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Remark on Subharmonic Solutions of
Periodic Planar Systems

Kraupiusz Woicik )

SUMMARY. - Let W be a periodic isolating segment for the periodic
planar system. Assume that time O section Wy is a topological
manifold with boundary and H(Wo, Wy ) # 0, where W~ s the

exit set of W. Then there is a subharmonic solution.

1. Introduction

We are interested in the two-dimensional system of the form
&= F(t,z), (1)

where F' : R x R? — R? is T > 0 periodic in ¢ and the associated
Cauchy problem has a unique solution. We are concerned with the
existence of kT-periodic (subharmonic) solutions of (1) or, equiv-
alently periodic points of the Poincaré map ¢ 7). The famous
Massera theorem (see [1], [8], [12]) says that if the Poincaré map
is defined on all R? and there is a future bounded solution of (1),
then there is also a T-periodic solution. The Massera theorem fol-
lows immediately by applying the Brouwer Asymptotic Fixed Point
Theorem to the Poincaré map. The Brouwer Asymptotic FPT says
that if g : R> — R? is an orientation preserving embedding with a
future bounded trajectory, then g has a fixed point (for more details
and extensive bibliographies, we refer the reader to [11]). The main
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result in this paper is based on the notion of periodic isolating seg-
ments introduced in [17] (see also [16], [15], [13], [18]). The basic
property of the segment is that in any boundary point of the seg-
ment the vector field is directed outward or inward with respect to
the segment. In all practical applications the segments are manifolds
with corners. It was observed in [16] that the fixed point index of the
Poincaré map inside the segment is equal to the Lefschetz number
of the homeomorphism A given by the segment. We prove that if W
is a periodic isolating segment over [0,7] for (1) (see definition in
the next section), Wy is a compact, connected topological manifold
with boundary and H(Wy, W, ) # 0, then (1) has a subharmonic
solution. Note that by the Wazewski Retract Theorem assumption
H(Wy, W, ) # 0 implies existence of a future bounded solution of
(1). On the other hand we do not assume that the Poincaré map
is defined globally, which is a rather restrictive assumption from the
point of view of applications. Our main result follows by Lemma 1
which is a generalization of Cor.7.5 in [16].

2. Periodic isolating segments

Let M be a smooth ( i.e. of the class C*° ) manifold and let
FiRxM —TM

be a continuous time-dependent vector field. We assume that for
every (tg,zo) € R x M the Cauchy problem

i = f(t,x), (2)
$(t0) = Xy (3)

has a unique solution. By ¢ we denote the local process generated
by (2) i.e. (1,7 (T0) € M is the value of the solution of the Cauchy
problem (2), (3) at time ¢y + 7. In the sequel we assume that f is
T-periodic with respect to ¢, hence for all o,t € R

Plo+T,t) = P(o,t)

and in order to determine all T-periodic solutions of the equation
(2) it suffices to look for fixed points of ¢ r) (called the Poincaré
map).
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Now we introduce the notion of periodic isolating segment. To
this aim we use the following notation: by m; : [0,7] x M — [0,T]
and 79 : [0,T] x M — M we denote the projections and for a subset
Z CRx M and t € R we put

Zy={rzeM:(t,z) € Z}.

Let (W, W ™) be a pair of subsets of [0,7] x M (i.e. W~ C W). We
call W a periodic isolating segment over [0, 7] (for the equation (2))
and W~ the exit set of W if:

(i) W and W~ are compact ENR’s, Wy = Wr and W, = W,
(ii) there exists a homeomorphism of pairs
h:([0,T] x W, [0,T] x Wy ) — (W, W)
such that 7y = m o h,

(iii) for every o € [0,T) and z € OW, there exists a § > 0 such
that for every ¢ € (0,6) either ¢, ;) (7) & Woyt or o4 (7) €
int Wo‘—l—t-

@iv) W n(0,T) x M) ={(o,z) e W:0<T, 36 >0Vt e (0,9) :
o) () & Woii}

Define a homeomorphism

h: (Wo, Wy) — (W, Wy) = (Wo, Wy)

by h(x) = mo(h(T, moh~'(0,z))) for z € Wy. Geometrically, h moves
a point x € Wy to W = Wy along the arc h([0,T] x {moh 1(0,z)}).
A different choice of the homeomorphism A in (ii) leads to a map
which is homotopic to h (compare [16]), hence the automorphism

pw = hy : HWo, Wy') — H(Wo, Wy ')

induced by h in singular homology, is an invariant of the segment
W. Recall that its Lefschetz number is defined as

oo

Lef (uw) = > _(=1)™r frun.

n=0
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In particular, if puy = id g7y, W) then Lef(uyy) is equal to the Euler

characteristic x(Wo, W ). In the sequel we will use the following
theorem which, up to slightly different notation, was proved in [16]:

THEOREM 2.1. If W is a periodic isolating segment over [0,T] then
the set of T-periodic solutions which are contained in the segment

W:
Py ={z e M:ppr)(z) =z, Vt€[0,T]: pp(z) € Wi}

is compact and open in the set of fized points of ¢ 1) and the fived
point index of (o) in Fyw is given by

ind((p(U,T)a FW) = Lef(MW)a

(See [3] for the definition and properties of the fixed point index;
here we use a different notation from the one in that book.)

The Lefschetz zeta function for a continuous map of a compact
ANR into itself was introduced by Smale in [14]. From this time
many Lefschetz type zeta functions have been introduced in the the-
ory of discrete dynamical systems. For example: the reduced mod
2 zeta function ([4]), twisted zeta function, which have coefficients
in the group rings ZH or ZoH of an abelian group H ([6], [5]), zeta
function in the Nielsen index theory ([7]), zeta function for an iso-
lated invariant set ([10], [9]).

Assume that W is a periodic isolating segment over [0,T"] . The
zeta function of a T-periodic isolating segment W is defined by

- ind((p((],nT)a FW")

Zw(t) = eXP[Z

n=1

n tn]’

where
Fyn ={z € M : p,r)(z) =2, Vt€[0,nT] @) (7) € Wimoar}-

This is a formal power series in . We show that this is always a ra-
tional function of the variable ¢ which depends only on the homology
class of pw.
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LEMMA 2.2. (1) We have

Zyw (t) = [[Idet(Id — (uw)t)] """,
k=0

where H 1is the singular homology functor with coefficients in Q,
(pw)k : Hi(Wo, Wy ) = H,(Wo, Wy) and Id = IdH(WO’WO—).
(2) If x(Wo,Wy) # 0 then there exists n € N such that

ind(¢(0,n1): Fwn) # 0.

Proof. Let B; = dim H;(Wy, W,,"). Put

p= Y. B, g= ) B

i even i odd

(1) It follows by Th.1 and Lemma 5.2 in [4].
(2) Obviously if Zy(t) # 1 then there exists n € N such that

ind(¢(0,n1): Fwn) # 0.
Since hy : (Wo, Wy ) = (Wo, Wy ) is a homeomorphism and
q—p=—xWo, Wg') # 0,

then Zy(t) # 1.

47

O

The main result of this section is the following (compare Cor.7.5

in [16])

PROPOSITION 2.3. (1) If x(Wo, W) is positive (resp. negative)

then there exists k € {1,...,p} (resp. k € {1,...,q}) such that

ind (¢ (0,k7): Fyvr) # 0.

(2) If x(Wo, Wy ) = 0 and Zy (t) # 1 then there exists k € {1,...,p

q} such that

ind(‘P(O,kT)a Fyi) #0.
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Proof. (1) We give the proof only for the case x(Wy, W; ) > 0, be-
cause the case x(Wo, W, ) < 0 is dual. Zw(t) is a formal power
series in t , so

(e.@)
Zw(t) =1+ ant"
n=1

By induction on n it is easy to see that
a1 =...=ap, =0 iff Lef(uw) = ... = Lef(uy) =0.
Suppose that for all 7 € {1,...,p} Lef(,u%,v) = 0. By Lemma 1
Zw (t)P(t) = Q(t),

where
Q(t) = [[ det(7d — (uw)it), Pt)= [ det(Zd— (uw)st).
i odd i even

So we obtain
o0

P(t) + P)( Y axt®) = Q1)
k=p+1

The coefficient near tP on the left side is non-zero and is zero on the
right side. This shows that it must exist £ € {1,...,p} such that

Lef (uy) # 0.

(2) Suppose that a; = ... = a, = 0, so we have
o.¢]
P(t) + PO S axth) = Q).
k=p+1

By easy induction this gives that a, = 0 for all n € N, and finally
Zw(t) =1. O

COROLLARY 2.4. (1) If Zw (t) # 1 then there exists k € {1, ..., max{p, q}}
such that

ind (¢ (0,k7): Fyvr) # 0.

(2) If x(Wo,Wy') = 0 and ind(@(o k1), Fyr) = 0 for k € {1,...,p}
then

ind((p(O,TLT)a FW”) =0,
for all n € N.
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3. Main result

In this section we assume that F'is a time dependent vector field on
R?, T' > 0 periodic with respect to the time variable.

THEOREM 3.1. Let W be a periodic isolating segment over [0,T]
for the equation (1). Assume that Wy is a 2-dimensional compact,
connected topological manifold with boundary and H(Wy, W, ) # 0.
Then there is a subharmonic solution of (1) (i.e. periodic with period
kT for some k € N).

Proof. Since Wy is a 2-dimensional, compact manifold with bound-
ary, so 0Wj is a finite sum (say k+1, k > 0) of sets homeomorphic to
S! (as a compact boundaryless 1-dimensional manifold) and the set
R? \ Wy has one unbounded component N. Since Wy is connected, so
K = cIN N Wj is homeomorphic to S'. By assumption Wy C oWy
is a compact ENR, so it is a sum of finite number of sets homeo-
morphic to S or to a closed interval. In particular x(W, ) > 0 and
x(Wo) =1—k.

Suppose that K C W, . It follows that there is a periodic iso-
lating segment U over [0,T] such that Uy is homeomorphic to a
compact ball and U, is homeomorphic to S'. One can check that
Lef(uy) = 1. Consequently, by Srzednicki’s result (Th.1) there is a
T-periodic solution of (1).

Let K N W, be a finite sum of sets (say m) homeomorphic to
closed intervals. Assume first that m > 2 or m = 0. One can check
that there is a periodic isolating segment U over [0, 7] such that Uy
is a compact ball and x(U, ) = m. We have

x(Uo,Uy ) = x(Uo) = x(Uy ) =1—=m #0,

so there is subharmonic solution by Lemma 1. Consider the case
m = 1. If £ > 0 then

X(WU, Woi) =1-k— X(Woi) <-m=-1,

so the result follows by Lemma 1. If £ = 0 then Wy is homeomorphic
to a compact ball and W, C 0Wj is homeomorphic to a closed
interval, so H(Wy, W, ) =0, a contradiction. O
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