. This shows the geometrical picture of the solvability region
in (go, g1)-plane obtained in Theorem 1.1. As we see, our solvability
region is obviously bounded. Moreover, from our nonexistence result
below, see Theorem 1.4, we shall see that also the set of all (go, g1)
for which (2) possesses a strong solution is bounded in (0, 00)2.

Solvability condition (5) is analogous to solvability condition for
the following scalar quasilinear elliptic problem with the natural
growth in the gradient:

—Apv = Go|z|™ + fo|VuP in B\ {0},
v=0on 0B, (7)
v(z) spherically symmetric and decreasing,

which is considered in [11, Theorem 8]. If we let fo = 1, then the
main solvability result in [11] states that under suitable conditions
the set of all gy > 0 for which there exists a strong solution of
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(7) is bounded, and contains an interval of the form (0, g.) with g.
expressed explicitly in terms of N, p, mg and |B|. Moreover, we
were able to prove existence of the unique weak solution of (7) for
all such gg. We were not able to obtain any uniqueness result for
elliptic system (2), either for weak or for strong solutions.

REMARK 1.3. Theorem 1.1 can be reformulated to include the gen-
eral elliptic system (1) instead of (2). It suffices to change go and g1
in the definition of a in (91) by

~ o~ (p=1)(g=1) ~ o~ (g=D(p=1)

(fofd) 77T go, (fifg) T & (8)
respectively. Our condition (46) for solvability of (1) then becomes
(d0+Cal) - (fof{)” ' < D, (9)
with the same C and D as in (6), and 6 = p'q’.

Now we formulate a result about nonexistence of strong solutions
of elliptic system (2). It will be convenient to introduce an auxilliary
function:

q+1
(P +1)q"

Note that here we do not assume mg > m; as in Theorem 1.1.

S(p.q) = (10)

THEOREM 1.4. (nonezistence of strong solutions) Let 1 < p < oo,
1<g<oc, mg>—N,m; >—N, and
N '+ 1)¢
O B e (0 (11)
p/ p/q/ 1
Let g7, g;", 1= 0,1 be four explicit positive constants defined in the
Appendiz (B). Assume that go or g1 are large enough, so that any of
the following four conditions is satisfied:
(a) S(p,q) <1— 5, p <N, and (go > g5 or 51 > 47),
(b) S(p,Q) <1- %; p> N; and (gﬂ > gg or gl > gT)7
(C) S(p7Q)> _N;pSN; and (gﬂzg(—]i— 07"@12@?)7
(d) S(p,Q) >1- %; b > N7 and (.60 > g(—)l— 07‘.&1 > gii—)

Then elliptic system (2) has no strong solutions.
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The proof of this result is given in Section 3.

REMARK 1.5. Let us fix p, q, N, |B| in elliptic system (2). Theo-
rem 1.4 shows that the set of all pairs (go, §1) of positive real numbers
for which system (2) possesses a strong solution is bounded, contained
in the rectangle (0, gg] % (0,47]. Analogous nonezistence result can
be stated for more general system (1), using the change indicated in

Remark 1.3.

2. A system of two singular ODE’s of the first order

To our quasilinear system (2) we assign a system of two singular
ODE’s of the first order:

dw _ t)%

o = 9070t 1+f0'0(t71, t € (0,T]

d _ w(t) 12
d_f =gmt" '+ fi igz . t€(0,17, (12)
w(0) = p(0) =0,

with the coefficients defined in Lemma 2.1. We study solvability of
(12) using the following system:

w(t) = Kop(t), p(t) = Kiw(t), (13)
where we define
t 0
Ko =g+ 5 [ V0 =01 )
0 K

with suitable domains. We can obtain solutions of (12) via the fixed
points of the composition operator KoKy : D C C([0,T]) — C([0,T1])
with its domain D defined by (34) below. More precisely, any solu-
tion of the fixed point equation

weD, KKiw=uw, (15)

gives rise to p := Kjw, and the pair (w, p) is a solution of (2).

The following lemma shows how solutions of quasilinear system
(2) can be generated using solutions of the system of singular ODE’s
(12) and a suitable integral reprezentation.
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LEMMA 2.1. Let 1 < p < 00, 1 < g < oo, N, |B|, mg > —N,
my > —N be given. Let us denote py = p, p1 = q, T = |B|, and
introduce the following constants:

vi=1+ %, i =P§+1a & = P§+1(1 - %)’ (16)
Pit+1—Pi q:
fi= NPHITPIC TN g = gi . (17)

for i = 0,1, where we define po = py. Assume that (w,p) is a
solution of (12) obtained via (15), such that 0 < w(t) < Mt for
some M > 0. Let us define

u(@) = Vo(Cnlz|™),  v(z) = Vi(Cnlz|™), (18)

where the functions Vi : (0,T] — R are given by
T w(s)l/(p_l) T p(s)l/(q_l)
Vol(t) = ——d Vi(t) = ——d 19
0= [ Lo Vi = [ PO (19

Then the pair (u,v) is a strong solution of (2). Furthermore, we
have

-1

2
=

W(r) = —mr_pjw(CNTN)l/(P—l)’ (20)
C]]\)]_l N
' N = Ny1/(a-1)
IU(T) = - L(l_%)r qilp(CN'r) : (21)
C]‘{,_l
and
W ()] < Cr 5T (22)

mq+1

where C = N - Cji,v(p_l)Ml/(p*U. If mqy > —p then also

mq+1

W' (r)] < Crera T, (23)

mq+1
where ClzN-Cjifv(qfl) M'/@=Y) “with M, defined in Proposition 4.1(a)
below (see Section 4).
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Proof. (sketch; see Appendix (D); also compare with [11, Lemma
1]). Using (18) and (19) we obtain that

cow

o) = SN vup 24)
o

p(Cnlz|V) = #|$|N71|V0|q71a (25)

which proves (20) and (21). We also have

—Apu = C%NNpCfZ—L:, —Agqv = C?V/NN‘]

dp

dt’ (26)

where we define t = Cy|z|", t € (0,T], T = |B|. Now from (12) and
(24) we obtain

_ t)%
—Apu = CRNNP[goot™ 1+f0p(tT)0]
p(Cn|z|N)%

/N Nyyo—1

— NP 70 PN T 1 (2
CY " NPlgovo(Cnlz™) ™ + fo (CN|$|N)EO] (27)
= golz|™ + V|4,

and similarly —Agv = g1|z|™ + |Vu|P. Estimate (22) follows easily
from w(t) < Mt" and (20). Estimate (23) follows analogously from
(62) below, see Proposition 4.1(a). O

DEFINITION 2.2. Following the terminology introduced in [11], we
say that (u,v) is an (w, p)-solution of (1) if it is a strong solution
of (1) and possesses integral representation (18), (19), such that the
condition 0 < w(t) < Mt is satisfied.

Below we show that under some additional conditions any (w, p)-
solution (u,v) of elliptic system (2) is also a weak solution, see The-
orem 6.2.

It is interesting that a partial converse of Lemma 2.1 also holds,
that is, if (u,v) is a strong solution of (2) then it is representable in
the form (18) via (19), with (w, p) satisfying (12). This is described
in the following lemma.
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LEMMA 2.3. Let mg > —N and my > —N. Let (u,v) be any strong
solution of system (2), and let us define the functions V; : (0,T] — R,
T =|B|,i=12, by

Vo(t) = u((tCyH'™), Vi(t) = v((tCyH)'M),

Then the functions w(t) and p(t) defined on (0,T] by

1y |dve [P _1yldn |7
t) = tp(l 1) - 1) = t‘l(l )| 271 28
w(t) = =R [T gy =R | S )
satisfy the following system of singular ODE’s:
dw - p(t)%
— = o=t —— te(0,T
gt 9070 + fo (ti)oﬁl’ € (0,77 o)
P -1 w
£ = gym t T
=9 +h—g— te(0T]
w,p € DT,

where the coefficients f;, gi, Vi, €i, 0; are the same as in Lemma 2.1,
and

Dt ={p e C([0,T)]) : p(t) >0, Vt €[0,T], ¢(t) nondecreasin‘(i}. |
30

Also, relations (19) hold for any t € (0,T].

The proof of this fact is analogous to the proof of [11, Lemma 2],
and therefore we omit it. Note that we do not claim that w(t) can be
dominated by Mt for some M, but only w € D*. In other words,
we do not claim that any strong solution (u,v) of (2) is necessarily
(w, p)-solution.

In order to prove Theorem 1.1, in the remaining part of this
section we study some properties of operator KyKj.

LEMMA 2.4. Assume that

do>1, 61>0, v=>m7m>0, (31)
Y1(0p —1) —eg+12>0, 71 —e1+1>0, (32)
(50(’)’1(51—614-1)—604-1 2’71. (33)
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Let the operators Ky and Ky be defined by (14). Then the com-
position operator KoK : D C C([0,T]) — C([0,T]) is well defined
on

D ={¢eC(0,T]): 0 < p(t) < Mt™ }, (34)

where M > 0 is fized. Moreover, we have that

0 < KoKi1p(t) < a+bM%,  Vtelo,T], (35)
where
T’yl ((5071)7604»1
a = TY0~—7 4 9%0—1 do ’ 36
90 Jogi I (36)
2(5071 50T50(71517€1+1)780+1771
b _ f(]fl (37)

(’71(51 — &1+ 1)50 [(50(’71(51 — &1+ 1) — &y + 1]’
and the operator KoKy is compact.

Proof. We have
t Kip(s)%
KoKip(t) = got™ + fo/ %(0) ds.
0

Using the definition of K1, and inequality (z-+y)% < 2001 (g% 4%),
for z, y > 0, dp > 1, we have

s s * (o)™ %
K1<,0(s)5° < 9% -1 91037150 + fi° </ da) )
0

oft

Now from 0 < ¢(0) < Mo, and conditions on the coefficients
in the lemma, we obtain after a short computation that

tY180—y0+1

KoKio(t) < got™ + 201 f, [930 (38)

B E—
Y100 — €0 + 1
ffot5o(7151—61+1)—60+1

+ 5051 .
(’)’1(51 — €1 + 1)50 [(50(’)’151 — €1 + 1) — &0 + 1]

which shows that KoK; is well defined on D. Since g > v, and
0 < ¢/T < 1 we have that (£)7 < (%), that is

t70 S T’YO*% t71’
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and similarly

do— 1 do—1)— 1
$11%0—¢€0t < T’Yl( 0o—1)—eo+ t%,
t(50(71(51 781+1)750+1 < Tlso(’yl(sl*E1+1)780+1*’71t’71‘

This together with (38) implies estimate (35). It shows that the
family of functions {KoKi¢p, ¢ € D} is uniformly bounded. To
show that the operator KoK compact, it suffices to apply Ascoli’s
theorem. It remains to check uniform equicontinuity. Similarly as
above we obtain that for all a,b € [0,T], ¢ € D, we have

|KoK1¢p(a) — KoK1p(b)] < gola™ — b7°| + 2%~ fo| F(a) — F(b)],
(39)

where

gV1d0—eo+1 ffoMﬁo(h s0o(ndi—e1+1)—e1+1

F(s) = + : :
(8) ’71(50 — €0 + 1 (’)’1(51 — &1+ 1)50 (50(’)’1(51 — &1+ 1) — &1+ 1

O

LEMMA 2.5. If in addition to the hypotheses of the preceding lemma
we assume that

(61 —1) —e1 +1> (g — 1), (40)

where we define 7 = max{0,x}, then the operator KoK, is Lips-
chitzian on D:

| KoK1p — KoKilloo < k-l —Ylloos  Ve,4 € D. (41)

Here

fof1 8001 M
’}/1((51 — 1) —e1+1

T S1—e1+1 \ do—1
X/ <g1371 + f1M51 5(:11—E1+1> 8W1(5171)751+1750d8.
0 Y101 — €1

(42)
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Proof. We have

— Ky1p(s)%| d

S0

t do
KoKro(t) — KoKyp(t)] < fo /0 LSUO (43)

Now recall the following elementary inequality:
|x5 — y5| <4- max{m‘s*l,y‘s*l}m —yl, Vz,y>0, 6>1, (44)

which is an immediate consequence of the mean value theorem ap-
plied to F(z) = x%, 2 > 0. Using this inequality twice, together with
0<p(s) <Mt 0<1(s) < Mt", we obtain

[ K10(5)” — Ki4p(s)™|

do—1
<fi (g8 + M —— R / [l $lo)] do
- Y101 —er +1

gndi—e1+l )50 1

<6 SN MO
<dof1 <g fi P T——

871 ((51 71)751 “+1

Lo MO
! ")/1((51—1)—614-1

H‘p - z/)”oo
The claim follows from (43). O

The following elementary lemma will be useful in obtaining ex-
plicit a priori bounds.

LEMMA 2.6. Let a and b be positive real numbers and § > 1. Then
the condition

IM >0, a+b-M° <M (45)
holds if and only if

o—1
5o
Under condition (46) property (45) is fulfilled with

ab5’1§

(46)
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Proof. (sketch) Let us consider the function f(z) = a + bz%, z > 0,
and take any point Ty(zg,yo) on its graph. Using the fact that y{ =
bémg_l we obtain that the tangent drawn from Tj passes through the
origin if and only if 2o = M. The necessary and sufficient condition
for existence of M > 0 having property (45) is obviously yj < 1, and
the claim follows. O

It is easy to see that if we have strict inequality in (46) then
the value of Mj is not the smallest possible among those satisfying
(45). The smallest possible Mj in (45) is the smaller of two positive
roots of a + bM° = M. Now we formulate our basic solvability
result for system (12) of singular ODE’s. We provide two proofs,
one nonconstructive, and one constructive, which will enable some
generalizations Section 7.

THEOREM 2.7. Let the conditions of Lemma 2.4 be satisfied.

(a) Assume that 6901 > 1 and let (46) be fulfilled. Then there
exists a solution (w,p) of the fized point equation (15) such that
0 < w(t) < Mt"™ with some M satisfying (45). In particular, our
system of singular ODE’s (12) is solvable.

(b) If 6101 < 1, then system of singular ODE’s (12) is solvable
for all positive gy and g1 .

Proof. (first, nonconstructive). (a) By the preceding lemma applied
to & = 690 there exists M > 0 such that a + bM?%% < M. Defining
domain D in (34) with such M we then have that K¢K;(D) C D.
Since KoK is compact, the claim follows using Schauder’s fixed
point theorem. (b) If §od; < 1, it is clear that a + bM%% < M for
M large enough. O

Proof. (second, constructive). We use the fact that the operator
KyK1: D — D is well defined and monotone in the sense that ¢ < 1)
in D implies that KoKy < KoKj1). Let us define a sequence (wy,)
in D inductively by

wyo :0, W, :K(]Klwnfl, n = 1,2,...

Using R(KoK;) C D and monotonicity of KoK it is easy to see that
wy, is well defined and nondecreasing in D. Since 0 < wy,(t) < Mt",
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there exists
=1 .
w(t) = Tim wn(?)
For the same reason, it is clear that w € L*([0,7]). Taking the
limit in w, = KoKjwy,_1 as n — oo in L*°([0,T]), and using Levi’s
theorem, we obtain that w = KgKjw. This also proves that w is
continuous, that is, w € D. O

We shall use the above monotone iterations w, in Section 5. It
is worth noting that if we fix fo and gg, then condition (46) for
solvability of the system of singular ODE’s (12), see Theorem 2.7,
can be written in the form

go < C — Dg%,

where C' and D are positive constants depending on -y;, J;, £ and
fi, and with go > 0, g1 > 0. This shows that the corresponding
solvability region in (go, g1)-plane is bounded.

We do not know whether in Theorem 2.7(a) we also have unique-
ness of solutions. It is not possible to apply comparison principle
in [11, Theorem 1] since the operator K¢K; is not generated by a
Carathéodory function, i.e. there is no any function k(t,n) : [0,T] X
R — R, measurable with respect to ¢ and continuous with respect
to n, such that KoKqip(t) = f(fk(s,go(s)) ds. However, if we impose
additional condition that £ < 1 in (41), see (42), then due to Ba-
nach’s fixed point theorem we have a unique solution in D defined
by (34) and M = M,.

REMARK 2.8. Condition k < 1 in the above theorem is fulfilled if
for example fq and f1 are fized and gy and g1 are sufficiently small.
This can easily be seen by taking into account that M has the form

(47).

Proof. (of Theorem 1.1) It suffices to exploit Theorem 2.7 and Lemma 2.1.
The corresponding conditions on N, p, ¢, m; and g; in Theorem 1.1
are obtained after easy algebraic manipulations from conditions on
Vi, 0i, & and T in Theorem 2.7 using (16) and (17). O
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The question of uniqueness of solutions for elliptic system (2)
seems to be difficult. Here is a partial result.

PROPOSITION 2.9. Assume that all conditions of Theorem 1.1 hold,
and let

1
my > —p+ (o= DN (1~ 1)~ 1) (48)
Let the coefficients gy and g1 be small enough, so that k < 1, see
(42), with M given by (47), and taking into account relations (16)
and (17). Then there exists a unique (w, p)-solution of (2).

Proof. Since the conditions of Lemma 2.5 hold with £ < 1, and with
M given by (47), then there exists a unique solution (w, p) of system
(12) such that w € D. The claim follows from Lemma 2.7. O

3. Nonexistence of strong solutions

The aim of this section is to prove Theorem 1.4. To this end we
first study the problem of nonexistence of solutions for the system of
singular ODE’s described by (29), with w, p € DT. Here we assume
that both equations in (29) hold a.e. in (0,7 (recall that w and p
are nondecreasing by the definition of D).

THEOREM 3.1. (nonezistence result for system of singular ODE’s)
Assume that 0g > 1, 61 > 1, §pd1 > 1, y9 > 0, v1 > 0,

’}/1(51—61+1>0, (50(’}’1(51—614—1)—614—12’}/1,

and let g7, g;r, 1=20,1, be four explicit positive constants defined in
Appendiz (C).

Assume that gy or g1 are large enough, so that any of the follow-
ing four conditions is satisfied:

(a) E <0, e1>1, and (g0 > g5 or g1 > 97),

(b) E<0, &1 <1, and (g0 > g5 or g1 > 97),

(c) E>0,e >1, and (90 > g5 or 91> g7 ),

(d) E>0,¢e1 <1, and (go > ga' or g1 > gf’)
Then the system of singular ODE’s (29) has no solutions.
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Let us describe briefly the idea of the proof, which has appeared
for the first time in Pagi¢ [13], see also [11] for improved version. We
proceed by contradiction, that is, assume that there exists a solution
(w, p) of (29). First we start with zero function wy = 0 € D, and
then we show that:

[(KoK1)"wol(t) Sw(t), n=1,2,...
One then proves that under conditions of Theorem 3.1 we have
(KoK1)"wo(T) — oo as n — oo, which is a contradiction, since
w(T) < .
The following two lemmas will be the main tool in the proof.
LEMMA 3.2. Let g > 1, 01 > 1, 79 > 0, 1 > 0, v109 — g + 1 > 0,

and assume that (w, p) is a solution of (29).
(a) If we define

gy B} 1
2(t) = qot?° + — 21 J1  y7mdo—eot ’
(t) = g0 7100 —eo + 1
then z(t) < w(t).
(b) Let zg € D be such that zo(t) < 2(t), with z(t) from (a). Let

us define a sequence of functions z,, inductively:

t S (51 50
zm+1(t)=foff°/s‘5° </ @) ds, m=0,1,2,...
0 0 o
(49)

Then for all t € [0,T],

w(t) > Y zm(t). (50)

m=0

Proof. (a) We use a well known fact that if w is nondecreasing on
[0, 7], then w(t) —w(0) > g‘fi—ﬁ ds. Therefore for w, p € D we have
that w(t) > fg L gs and p(t) > fg ‘;—g’ds. Using this and (29) we

obtain

t Jpw@” "
w(t) > got™ +f0/ s g1 +f10Tdo ds (51)
0
¢
> got" + fo/ s (g15™)%ds = 2(t).
0
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(b) Denoting s,(t) = 29(t) + z1(t) + - - - + 2, (), we must prove
that w(t) > s,(t) for all n. We proceed by induction. For n = 0
we have w(t) > 29(t) = so(t). Assume that w(t) > s,(t) for some n.
Then since (w, p) is a solution of system (29) in Dt x DT, §, > 1,
61 > 1, we have that

t do
w(t) > got"° +fo/ s~ (glsﬂy1 + fi— fO O’) ds
0
s sl do
> got™ + fo /tsgo (g157)% + fP° (ﬁ]w#dg> ds
0 ol
do
>t + foff / (fﬂs(jl a) s

do
O') ds

v AV
e +
> =
\h kh
M \
\
A
i
c% c%
N N
3 3
&
q
N——
&
Q.
Va)

Since we assume that zo(¢t) < z(¢), in what follows we shall take

f50 S0
either zo(t) = got? or zo(t) = Méfg;)“t“%*go“. This will enable
us to find appropriate lower bounds on gy and g respectively that

will guarantee nonexistence of solutions of singular system (29).

LEMMA 3.3. Assume that 69 > 1, 61 > 1, §p01 > 1, v > 0, v1 > 0,
and

(50(’)’151—61—1-1)—604-12’)/1, Y101 —e1 +1>0.

Let ag be a given positive constant and let us define a sequence of
functions zy, inductively by zo(t) = agt® and (49), with either by =
v, or bg=v9, —e1 + 1. Then

Zm(t) = amt®™, m=0,1,2,...
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where m
am = ad " HAf:_li, d = 6o01,
i=1
and
fof?°
A, = 52
m (bm51 — €1 + 1)50 (5bm + E)’ ( )
and
oM —1
by, = 0™b E.
0+ 5_1 (53)

We have by, > 1 and b, 61 —e1 + 1 > 0 for all m.

Proof. Using (49) and 2z, (t) = ant®, we obtain after a short com-
putation that

Zmi1(t) = Apald t0m+E, (54)

Therefore,
Am+1 = Amafn, bm+1 = (Sbm + E.

The claim follows easily by induction.

Note that two integrations that we have performed in proving
(54) are justified since b,, > <1, which follows by induction. For
m = (0, this is clear since by the assumption, either by = 7; or
by = ")/1(51 — &1 + 1. Now if b, > 1 then bm+1 = 0b, + £ =
(50((51’)’1 — &1+ 1) — &9+ 1 > Y1-

Inequality b,,, > 71 implies that also b,,61 —e+1 > v101—e1+1 >0
for all m. O

Proof. (Theorem 3.1) Let us assume, contrary to the claim, that
there exists a solution (w, p) of singular system (29). In what follows
we assume that either

(a0, bo) = (g0,70), (55)

O
f(]glo

b)) = (——————
(a()a U) (7150—60+1

;7100 — €0 + 1), (56)
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which yields the corresponding two values for initial iteration zo(t) =
agtt of the sequence z,, in Lemma 3.2 and Lemma 3.3.

(a) Let us assume that go > g;. Condition E < 0 in (53) implies
that b, < d™by. Using this together with ¢; > 1 in (52), we obtain
that 5 50

Am > f 0 f 1 > f 0 f 1

(bméf‘))ébm — §(do+1)m+1 bgo"'léfo :

Now from Lemma 3.3 we have

m
i—1 §M—1
zm(T) — amem _ agm (H Aﬁ;z) Ttsmbo-l- s—1 F
=1

3m m
) aM—1
5m< fof{" ) A

a
o i) s

v

— 62 | (6 —1)2 o0—1
+0™m —(m+1) —mé].
Therefore
5m
5-1
. (T) S0 agflfoffoT(éfl)b(ﬁ»E (57)
m - 650'1'15505550—-1_15 ’
0 1
where

—1

—(26—1)(8g+1 do -1
C:T_%(SW—M% Jofi
b(50+15(50
0 1

does not depend on m. Here we have also used the fact that

Sg+1

glatrtmam) B oy

which follows immediately from § > 1. Since we have assumed that
go > g3, we now take (ag, by) as defined by (55), with the correspond-
ing zo(t). This together with (57) implies that z,,(T) > C > 0 for
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all m. We conclude that

Z 2m (T) = oo, (58)

m=1

and using Lemma 3.2 we obtain that w(7T) = oo, which is a contra-
diction. The case g; > ¢} is treated in exactly the same way, with
(ap,bg) defined by (56).

(b) The case £ < 0 and ¢; < 1 is treated using a slight modi-
fication of the proof in (a). We still have b,, < 6™by. To estimate
b 01 —e1+1 in the denominator of A,, in (52), let us fix any constant
a > 1. Since ™ — oo as m — oc, there exists mg such that for
m > mg we have

bm51 —&1+ 1 < 5mbg51 + (—61 + 1) < a(5mb051).

As in (a) we obtain

fol?°
Am 2 5(60+1)m+1bgo+15150’

where b, = 045% by. We obtain estimate (57) with b, instead of by.

Now assume that go > g;5. We take (ao, bo) as in (55). Since here
we have strict inequality in go > gj, we can find a > 1 sufficiently
close to 1 such that z,,(T) > C for all m > myg. Therefore the series
(58) is again divergent, and we obtain the desired contradiction in
the same way as in (a).

In cases (c) and (d) we have E > 0. We start with the following
estimate:

m _
bmzémbo+55 11E§5m <bo+i).

0—1

Therefore we can proceed in the same way as in (a) and (b), using
bo + % instead of bg. O
4. Qualitative properties of solutions

The aim of this section is to study regularity of (w, p)-solutions of
quasilinear elliptic system (2), and to obtain a priori estimates at the
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origin and gradient estimates on the boundary. The proofs use anal-
ogous methods as in [11] for the scalar case, see Section 8 there. We
start our consideration with some qualitative properties of solutions
of the system of singular ODE’s (12) first.

PROPOSITION 4.1. Let the conditions of Theorem 2.7 be fulfilled. Let
(w, p) be a solution of (2) obtained in the same theorem. Then

0 <w(t) < Mt (59)
|wl(t)| < 90’)’0”071 + 250*1[{7150751 +
50 A 0091 B B
mt%(%& e1+1) 80]’ (60)

and w,p € C*((0,T).
(a) If in addition to the above hypotheses we assume that

")/1((51 — 1) —e1+1> 0, (61)
then also
0 < p(t) < Myt™, (62)

o 5y Tr101-D—er+1
where My = g1 + M YT e If

")/1((51 — 1) —e1+1> 0, (63)
then

¢ (t
tim 28 _ i 20
t—0 tN t—0 2711

=g (64)

(b) If in addition to the hypotheses of Theorem 2.7 we assume
that

Yoo —€0 + 1>, (01 —1)—e +1>0, (65)

then

_w(t) W)
2 e = 1 Spe 1 90 (66)
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Proof. Estimate (59) follows from w € D, while estimate (60) follows
easily from (39) by dividing by b —a and letting b — a = t. The fact
that w, p € C*°((0,T]) follows easily from w = Kyp and p = Kjw.
(a) To prove (62), note that 10, —e;+1 > 71 implies t7191—61+1 <
Tn=D=e1+lm and therefore
trdr—e1+l

)< Kwt) <gt"+ MV ——— < Myt
p(t) < Kiw(t) < g1 po sy L

If 7961 —e1+ 1> 7 then

w(t)o
tglfr% < MO (Gi——er+1 _ 0, ast—0.

Hence, (64) follows immediately from MilA,(f)_l =g+ t;fgf%, and

L’Hospital’s rule.
(b) We have that

t)%
téﬁiﬁ < Moogmdo—rtl=co (g a5 ¢ — 0.

/ 4
and the claim follows from %:‘;W(Ot),l =g+ tsg(floo,l , using L’Hospital’s

rule. O

Now we are ready to study qualitative properties of (w, p)-solutions
of quasilinear elliptic system (2). Recall that by (w, p)-solution we
mean a strong solution obtained via solving the fixed point equation
KoK jw = w, such that 0 < w(t) < Mt", as described in Lemma 2.1.

THEOREM 4.2. (behaviour of solutions at the origin) Assume that
conditions of Theorem 1.1 are fulfilled. Let (u,v) be an (w, p)-solution
of elliptic system (2) obtained in Theorem 1.1.

(a) Then u,v € C®(B \ {0}). Furthermore, if m; > —p then
u € C(B). If my > —p and my > —q, then v € C(B).

(b) If my > —p, then

TAG —< o )1/(“) (67)

r—0 r";ljll mi; + N
. o (r) _ +1 i 1/(g—1) (68)
r—0 rm1q:ql+2 q—1 m;+ N '
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(c) If m1 > —p and ¢'(m1 + 1) > myg, then

! ~ 1/(p—1)
lim L) _ —< 9 ) (69)
r—0 r po_l mog+ N
; ’LL”(’I“) B mo + 1 o 1/(p—1) 70
ro0 merk T T T\ e N ' (70)
r p—1 p 0

Proof. (a) To prove that u,v € C*(B \ {0}), it suffices to use
WEC(0oo((0,T)), (18) and (19).

If my > —p then using the definition of V;(¢) in Lemma 2.1 and
w(t) < Mt we obtain that Vi(¢) is well defined and continuous on
[0, T). Therefore u(z) = Vo(Cn|z|Y) is continous on B.

If m; > —p then p(t) < M1, and therefore m; > —q implies
that Vi(t) is continuous on [0,7], so that v(z) = Vi(Cn|z|") is
continous on B.

(b) Relation (67) follows immediately from the fact that

plt) _

o g It
Relation (68) is proved using (64) in the same way as in [11, Lemma 8(b)].
We reproduce the proof for the sake of completeness. Since /;(Tt) — g1
(F-1)
and

! 1
and mptv(f)_l — g1 as t — 0, denoting ¢ = —NCJ '

71 = 1+ ¢ we obtain after an easy computation that

V) N1 o) 1
crmlq__qu B Nog—1 [(CyrN)m
, 1
oL [ O™ 1T (O
TN =T (O T (Cyr T
nd N1 1/(g—1) duop Ly
- —Cy —1h T NGy —q_lgfl 9
1 _ _
- _q_lg}/(q e/ N =N +1) asr—0.

Now we use the definition of g; in Lemma 2.1 to obtain the desired
result.
(c) is proved in the same way as (b), using Proposition 4.1(b). O



88 D. ZUBRINIC

An immediate consequence of the above theorem is the following
regularity result.

THEOREM 4.3. (regularity of solutions) Let conditions of Theorem 1.1
be fulfilled, and assume that (u,v) is (w, p)-solution of quasilinear el-
liptic system (2).

(a) Assume that my > —p.

(al) If mqy < —1 then lim,_,ov'(r) = —oo. In particular, v ¢
Cl(B).
i\ /(1)
(a2) If my = —1 then lim,_qv'(r) = — (mlger) TV Asin

case (al), we have v ¢ C'(B).

(a3) If =1 < my < q—2 then lim, o v'(r) = 0 and lim, g v"(r) =
—o0. In particular, v ¢ C?*(B).

(a4) If my > q — 2 then lim,_,ov'(r) = 0 and

&\ V(1)
mi1+1 g9 _
lim v"(r) = { o (mHl-N) formi =q-2, (71)
r=0 0 formy > q—2.

In particular, v € C?(B).
(b) Assume that my > —p and ¢'(m1 + 1) > mg.

(b1) If mg < —1 then lim,,ou/(r) = —oo. In particular, u ¢
CY(B).
. 1/(p—-1)
(b2) If mg = —1 then lim,_,ou/(r) = — (mf—?—N) U As i

case (al), we have u ¢ C*(B).

(b3) If =1 < mg < p—2 then lim, g u'(r) = 0 and lim, ¢ u"(r) =
—o0. In particular, u ¢ C*(B).

(b4) If mg > p — 2 then lim, _ou'(r) = 0 and

+1 (g0 \"P _
lima(r) = { ~ P (moiN) formo =p =2, (72)
r—0 0 for mg >p—2.

In particular, u € C*(B).

(c) Let my > —p and ¢'(m; + 1) > m > 0. Then the solution
(u,v) is classical, i.e. u,v € C*(B), if and only if mg > p — 2 and
my > q— 2.
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Claim (c) is an immediate consequence of (a) and (b). O

With higher values of mg and m; we can obtain more and more
regular solutions.

Now we establish a priori estimates of (w, p)-solutions of (2) at
the origin. Compare with [11, Proposition 7].

PROPOSITION 4.4. Let conditions of Theorem 1.1 be satisfied. Then
we have

_ 1 mi+p mq—+ _
w0) <« NEZL TR, (my

with

NV
My = (ﬁ) | (74)
(r'q" —1)

where @ and b are defined in Theorem 1.1. If also my > —p, then

q—1 M AL mite 1)
v(0) §Nm1+q-CNN TR MM (75)
where
~ p/ '(m —m
M, g1 NMO |B|p( 14];]1) 1.

= +
CYWTINe=Y(m; +N) p'(mi+1)+N
(76)

Proof. We use u(0) < fOR |u'(r)| dr with estimate (22), and v(0) <
[T 10! ()] dr with estimate (23). O

REMARK 4.5. Estimates involving My in the above theorem can ob-
viously be improved so that instead of My we take the smaller of two
positive roots of equation a + bMP'C = M.

Now we obtain a lower bound on the gradient of strong solutions
of elliptic systems on the boundary of domain B.
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PROPOSITION 4.6. Let conditions of Theorem 1.1 be satisfied and let
(u,v) be any strong solution of system (2).
(a) If mg > —1, my > —p and ¢'(m1 + 1) > mg, then

~ Rmo+1 1/(p—1)
/ > g0 .
) = (20 ()
(b) If my > —1, then
~ Rm1+1 1/(‘1_1)
! > g1
)= (L) (79)

Proof. (a) Using Theorem 4.2(b) we have that u/(r) — 0 as r — 0.
The claim follows from in [11, Proposition 9] adapted to our sitation.
(b) is proved in the same way using Theorem 4.2(a). O

REMARK 4.7. Let us consider quasilinear elliptic system (1), but
without condition that u and v be decreasing. Let (u,v) be a strong
solution of (1). It can be shown that if p > 2 then u is necessarily
decreasing, see [11, Proposition 8(c)]. Analogously, if ¢ > 2 then v
is necessarily decreasing.

5. Approximation of solutions

The proof of Theorem 1.1 is in fact constructive, since we have used
monotone iterations (wy,) in the second proof of Theorem 2.7. Let us
define a sequence (uy,v,) of successive approximations of solution

(u,v) by

| B 1/(p—-1) | B 1/(g—-1)
un (1) :/ 7('0"(8) ——ds, vp(z) :/ 7p"(8) ds,

CN‘:L“N Sp’(l—N)

where p, = Kjw,, see (14). Then we have the following approxima-
tion result.

THEOREM 5.1. Let all conditions of Theorem 1.1 be satisfied. Let
(wn) be a sequence of monotone iterations obtained in the second
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proof of Theorem 2.7, converging to w, and let (u,v) be an (w,p)-
solution of (2) in Theorem 1.1, p, = Kywy_1. Let (up,vy,) be defined
by (79). Then up(z) < u(x), v, <v(z) on B\{0}, and the sequences
of functions un(z) and v,(x) are nondecreasing.

(al) If mq > —p then u, — u in C(B).

(a2) If mi > —p and ¢'(m1 + 1) > mg > —1, then up, — u in
C'(B).

(a83) If my > —p and ¢'(m1 + 1) > mg > p — 2, then u, — u in
C?*(B).

(b1) If my > —q and my > —p, then v, — v in C(B).

(b2) If mq > —q and my > —1, then v, — v in CY(B).

(b3) If mq > q — 2, then v, — v in C*(B).

Note that the sequence w, is nondecreasing, and w, — w uni-
formly on [0,7]. The same for p, and p. The proof of this theorem
rests on Theorem 4.3 and on the following lemma.

LEMMA 5.2. Functions w, and py, in the above theorem, n = 1,2, ...,
possess the same properties as w and p in Proposition 4.1(a) and (b).

Proof. 1t suffices to use w, = KoKiw, 1 = Kopn and p, = Kjwy, 1,
to obtain

! _ Yo—1 p”(t)(so / _ y1—1
wn(t) = g0yt + ==, pn(t) = gimt” T +

Wn (t)(s1
ter

Since wy (t) < Mt" and p,(t) < Myt we can proceed in the same
way as in the proof of Proposition 4.1(a) and (b). O

Proof. (Theorem 5.1) Let us denote t = Cyl|z|", r = |z|, T = |B.
Note that m; > —p implies mg > —p, so that u,u, € C(B). Also if
my > —q, then v,v, € C(B).

(al) Using the fact that w,(s) < w(s) < Ms™ and (79), we
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obtain
T 1/(p=1) _ 1/(p-1)
u—nle < [ () P70 4,
0 Spl(l_ﬁ)
1/(p-1) 1/(p-1)
) ()
™,
0 s 0 a
< MYPe-D) / s s +
0
o w(s) 1/(p-1) wn(s) 1/(p-1)
X [— —_— .
s€la,T] sNn sN
T
/ s %ds.
a
Here a = p'(1— %) — 1%, 1 =14+ %+, and —a+1 > 0 is equivalent

to mg > —p. Therefore, for any given ¢ > 0 there exists a > 0
suficiently small, such that MY/ @-1 foa 5 %ds < §. Also, since wy, —
w uniformly on [a,T], there exists ng large enough such that for
n > ng the second term in the sum does not exceed §. Hence,
|lu — up||oo < € for all n > ng, which proves that u,, — u uniformly
on B.

(a2) Using (20) we have that

/() = ()] < € - 7TV () 10— (1) /0]

Therefore, u!, (r) — u'(r) for all » € (0, R]. Using Lemma 5.2 and
Proposition 4.2, see (b2), (b3) and (b4), we have ] (0) = u'(0) for
all n. Hence, since u), and u' are continuous and u(r) — u'(r)
pointwise on compact interval [0, 7], then ] (r) — u/(r) uniformly
on [0,T].

(a3) Using (20) again, an easy computation shows that

w =2 w
wo) = o(S9) wo-a-p=,

tw~

w p'=2 Wn
) = (=) o -a-He

t=w~
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Therefore, since wy(t) = w(t) and W, (t) — '(¢) for all ¢ € (0,7,
then also ! (r) — " (r) for r € (0, R]. Using Lemma 5.2 and The-
orem 4.2(b4) we have that /. (0) = u”(0), where we have denoted
"(0) = limy—o uir(r) and «”(0) = lim, " (r). Now since u and
u'" are continuous on [0, T], and u/! (r) — " (r) pointwise on compact
interval [0, 7], then the convergence is uniform.

Cases (bl), (b2) and (b3) are treated in the same way. O

u

6. Weak solutions of quasilinear elliptic systems,
singularities

Here we want to find some sufficient conditions that guarantee that
(w, p)-solutions of system (2) are also weak solutions.

LEMMA 6.1. Let conditions of Lemma 2.1 be fulfilled with N > 2.
Let (u,v) be any (w, p)-solution of system (2). If mqy > —1— g, then
u e W,?(B).

Proof. (al) Let us prove that the pointwise derivative % is also
weak derivative. If we denote €2, = B\ B:(0), with £ > 0 small, and
S. = 0B.(0), then for any test function ¢ € D(B) we have

/ u&p d:v:—/ au(pdaH—/ upv; dS
Qe afEZ Qe 6551 Se

Let us denote the last integral by A(e). It suffices to show that
A(e) = 0 as € = 0, since then

dp . ou
/Buamz_ dr = /B axigod:v.

Ae) < C-ufe) - N1, (80)

We have

where C > 0 is a generic constant. We have three cases. (i) If m; >
—p, then u is continuous, see Theorem 4.2(a), and hence bounded.
Therefore A(e) — 0 as e — 0.

(ii) Assume that m; < —p. Using w(t) < Mt in Lemma 2.1, we
obtain that Vj(s) has singularity of order W, so that u(z),
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see (19), has singularity of order which is at most p’'(my + 1) —my
at z = 0. The claim follows from (80) and the fact that p’(m; +1) —
m;+N—1>0.

(iii) If my = —p, then u(z) has at most logarithmic singularity
at £ = 0, and the claim follows easily from (80).

(a2) Using (22) we have

R
/ |Vul|Pdz < C/ P +N=1 g
B 0

The last integral is finite due to m; > —1 — %. Therefore u €

W, P(B). O

THEOREM 6.2. Let all conditions of Theorem 1.1 be fulfilled, and
assume that

N(p-1
my > —p, my>—1— %. (81)

Then any (w, p)-solution (u,v) of quasilinear elliptic system (2) is

weak solution.

Proof. We can proceed analogously as in [11], using estimates (22)
and (23). We use Lemma 6.1 and the fact that

R mitl N
/ |Volldz < C/ 77T dr < oo,
B 0

which follows from m; > —1 — 2=1  Tet us prove that system (2)

is satisfied by (u,v) in the weak sense. Since u,v € C*(B\ {0}),
see Theorem 4.2, both equations in (2) are satisfied by (u,v) in the
classical sense on the set Q. = B\ B.(0), for any € > 0. Multiplying
by ¢ € D(B) and using Green’s formula we obtain that:

9o Jo, lz[™@dz + [o |Vollpdr = — [, div(|VulP~*Vu)pdz
= Jo. [VulP~?Vu - Vo dz — Ae),

where

N
ou
A _ p—2 . < p—1 < Ol p—1_N-1
(5)—/S g |Vul —3$iVZdS_C/sE|vu| dS < C-|u'(e)|P~"e ,

€ =1
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and S. = 0B.(0). Using (22) we obtain that A(¢) < C-e™*+N -0
as ¢ — 0. This proves that [ |[VuP~?Vu-Vedz = go [ |z|™ @ dz+
S5 IVv|%dz for all ¢ € D(B). Analogously for the second equation
in (2). O

As we have seen in Theorem 4.2(a), the component u of any
(w, p)-solution (u,v) is continuous at = = 0 provided m; > —p. Note
that since mg > myq, then also my > —p. Now we find some sufficient
conditions for (u,v) to have singularity at z = 0.

THEOREM 6.3. Let the conditions of Theorem 6.2 be fulfilled, let p <
N, and let (u,v) be an (w, p)-solution.
(a) If mg < —p, then

u(z) >
o 1/(p-1) R(mo+1)p'—mo _ |m|(MO+1)P'*m0 formy < —
mo + N o) (mo + 1)p" —mg o=
~ 1/(p—1
90 R
<N—p> logm for my = —p.
In particular, u has singularity of order at least WPO% at xg = 0 if
mg < —p, and at least logarithmic singularity if mg = —p.
(b) If my = —q then v has at least logarithmic singularity at
z=0:
5 1/(q-1)
g1 R
> —F— log — 83
w2 () e =)

Proof. (a) We have that u € Wol’p(B), see Lemma 6.1. Since —Apu >
golz|™ pointwise in B\ {0}, the same inequality holds also in the
weak sense. The claim follows from [15, Theorem 3]. (b) This case
is treated in the same way. O

PROPOSITION 6.4. Let (u,v) be any weak solution of (1). Then

1 Rmo-l—pgo 1/(p—1) form <0
b0y >0 o)\ 2V -1 T

<C(m07p7 N)Rmo+p§0 > Y/ -1)

(84)

fOT mo > 0)
pP

(82)
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and
1 fgmrl-q~ 1/(g—1)
5 q,<2N_§1> for my <0,
(CER cq()m N R rag, \ V@D (85)
< 1,4, qq 91) formy >0,
where
2Pl = )N — V(1 =)™
e(m,p,N) = sup A=D1 1) (36)

e,y  LHIN (=8N
In particular, these estimates hold for (w,p)-solutions obtained in
Theorem 6.2.

Proof. If mg < 0 we use our oscillation estimate of solutions for-
mulated in [9, Theorem 7] (or in [10, Theorem 3]), noting that the
right-hand side of (1) is > go|z|™°. If mg > 0, we use a more general
version of oscillation estimate of solutions, formulated in [9, Theo-
rem 9]. The same for v(0). See the proof of [11, Proposition 7(b)]
for details. O

Nontrivial lower bounds for any (w, p)-solutions (u,v) can be ob-
tained using approximation functions u, and v, introduced in Sec-
tion 6. Under conditions of Theorem 5.1 we have

Note that u,(0) and v, (0) can be effectively computed via w,, and p,,
that are defined recursively by w, = KoKiwn_1, wg = 0, p, = Kqiwy.
Furthermore, by Theorem 5.1 we have u,(0) = »(0), v,(0) — v(0)
monotonically as n — oc.

7. Generalizations

Existence and nonexistence results stated for system (2) in Theo-
rem 1.1 and Theorem 1.4 respectively can be extended to much more



POSITIVE SOLUTIONS OF QUASILINEAR etc. 97

general quasilinear elliptic systems:

_APUZF0(|$|7Ua|VU|)a in B\ {0},

—Agv = Fi(|z], u,[Vul), in B\ {0},
u >0, v > 0 on B, spherically symmetric, decreasing,
u=v=0on dB,

(87)

where we assume that F; : (0, R] x Rt — R are continuous functions
such that for all (r,7,¢),

0 < Fy(r,n,€) < Gor™ + fotd, (88)
0 < Fi(r,n,8) < gir™ + fié?. (89)

Recall that by a strong solution of (87) we mean a pair functions
u,v € C%(B \ {0}) which satisfy the elliptic system pointwise. We
confine ourselves only to state the corresponding results. Their
proofs use a combination of our existence and nonexistence results
with a general fixed point theorem in partially ordered Banach spaces,
see Amann [1, Theorem 6.1]

THEOREM 7.1. (existence of strong solutions) Assume that the growth
conditions (88) and (89) are fulfilled, and let

Va >0, 3r € (0,a), Vn >0, V& >0, Fy(r,n,&) >0 and Fy(r,0,0) > 0.
(90)

We assume that conditions of Theorem 1.1 hold with gy and g
changed to (8), where g;, fi, 1 = 0,1, are positive constants. Then
there exists a strong solution of elliptic system (87). Moreover, if
Fi(r,n,&) is nondecreasing with respect to variables n and &, then
there exists a strong solution which can be obtained constructively
using method of monotone iterations.

Now we state a nonexistence result. Note that we do not impose
any monotonicity assumption on Fj(r,n,§).

THEOREM 7.2. (nonezistence of strong solutions) Assume that all

conditions of Theorem 1.4 are satisfied with Gy and g1 changed to
(8), and

FO(Tanag) Z §0Tm0 + fﬂgqa
Fl(ﬂﬂaf) Z glrml + flgpa
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Let Fy(r,n, &) be nondecreasing in the variables n and . Then quasi-
linear elliptic system (87) has no strong solutions.

8. Appendix

In this section we provide precise values of the corresponding con-
stants appearing in Theorems 1.1, 1.4 and 3.1. They can easily be
computed using Lemma 2.1.

(A) The values of constants @ and b in Theorem 1.1 are

mg—my o q/(m1+1)—m1
|B|” ™ go +21/(q 1)|B| N ~q (91)
mo+tp dmita+r—q I17
N

CNN Np_l(m(]—i-N) Np—lc'N

/
pogl o @D g )]y
N

91/(a-1) N g1 +20N Ne | B
[p'(m1 +1) + N?[¢'(p'(m1 + 1) +1) + N]

S
|

(B) In Theorem 1.4 we introduce constants §; and gj, 1=0,1,
in the following way. First we introduce

N N pe' 1 '’ -1
where
) W) T
C~, _ b bq
p—gq =1

Then we define:

g =do- AL+ 5
1/q

§T=d1-

qd(my+ N) +Nj; qd(m +1)+N
q—p N

N Na—p+1
C\¥ Na—»
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and
~ bt my FE 1/ ’
—dn A1+ 20 T N1g
g(] 0 ( + N + p/q/ _ 1) ?
1/q
i d q'(ml—l—N)—i-N;1 ¢d(m+1)+N E
=day - - —
' C;Tp]vq—pﬂ Nq—p+1C;Tp p'q —1
(94)
where
mqg+p
dy = CyN NP 1(mg+N),
m1—+q
di = CyV NT'(m;+N),
1
E = -('+1)d(1-5)+d+1.

(C) In order to define four positive constants g; and gZT" ,1=0,1,
appearing in Theorem 3.1, it will be convenient to introduce the
following function:

b(50+1 ﬁ
A(b) = <Cm) , b>0,

where
§ing S B
(5:(50(51, C = ff‘SOTE s Ezéo(—61+1)—60+1,
0J1
We define:

. . do—eo+1 1/%0
90 = A(v), 91 = <710f—00 - A(y100 — €0 + 1)) , (95)

and

gar = A('YU + 5?1)7 /8
— 1 0
9 = (77160560“ ~A(y160 —e0 + 1+ —,;LEI)) ;

0

(96)
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(D) As pointed out by the referee, system (1) can be studied using
functions defined by ¢(r) = 7V =1/ (r) [P~  and 1 (r) = Vo' (r) |97,
It is easy to see that if we deal with solutions (u,v) of elliptic sys-
tem (1) with components in C%(B \ {0}), then both approaches are
equivalent, since we obviously have (here we need that u and v are
decreasing and u(R) = v(R) = 0):

!

R o p'—1 R o) 1
u(r) = / %do o(r) = / YOV (o)

oN-1

Relations (18), (19) follow from (97) by a change of variable s =
Cyo, and conversely. It is easy to see that ¢(r) and w(t) are

related as follows:
_ P
w(t) = Oy "N'74(r), t=Cnr", (98)
and analogously for p(t) and (r). Note that first order systems
corresponding to (w,p) and (¢,1) are of the same nature. Indeed,
if a solution (u,v) of elliptic system (1) is represented by (18), (19),
then the system reduces to (12), while for (97) we have

/

#(r) = gor¥=rmo 4 POy = gyt f 2O
T T (99)

REMARK 8.1. It is possible to study solvability of elliptic systems like
in (1) having arbitrary positive growth rate in the gradient. Using
different methods, we can also treat diagonal quasilinear elliptic sys-
tems with right-hand sides depending on all unknown functions and
their gradients, and with arbitrarily many equations. Also, polyhar-
monic equations can be studied. This will be a subject of forthcoming
papers.
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