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Verlinde-type Formulae and
Twistor Transform

RAFAEL HERRERA *)

SUMMARY. - We study certain aspects of the topology of siz moduli
spaces of orthogonal vector bundles over Riemann surfaces, with
genus between 2 and 7, in order to find generalizations of the
well-known Verlinde formula and the Newstead conjectures.

1. Introduction

In this note we investigate some aspects of the topology (cohomol-
ogy) of a moduli space M, of orthogonal vector bundles over a hyper-
elliptic Riemann surface ¥ of genus g, with 2 < g < 7. This space
is a Kahler manifold and is endowed with a positive line bundle L.
Motivated by the study of the Verlinde formulae for moduli spaces
carried out in [11, 12, 13, 1, 15, 4, 6], we set out to compute the
following invariants: the dimension of the space of holomorphic sec-
tions HO(M,, O(L*)) (the Verlinde-type formulae), and the intersec-
tion numbers of a sub-ring of H*(M,) generated by two classes [ and
v (see below). In fact, the space M, is a complex submanifold of a
twistor space F; of a (quaternion-Kéhler ) real Grassmannian G;,. We
find that all the relevant classes in the Riemann-Roch formula for
H%(M,, O(L¥)) are given in terms of the classes [ and v which arise
from the twistor fibration 7, — G,.
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In §2, we give the definition of the moduli space M, and quote
a theorem of S. Ramanan which identifies it as an intersection of
quadratic varieties in a complex Grassmannian [9]. In §3, we study
the cohomology of the Grassmannian G, by using a K-theoretical
decomposition of its tangent bundle and some vanishing theorems.
We compute intersection numbers in G, which, via twistor trans-
form, will give the required intersection numbers in M,. In §4, we
recall some properties of the flag manifold F, as a twistor space
of G,, and compute the total Chern and Pontrjagin classes of M.
In §5, we compute the intersection numbers for the sub-ring gener-
ated by [ and v in H*(M,). Moreover, we prove the vanishing of
all the Pontrjagin numbers and of the top-two Chern classes of M,
which, in fact, constitute Newstead-type vanishings (cf. [8, Conec-
tures (a),(b)]). We conclude by computing the Verlinde-type formula
hO(M,, O(L¥)). This work is intended as an extension of the results
proved in [4, 11].

2. The moduli space M,

Let 3 be a hyper-elliptic Riemann surface of genus g with involution
i:¥ — ¥ and Weierstrass points {wi,...,wag42}. Consider the
special Clifford group SC(2g — 2) = C* xyz, Spin(2g — 2), which fits
in the commutative diagram

1 — C — 8SC(29-2) — SO(29—2) — 1
i i I
1 — Zy — Spin(2g—2) — SO(29g—2) — 1

Let M, denote the moduli space of semistable, holomorphic, rank
2g — 2, vector bundles E over ¥ with the following properties:

e FEisan (orthogonal) vector bundle with structure group SO (29—
2) and with a lift of structure group to SC(2g — 2).

e F isi-invariant, i.e. there is a lift of i to E' (denoted by the same
symbol) such that E = i*E. Thus, we have the restrictions of



VERLINDE-TYPE FORMULAE AND etc. 53

i to the fibers over the Weierstrass points i: E,, — E,,, for
all j =1,...,2g+2. Since i2 = 1, the eigenvalues of i on these
fibers are +1, and we denote the eigenspace by E:fj

e F is such that dim((F ® A);j) =1forall j=1,...,29 + 2,
where A is an i-invariant line bundle over ¥ of degree 2g — 1.

Examples.

1. Case g = 2. Since SO(2) 2 U(1), M, is the Jacobian J(X) of
Yo (cf. [9]).

2. Case g = 3. The special Clifford group is
SC(4) ={(A,B) € GI(2) x GI(2)| det(A) - det(B) =1}

and the homomorphism SC(4) — SO(4) is given by (4, B) —
A ® B. Thus a SC(4)-bundle is essentially a pair of GI(2)-
bundles M, N with det(M) ® det(N) = 1 a trivial bundle.
Since the Clifford group C(4) does not distinguish between M
and N, we have that Ms is the moduli space of (stable) vector
bundles of rank 2 and fixed odd determinant (cf. [9]).

In [9, Theorem 3], Ramanan proved that the moduli space M, is
isomorphic to the variety of 2-dimensional subspaces of C2972 which
are isotropic with respect to the two quadratic forms

29+2 29+2

Souloo Y wil (1)
=1 =1

Therefore, we have a holomorphic embedding of M, into the complex
partial flag manifold

SO(2g + 2)
U(2) x SO(2g — 2)

F, =

which parameterizes the 2-dimensional subspaces of C2972 which are
isotropic with respect to the fist quadratic form.
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The flag manifold F; is the twistor space of the real Grassman-
nian

B SO(2g + 2)

-~ S0(4) x SO(2g —2)’

since the fiber CP! = SO(4)/U(2) parameterizes orthogonal almost
complex structures on the real oriented 4-dimensional subspaces of
R29+2  compatible with the orientation [10, 7]. We shall study the
topology of M, via this embedding into F; and the twistor fibration
Fg — Gy

Y

3. Cohomology of the real Grassmannian G,

Let G, be the real Grassmannian (g > 2)

SO(2g + 2)

% = 560) x 5029 =)

parameterizing real oriented 4-dimensional subspaces of R?912. The
isotropy group is contained in Sp(2¢g — 2)Sp(1) making G, into a
quaternion-Kéahler manifold [14, 10]. Let W be the tautological
SO(4)-bundle over G, and W+ its orthogonal complement in the
trivial bundle with fiber R%29™2, The homogeneous bundle W cor-
responds to the fundamental representation of SO(2g — 2), so the
tangent bundle of G, factors as follows

TG, =W oW
Since SO(4) = Sp(1)Sp(1) = SU(2)SU(2),
We=U®V

where U, V are two copies of the fundamental representation of
SU(2), and the subscript . denotes complexification. Thus,

(TG)e=U® (VW)

where U may be thought of as a (locally defined) quaternionic line
bundle.
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We shall consider the sub-ring of H*(g,) generated by the quater-
nionic classes (cf. [10])

u=—c(U) € HY(G,), v=—c(V) € HYG,).

Although u and v are not integral classes, their multiples 4u, 4v are
integral since the vector bundles S?U, S?V are globally defined over
Gy- The Poincaré polynomials of G, for 2 < g < 7 are

Pi(G2) = 1+t2+2t1 + 45448

Pi(G3) = 1+43t"+ 4% 4+ 3" +¢1°,

Pi(Gy) = 142614154+ 365 + 10 4 4412 4+ ¢14 4 3416 4 418 4 9420
+t%4,

Pi(Gs) = 14 2t1+4t® + 5612 + 641° + 5620 + 412 + 228 4 32,
Pi(Gg) = 14267 +3t% + 10 + 4412 4 1 4 5¢16 4 418 4 6420 + 22
+5¢2 4 120 4 4?8 4 430 4 3432 4 2436 4 440,

Pi(G7) = 142t* + 3t + 5612 + 616 4+ 7420 4+ 824 + 7428 4 6132

+5¢%0 4+ 310 4 244 4 13,

confirming that there is only one more class apart from u and v
appearing in dimension 2g — 2.
Let [ and [ be formal roots such that 4u = (2 and 4v = [2. Thus,

1 ! 1 1 1
W) = ef +e b =2 S — P g
ch(U) = ez +e2 =2+ ut pu + gequ’ + gegu +- o
C 1 1 1
(V) =e? +e 7 =240+ =07+ 0 + v ...

127 73607 T 20160"
The identity of vector bundles on G,

WaeWw!t=29+2,

gives in K-theory
Wt=20+2-W,

so that
TG, = (29 +2)W — W2,
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Therefore, the total Chern and Pontrjagin classes of TG, can be
expressed in terms of u and v as follows

(1—2(u+v) + (u—0)?)2+2

AT = g (T = 4020 = 8(u + ) + 16(a —0)?)’
- (1+2(u+v)+(u—v)2)29+2
PUT%) = (5 2a2 (1 + 40)2(1 + 8(u T 0) + 16(a— o))
Furthermore,

oy _ [ Nut Vv Vii— o \*
Aly) = <sinh<¢a+ V2) (/i — ﬁ)) "
| Sinh((V/u+ V) sinh(2(vu — v/2)) <sinh(2\/ﬂ) sinh(2y/v) ) 2
2(Vu + V) 2(vu — /v) 2V/u 2\/v '

We know that G, is a spin manifold [7], and therefore there is

a Dirac operator D acting on sections of the spin bundle A. Let
E =V ®W.}. Thus, A decomposes as A, & A_, where

Ay =S9 WS U NES...o N B,

A_=SY3UQEaSY S UNE®...eU N E,

over G,. If F' is a vector bundle over G, equipped with a connection,
one can extend the Dirac operator D to an elliptic operator with
coefficients in F

Dp:T(Ay ® F) — T(A_ ® F),

whose index is by definition dim(ker Dp)—dim(coker Dp). In [10, 7],
Salamon proved the following

0 ifk=1,..,|%] 250,

ind(D gog—2+2k =
(Dseo-renn) {1 if = 0,

By the Atiyah-Singer index theorem,

ind(Dgag—2+2177) = (ch(S2 2220 A(G)), [G,]),
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where )
ch(SPU) = Sln};(iﬁz:/ll_z)\/m.

The identities in (2) give enough linear equations to compute the

intersection numbers
(u"v?, [Gy])
where i 4+ 7 = 2g — 2, given that
(', [G]) = (uv",[Gy])

due to the symmetry between the bundles U and V. We define the
quaternionic volume of G, to be

vol(Gy) = ((4u)*72, [Gy]) = ((4v)*~2, [G,)).

which was computed in [3].

PROPOSITION 3.1. Evaluation on the fundamental class [G,] yields

vol(G,) = 2 <49 - 3);

g\29—1
for g =2,
<42uv [g2]> _ _3"01(92).
) 5 3
for g =13,
(4'u®v,[Gs)) = —V01(3g3), (4*u20?,[G3)) = 5"021§93);
for g =4,
3vol 15 vol(G
(atufga) = - 20 gt o) = B,
(0t ga]) = - FOLG),
’ 429
for g =5,
3vol 1 vol
(4Pu"v,[G5]) = - VOI;QS), (43u502,[G5]) = V01§95)’
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7vol(g 63 vol(G
<48u51)3’ [95]> = _%’ <48U4U4, [g5]> — $’
for g =6,
(4*u’v, [Ge]) = —%, (4502, [Go]) = 5V;);(3ge)’
($FuT?, [Go]) = _%2(396), (450504, [Go]) = %(3%) |
33 vol(g
(g0, [G]) = — 23000,
for g =8,
(4"uMv,[Gq]) = —%ég”, (£01%2, [Gy]) = VY V;)11(597)’
(47, [Gr]) = _%(5%)’ (4%uPv*, [G7]) = 9‘/20115(3?)’
99 vol 429 vol
<48u7v5, [g7]> = —%ﬁgﬂ’ <48u6v6’ [g7]> — %ég’ﬂ

Note that we have only missed the intersection numbers involving
the extra cohomology class appearing in dimension 2g — 2.

4. The space F, and the cohomology of M,

The complex manifold 7, has complex dimension 4g — 3, and pa-
rameterizes complex 2-dimensional subspaces II of C?9*? which are
isotropic with respect to the standard SO(2g + 2)-invariant bilinear
form. It is a contact Kéahler-Einstein manifold [7], which projects
onto G,, m: Fy — G, by sending II to the 4-dimensional subspace of
R2972 whose complexification is IT @ II. Each fiber is isomorphic to
a rational curve SO(4)/U(2) = CP! in F,.

Pic(F,) is generated by a line bundle L — F; such that (cf. [7])

1. L |-1(= O(2) on = (z) = CP".
2. L?97! is isomorphic to the anti-canonical bundle K ;1 of Fy.

3. If @ denotes the dual of the tautological U(2) bundle over F,
L = det(Q).
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The holomorphic tangent bundle of F; satisfies
TYF, =QeoW e N'Q=QeoW}aL,
where
QeQ ®W,=2¢+2.
There is a local C'*° isomorphism
U = L2 g -1/2,

Let | = ¢ (L) € H*(F,;,Z), so that by the Leray-Hirsch Theorem

() 4wt =0,

i.e. 12 = 4u (omitting 7*).

As we mentioned in §2, the spaces M, can be identified as the zero
set of a non-degenerate holomorphic section s € H(F,, O(5?Q)),
which corresponds to a quadratic form on C?9*2. Note that Q =
L'2 @ n*V over Fy, so that S2Q = L ® n*S?V, where S?V is trivial
over each fiber 7~!(z) = CP!. The complex dimension of M, is
4g — 6.

Since the normal bundle of M, in F, is isomorphic to S?Q, the
holomorphic tangent bundle of M, decomposes K-theoretically as
follows

TOM, = QW) — Q
= (9+2VRLY? -2’V L — 2L — 4%V — 2,

where we have dropped 7* from the notation and 2 denotes the
second Adams operator on vector bundles [2]. From this we deduce

(L+1/2+41/2)Q+1/2—1/2))%+2
(L4 + D2+ 1= D21 +12(1 = 2)

o(My) = (3)

where [ is defined formally to be 21/v, and we denote by u and v the
pull-backs to M, of the quaternionic classes on G,. Thus,

_ (14 2(u+v) + (u—v)?2)29+2
p(/\/’g) B (1 +4u)?(1 + 4v)2(1 + 8(u + v) + 16(u — 0)2)2’

(4)
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and,

S ik i iy O\
i) = (G e m)

o <sinh(2(\/ﬂ—|—\/1_))) sinh(2(y/u — /v)) sinh(2\/u) sinh(2\/5)>2
N O T Y

5. Intersection numbers on M, and Verlinde-type
formulae

THEOREM 5.1. The intersection numbers (u'v?,[M,)), where i+ j =
49 — 6, are skew-symmetric in u and v. Fvaluating on the funda-
mental class [My] yields: for g =2,

(u, [Ma]) =8 = —(v, [Ma]);

Jor g =3,
7 3
(u?,[M3]) = Bk (u?v, [M3]) = -5
Jor g =4,
99 97 15
(Ml = 5, (e M) =T (W M) = 3
Jor g =5,
7 715 6 _ 143
(u’, [Ms]) 519’ (ubv,[M5]) = =15
95 35
(u?0?, [Ms]) = 512° (u'v?, [Ms]) = Tt
Jor g =6,
— @ 8 _ 663 7 9 195
(u?,[Me]) = 1096 (uPv, M) = 2096 (u"v?, [Me]) = 1096
6,3 9 » 63
< ?[M6]> - 40965 <U v 7[M6]> = —40967
Jorg=1,
52003 6783

11 10 _
W, IMe) = Gomags (o Mal) = — ot
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o 5 1615 . 5 59
(w0, [Mr]) = oo (w'”, [Mr]) = ~ oo
o 315 . s _ 231
(W'l (Ma]) = g (W07 M) = — s

Proof. As a submanifold of F;, M, is Poincaré dual to the Euler
class c3(S%Q), which is easily computed from the identity S%2Q =
L ® m*S?V and is equal to 4l(u — v). Hence, for example,

(0, [Ms]) = P (u — o), [F5]) = 8Gu’ — 0, [G5]) =

where the second equality follows from twistor transform. Similarly
for all the other pairings. O

The expressions (4) and (5) are symmetric in u and v. Thus, we
have the following.

COROLLARY 5.1. For 2 < g <7, all the Pontrjagin numbers vanish,
i particular,

Azg—3(My) = 0.
Furthermore, the Chern classes
cag—6(My) = cag—7(My) =0,

the Euler characteristic of M, vanishes

and
-1 if g =2,
X(My, O(T M) =< —6 if g =3,
—2g+1 ifg>4,

2 ifg=3.

X(My, O(T™ M) =



62 R. HERRERA

Proof. The Chern class vanishings and the holomorphic Euler char-
acteristics are computed by using the expression (3) and the inter-
section numbers in Theorem 5.1. For instance,
cio(Myg) = 252u° + 26520° 4 263800 u + 51384uv3
+5100u’v + 28920u’v* = 0.

O

REMARK 5.2. The characteristic class vanishings and the Euler char-
acteristics constitute a generalization to My of the Newstead conjec-
tures [8, Conjectures (a),(b),(c)], for 2 < g <7. In fact, the vanish-
ings for My are due to the triviality of TJ(X9) and the vanishings
for M3 were first proved by Newstead [8].

Since Ky, is isomorphic to L29-2),
H'(M,,0(k)) =0 foralli>0and k> —2g— 4,

ie. dy = X(Mg, O(k)) = hO(Mg,O(k)) for all £ > —2¢g — 4.
THEOREM 5.3.

16k ifg=2,
=k?(14k" + 20k* + 11) ifg=3,
oo k? (K — 1)(22k° + 82k + 103k” + 18) if g=4,

o k2 (K2 — 1)% (k2 — 4) x

19051200
dg—g+2 = x (5k° + 30k* + 58k + 18) ifg=5,
masmesTzooo b (K7 — 1) (k% — 4)*(k* — 9)x

X (19k° + 157k" + 409k? + 180) if g =6,
TessrrreTsaooos b (K% — 1)*(K* — 4)*(k* — 9)*x

x(k® — 16)(46k° + 484k" + 1585k> + 900)  if g=T.

Proof. By the Riemann-Roch Theorem and (5)

RO (M, O(LF072)) = x(My, O(LF72)))
(2D td(My), [My])
(eFA(M), [M))- (6)
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The top-dimensional component gives a polynomial in &, whose coef-

ficients involve the intersection numbers computed in Proposition 5.1.
Hence the result. U

These polynomials agree with the ones computed in [5, Sec-

tion 4.2].
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