Between Semi-closed Sets and Semi-pre-closed Sets

M.K.R.S.VEERA KUMAR (*)

Summary. - In this paper a new class of sets, namely ψ -closed sets is introduced for topological spaces. This class falls strtictly in between the class of semi-closed sets and the class of semi-preclosed sets. This class also sits strictly in between the class of semi-closed sets and the class of semi-generalized closed sets. We also introduce and study a new class of spaces, namely semi- $T_{1/3}$ spaces. Further we introduce and study ψ -continuous maps and ψ -irresolute maps.

1. Introduction

N. Levine [21] and M.E.Abd El-Monsef et al. [1] introduced semi-open sets and β -sets respectively. β -sets are also called as semi-preopen sets by Andrijević [2]. Levine [22] generalized the concept of closed sets to generalized closed sets. Bhattacharya and Lahiri [7] generalized the concept of closed sets to semi-generalized closed sets via semi-open sets. The complement of a semi-open (resp. semi-generalized closed) set is called a semi-closed [8] (resp. semi-generalized open [7]) set. A lot of work was done in the field of generalized closed sets. In this paper we employ a new technique to obtain a new class of sets, called ψ -closed sets. This class is obtained by generalizing semi-closed sets via semi-generalized open sets. It is shown that the class of ψ -closed sets properly contains

^(*) Author's address: J.K.C. College, Guntur-522 006, Andhra Pradesh, India 1991 AMS Classification: 54 A 05, 54 D 10

Keywords and Phrases: semi-closure, sg-open sets, semi- $T_{1/2}$ spaces, semi- $T_{1/3}$ spaces

the class of semi-closed sets and is properly contained in the class of semi-preclosed sets. Further it is observed that the class of ψ -closed sets is indipendent from the class of preclosed sets, the class of g-closed sets, the class of g-closed sets and the class of α g-closed sets. Moreover this class sits properly in between the class of semi-closed sets and the class of semi-generalized closed sets.

Bhattacharya and Lahiri [7], Jancović and Reilly [19] and Maki et al. [25] introduced semi- $T_{1/2}$ spaces, semi- T_D and $_{\alpha}T_{1/2}$ spaces respectively. Later Dontchev [13] [14] proved that $_{\alpha}T_{1/2}$, semi- T_D and semi- $T_{1/2}$ separation axioms are equivalent. R. Devi, K. Balachandran and H. Maki [5] and R. Devi, H. Maki and K. Balachandran [4] introduced $_{\alpha}T_b$ spaces and T_b spaces respectively. As an application of ψ -closed sets, we introduced a new class of spaces, namely **semi-** $T_{1/3}$ spaces. We also characterize semi- $T_{1/3}$ spaces and show that the class of semi- $T_{1/3}$ spaces properly contains the class of semi- $T_{1/2}$ spaces, the class of $_{\alpha}T_b$ spaces and the class of semi- $T_{1/3}$ spaces.

We also introduce and study two classes of maps, namely ψ continuity and ψ -irresoluteness. ψ -continuity falls strictly in between semi-continuity [21] and β -continuity [1]. ψ -continuity also
falls strictly in between semi-continuity [21] and sg-continuity [30].

2. Preliminaries

Throughout this paper (X, τ) , (Y, τ) and (Z, τ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and C(A) denote the closure of A, the interior of A and the complement of A in X respectively.

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

- 1. a semi-open set [21] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- 2. a **preopen** set [27] if $A \subseteq int(cl(A))$ and a **preclosed** set if $cl(int(A)) \subseteq A$,

- 3. an α -open set [29] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$,
- 4. a semi-preopen set [2] (= β -open [1]) if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set [2] (= β -closed [1]) if $int(cl(int(A))) \subseteq A$,
- 5. a regular-open set if A = int(cl(A)) and a regular-closed set if cl(int(A)) = A,
- 6. a semi-regular set [11] if it is both semi-open and semi-closed in (X, τ) ,
- 7. $a \ \delta$ -closed $set [31] \ if \ A = cl_{\delta}(A), \ where$ $<math>cl_{\delta}(A) = \{x \in X/int(cl(U)) \cap A \neq \emptyset, x \in U \ and \ U \in \tau\}.$

The semi-closure (resp. α -closure, semi-preclosure) of a subset A of (X, τ) is the intersection of all semi-closed (resp α -closed, semi-preclosed) sets that contain A and is denoted by scl(A) (resp. $\alpha cl(A)$, spcl(A)). The union of all semi-open subsets of X is called the semi-interior of A and is denoted by sint(A).

The following definitions are useful in the sequel.

Definition 2.2. A subset A of a space (X, τ) is called

- 1. a generalized closed (briefly g-closed) set [22] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 2. a semi-generalized closed (briefly sg-closed) set [7] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) , the complement of a sg-closed set is called a sg-open set -
- 3. a generalized semi-closed (briefly gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 4. an α -generalized closed (briefly α g-closed) set [26] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 5. a generalized α -closed (briefly $\mathbf{g}\alpha$ -closed) set [25] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,
- 6. a $\mathbf{g}\alpha^{**}$ -closed set [25] if $cl(A) \subseteq int(cl(U))$ whenever $A \subseteq U$ and U is α -open in (X, τ) ,

- 7. a generalized semi-preclosed (briefly gsp-closed) set [12] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 8. a δ -generalized closed (briefly δ g-closed) set [15] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 9. $a \ \mathbf{Q} \ set \ [20] \ if \ int(cl(A)) = cl(int(A)).$

Definition 2.3. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be

- 1. semi-continuous [21] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) ,
- 2. **pre-continuous** [27] if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) ,
- 3. α -continuous [28] if $f^{-1}(V)$ is α -closed in (X, τ) for every closed set V of (Y, σ) ,
- 4. β -continuous [1] if $f^{-1}(V)$ is semi-preopen in (X, τ) for every open set V of (Y, σ) ,
- 5. **g-continuous** [6] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) ,
- 6. **sg-continuous** [30] if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V of (Y, σ) ,
- 7. **gs-continuous** [10] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) ,
- 8. $\mathbf{g}\alpha$ -continuous [25] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) ,
- 9. α g-continuous [18] if $f^{-1}(V)$ is α g-closed in (X, τ) for every closed set V of (Y, σ) ,
- 10. **gsp-continuous** [12] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) ,
- 11. **irresolute** [9] if $f^{-1}(V)$ is semi-open in (X, τ) for every semi-open set V of (Y, σ) ,

- 12. **sg-irresolute** [30] if $f^{-1}(V)$ is sg-closed in (X,τ) for every sg-closed set V of (Y,σ) ,
- 13. **pre-semi-open** [9] if f(U) is semi-open in (Y, σ) for every semi-open set U of (X, τ) ,
- 14. **pre-semi-closed** [9] if f(U) is semi-closed in (Y, σ) for every semi-closed set U of (X, τ) .

Definition 2.4. A space (X, τ) is called a

- 1. $T_{1/2}$ space [22] if every g-closed set is closed,
- 2. **semi-** $T_{1/2}$ space [7] if every sg-closed set is semi-closed,
- 3. **semi-** T_D space [19] if every singleton is either open or nowhere dense,
- 4. $_{\alpha}T_{i}$ space [25] if a space (X, τ^{α}) is T_{i} , where i = 1/2, 1,
- 5. $_{\alpha}T_{1/2}^{*}$ space [25] if every $g\alpha^{**}$ -closed set is α -closed,
- 6. $_{\alpha}T_{m}$ space [25] if every $g\alpha^{**}$ -closed set is closed,
- 7. T_b space [4] if every gs-closed set is closed,
- 8. $_{\alpha}T_{b}$ space [5] if every αg -closed set is closed,
- 9. **semi-** T_1 space [23] if, for any $x, y \in X$ such that $x \neq y$, there exist two semi-open sets G and H such that $x \in G$, $y \in H$ but $x \notin H$ and $y \notin G$,
- 10. **feebly-** T_1 space [19], [24] if every singleton is either nowhere dense or clopen,
- 11. $T_{3/4}$ space [15] if every δ -g-closed set is δ -closed.

3. Basic properties of ψ -closed sets

We introduce the following definition:

DEFINITION 3.1. A suset A of (X, τ) is called a ψ -closed set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a sg-open set of (X, τ) .

REMARK 3.2. If A is ψ -closed and U is sg-open with $A \subseteq U$, then $scl(A) \subseteq sint(U)$. This follows from the Theorem 6 of [7].

Theorem 3.3. 1. Every semi-closed set, and thus every closed set and every α -closed set is ψ -closed.

2. Every ψ -closed set is sg-closed, and thus semi-preclosed (by Theorem 2.4(i) in [14]) and also gs-closed.

Proof. Follows immediately from the definitions. \Box

The following examples show that these implications are not reversible.

Example 3.4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$. Then $A = \{a, c\}$. A is ψ -closed. B is not a semi-closed set.

Example 3.5. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then $B = \{b\}$ is sg-open and sg-closed. Since $scl(B) = \{b, c\}$, B is not ψ -closed.

Thus the class of ψ -closed sets properly contains the class of semiclosed sets, and thus properly contains the class of α -closed sets and also properly contains the class of closed sets. Also the class of ψ closed sets is properly contained in the class of sg-closed sets, and hence it is properly contained in the class of semi-preclosed sets and contained in the class of gs-closed sets.

Theorem 3.6. 1. ψ -closedness and g-closedness are independent notions.

2. ψ -closedness is independent from $g\alpha$ -closedness, αg -closedness and preclosedness.

Proof. It can be seen by the following examples. \Box

Example 3.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $C = \{c\}$ and $D = \{a, b\}$. C is a ψ -closed set but not even a g-closed set of (X, τ) . D is a g-closed set but not a ψ -closed set of (X, τ) .

The following two examples show that ψ -closedness is indipendent from g α -closedness, α g-closedness and preclosedness.

EXAMPLE 3.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $E = \{a\}$. E is ψ -closed but it is neither a $g\alpha$ -closed nor an αg -closed set. Also E is not a preclosed set.

Example 3.9. Let X, τ and B be as in the example 3.5. B is not a ψ -closed set of (X, τ) . However B is a $g\alpha$ -closed set hence it is an αg -closed set. Moreover B is also a preclosed set of (X, τ) .

The following Theorem characterize the ψ -closed sets.

Theorem 3.10. Let A be a subset of (X, τ) . Then

- 1. A is ψ -closed if and only if scl(A) A does not contain any non-empty sg-closed set,
- 2. If A is ψ -closed and $A \subseteq B \subseteq scl(A)$, then B is ψ -closed.
- Proof. 1. Necessity: Suppose that A is ψ -closed and let F be a nonempty sg-closed set with $F \subseteq scl(A) A$. Then $A \subseteq X F$ and so $scl(A) \subseteq X F$. Hence $F \subseteq X scl(A)$, a contradiction. Sufficiency: Suppose that for $A \subseteq X$, scl(A) A does not contain a non-empty sg-closed set. Let U be a sg-open set such that $A \subseteq U$. If $scl(A) \not\subset U$, then $scl(A) \cap C(U) \neq \emptyset$. It follows from theorem 2.3 in [16] that $scl(A) \cap C(U)$ is sg-closed, a contradiction.
 - 2. Follows from the fact that scl(A) = scl(B).

THEOREM 3.11. For a subset A of (X, τ) , the following conditions are equivalent:

- 1. A is sg-open and ψ -closed,
- 2. A is semi-regular.

COROLLARY 3.12. For a subset A of a space (X, τ) , the following conditions are equivalent:

- 1. A is pre-open, sg-open and ψ -closed,
- 2. A is regular open,

3. A is pre-open, sg-open and semi-closed.

The following example shows that a subset G of a space (X, τ) need not be a closed set even though G is pre-open, sg-open and a Q-set.

Example 3.13. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$ and $G = \{a\}$. Clearly G is pre-open, sg-open and a Q-set but not a closed set.

THEOREM 3.14. For a subset A of a space (X, τ) , the following conditions are equivalent:

- 1. A is clopen,
- 2. A is preopen, sg-open, Q-set and ψ -closed.

Proof. $1 \Rightarrow 2$ is obvious. $2 \Rightarrow 1$: Since A is preopen, sg-open and a ψ -closed set of (X, τ) , then by the Theorem 3.12 A is a regular open set. This implies A is open. On the other side, $A = int(cl(A)) = cl(int(A)) \subseteq cl(A)$ since A is a Q-set. So A is closed. Therefore A is a clopen set of (X, τ) .

REMARK 3.15. Union of two ψ -closed sets need not to be ψ -closed. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $A = \{a\}$ and $B = \{b\}$. Both A and B are ψ -closed but $A \cup B$, their union, is not a ψ -closed set of (X, τ) .

Remark 3.16. The following diagram shows the relationships established between ψ -closed sets and some other sets. $A \longrightarrow B$ (resp. $A \longleftarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).

4. Semi- $T_{1/3}$ spaces

We introduce the following definitions:

DEFINITION 4.1. A space (X, τ) is said to be a semi- $T_{1/3}$ space if every ψ -closed set in it is semi-closed.

Theorem 4.2. Every semi- $T_{1/2}$ space is a semi- $T_{1/3}$ space.

The converse of the above theorem is not true as it can be seen from the following example.

Example 4.3. Let $X=\{a,b,c\}$ and $\tau=\{\emptyset,X,\{a\},\{b,c\}\}\}$. (X,τ) is not a semi- $T_{1/2}$ space since $\{b\}$ is a sg-closed set but not a semiclosed set of (X,τ) . However (X,τ) is a semi- $T_{1/3}$ space.

We characterize semi- $T_{1/3}$ spaces in the following Theorem.

THEOREM 4.4. For a space (X, τ) , the following conditions are equivalent:

- 1. (X, τ) is a semi- $T_{1/3}$ space,
- 2. Every singleton of X is either sg-closed or semi-open,
- 3. Every singleton of X is either sg-closed or open.

Proof. $1 \Rightarrow 2$: Let $x \in X$ and suppose that $\{x\}$ is not a sg-closed of (X,τ) . Then $X-\{x\}$ is a sg-open set of (X,τ) . So X is the only sg-open set of (X,τ) . So X is the only sg-open set containing $X-\{x\}$. Hence $X-\{x\}$ is a ψ -closed set of (X,τ) . Since (X,τ) is a semi- $T_{1/3}$ space, then $X-\{x\}$ is a semi-closed set of (X,τ) or equivalentely $\{x\}$ is semi-open set of (X,τ) .

 $2\Rightarrow 1$: Let A be a ψ -closed set of (X,τ) . Clearly $A\subseteq scl(A)$. Let $x\in X$. By assumption, $\{x\}$ is either sg-closed or semi-open. Case (i): Suppose $\{x\}$ is sg-closed. By the Theorem $3.10\ scl(A)-A$ does not contain any non-empty sg-closed set. Since $x\in scl(A)$, then $x\in A$. Case (ii): Suppose $\{x\}$ is a semi-open set. Since $x\in scl(A)$, then $\{x\}\cap A\neq\emptyset$. So $x\in A$. Thus in any case, $scl(A)\subseteq A$. Therefore A=scl(A) or equivalentely A is a semi-closed set of (X,τ) . Hence (X,τ) is a semi- $T_{1/3}$ space.

 $2 \Leftrightarrow 3$: Follows from the fact that a singleton is semi-open if and only if it is open.

Theorem 4.5. Every T_1 space (resp. $T_{3/4}$ space, $T_{1/2}$ space, $T_{1/2}$ space, $T_{1/2}$ space, $T_{1/2}$ space, $T_{1/2}$ space but not conversely.

Proof. Since every T_1 space (resp. $T_{3/4}$ space, $T_{1/2}$ space, αT_1 space, αT_m space, $\alpha T_{1/2}$ space, $\alpha T_{1/2}$ space, $\alpha T_{1/2}$ space [15] (resp. $T_{1/2}$ space [15], semi- $T_{1/2}$ space [7], $\alpha T_{1/2}$ space [25], $\alpha T_{1/2}^*$ space [25], semi- $T_{1/2}$ space [14]), the first assetion is true. The space (X, τ) in the example 4.3 is a semi- $T_{1/3}$ space but not even a semi- $T_{1/2}$ space. □

Remark 4.6. Dontchev [13], [14] showed that $_{\alpha}T_{1/2}$, semi- T_D , semi- $T_{1/2}$ separation axioms are equivalent and also that $_{\alpha}T_1$ ness and feebly- T_1 ness are equivalent. Dontchev and Ganster [15] proved that every space $T_{3/4}$ space is a semi- T_1 space but not conversely.

THEOREM 4.7. Every T_b space is a semi- $T_{1/3}$ space and an $_{\alpha}T_b$ space but the respective converses are not true.

Proof. First we observe that every T_b space is an $_{\alpha}T_b$ space since every α g-closed set is a gs-closed set. Tha fact that every T_b space is a semi- $T_{1/3}$ space follows from the Remark 6.10 of [10] since every T_b

space is a $T_{1/2}$ space. The space in the example 3.8 is an ${}_{\alpha}T_b$ space but not a T_b space. The space in the example 3.5 is a semi- $T_{1/3}$ space but not a T_b space.

Theorem 4.8. Every $_{\alpha}T_{b}$ space is a semi- $T_{1/3}$ but not conversely.

Proof. The first assertion follows from the Theorem 5.3 [5] and the Theorem 4.2 since every $T_{1/2}$ space is a semi- $T_{1/2}$ space. The space in the example 3.5 is a semi- $T_{1/3}$ space but not an $_{\alpha}T_{b}$ space.

DEFINITION 4.9. A function $f:(X,\tau)\to (Y,\sigma)$ is called a **pre-sg-closed** if f(U) is sg-closed in (Y,σ) for every sg-closed set of (X,τ) .

THEOREM 4.10. If the domain of a bijective, pre-sg-closed and presemi-open map is a semi- $T_{1/3}$ space, then so is the codomain (=range).

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective, pre-sg-closed and pre-semi-open map. Suppose (X,τ) is a semi- $T_{1/3}$ space. Let $y\in Y$. Since f is a bijection, then y=f(x) for some $x\in X$. Since (X,τ) is a semi- $T_{1/3}$ space, then by the Theorem 4.4, $\{x\}$ is either sg-closed or semi-open. If $\{x\}$ is sg-closed, then $\{y\}=f(\{x\})$ is sg-closed since f is a pre-sg-closed map. If $\{x\}$ is semi-open, then $\{y\}=f(\{x\})$ is semi-open since f is a pre-semi-open map. Thus every singleton of Y is either sg-closed or semi-open in (Y,σ) . By the Theorem 4.4 again, (Y,σ) is also a semi- $T_{1/3}$ space.

Remark 4.11. The following diagram shows the relationships among the separation axioms considered in this paper. $A \longrightarrow B$ (resp. $A \longleftarrow B$) represents A implies B but B need not imply A always (resp. A and B are equivalent, A and B are indipendent).

5. Continuous and ψ -irresolute maps

We introduce the following definitions:

DEFINITION 5.1. A function: $f:(X,\tau)\to (Y,\sigma)$ is called ψ -continuous if $f^{-1}(V)$ is a ψ -closed set of (X,τ) for every closed set V of (Y,σ) .

Theorem 5.2. 1. Every semi-continuous map and thus every continuous map and every α -continuous map is ψ -continuous.

- 2. Every ψ -continuous map is sg-continuous and thus β -continuous, gs-continuous and gsp-continuous.
- Proof. 1. Let $f:(X,\tau)\to (Y,\sigma)$ be a semi-continuous map. Let V be a closed set of (Y,σ) . Since f is semi-continuous, then $f^{-1}(V)$ is a semi-closed set of (X,τ) . By the Theorem 3.3, $f^{-1}(V)$ is also a ψ -closed set of (X,τ) . Therefore f is a ψ -continuous map.
 - 2. Let $f:(X,\tau)\to (Y,\sigma)$ be a ψ -continuous map. Let V be a closed set of (Y,σ) . Since f is ψ -continuous, then $f^{-1}(V)$ is a ψ -closed set of (Y,σ) . By the theorem 3.3, $f^{-1}(V)$ is sgclosed and thus β -closed, gs-closed and gsp-closed set of (Y,σ) . Therefore f is a sg-continuous map and thus β -continuous, gs-continuous and gsp-continuous.

The converse in the above Theorem are not true as it can be seen from the following examples.

Example 5.3. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, Y, \{a\}, \{b\}\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}\}$. Let f be the identity map from (X, τ) into (Y, σ) . f is not even semi-continuous since $\{a, c\}$ is a closed set of (Y, σ) but $f^{-1}(\{a, c\}) = \{a, c\}$ is not a semi-closed set of (X, τ) . However f is a ψ -continuous map.

Example 5.4. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\} = \sigma$. Define $g: (X, \tau) \to (Y, \sigma)$ by g(a) = c, g(b) = a and g(c) = c. g is not a ψ -continuous map since $\{a\}$ is a closed set of (Y, σ) but $g^{-1}(\{a\}) = \{b\}$ is not a ψ -closed set of (X, τ) . However g is a ψ -continuous map.

Thus the class of ψ -continuous maps properly contains the class of semi-continuous maps and thus it contains the class of continuous maps the class of α -continuous maps. Also the class of ψ -continuous maps is properly contained in the class of sg-continuous maps and hence it is contained in the classes of β -continuous maps, gs-continuous maps and gsp-continuous maps.

- Theorem 5.5. 1. ψ -continuity and g-continuity are independent of each other.
 - 2. ψ -continuity is independent from αg -continuity, $g\alpha$ -continuity and precontinuity.
- Proof. 1. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\} = \sigma$. Define $h: (X, \tau) \to (Y, \sigma)$ by h(a) = a, h(b) = c and h(c) = b. h is not g-continuous since $\{b\}$ is a closed set of (Y, σ) but $h^{-1}(\{b\}) = \{c\}$ is not a g-closed set of (X, τ) . However h is a ψ -continuous map. Define $\theta: (X, \tau) \to (Y, \sigma)$ by $\theta(a) = c$, $\theta(b) = b$ and $\theta(c) = a$. θ is not ψ -continuous since $\{b, c\}$ is a closed set of (Y, σ) but $\theta^{-1}(\{b, c\}) = \{a, b\}$ is not a ψ -closed set of (X, τ) . However θ is a g-continuous map.
 - 2. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, c\}\}$. Define $\phi : (X, \tau) \to (Y, \sigma)$ by $\phi(a) = a$, $\phi(b) = b$ and $\phi(c) = c$. ϕ is a ψ -continuous map. ϕ is neither a

pre-continuous nor an αg -continuous map. Moreover ϕ is not a $g\alpha$ -continuous map. The function g in the example 5.4 is not ψ -continuous. However g is pre-continuous, αg -continuous and $g\alpha$ -continuous.

The composition of two ψ -continuous maps need not be ψ -continuous as it can be seen from the following Example.

EXAMPLE 5.6. Let X,Y,τ,σ and ϕ be as in the above result. Let Z=X and $\eta=\{\emptyset,Z,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$. Define $f:(Z,\eta)\to (X,\tau)$ by f(a)=b, f(b)=a and f(c)=c. Clearly both f and ϕ are ψ -continuous maps. But $\phi\circ f:(Z,\eta)\to (Y,\sigma)$ is not ψ -continuous since $\{b\}$ is a closed set of (Y,σ) but $(\phi\circ f)^{-1}(\{b\})=f^{-1}(\{b\}))=f^{-1}(\{b\})=\{a\}$ is not a ψ -closed set of (Z,η) .

We introduce the following definitions:

DEFINITION 5.7. A function $f(X, \tau) \to (Y, \sigma)$ is called ψ -irresolute if $f^{-1}(V)$ is a ψ -closed set of (X, τ) for every ψ -closed set V of (Y, σ) .

Clearly every ψ -irresolute map is ψ -continuous. The converse, however is not true as it can be seen from the following example.

Example 5.8. Let X,Y,τ,σ and f be as in the example 5.3. f is not a ψ -irresolute since $\{a\}$ is a ψ -closed set of (Y,σ) but $f^{-1}(\{a\}) = \{a\}$ is not a ψ -closed set of (X,τ) . However f is a ψ -continuous map.

THEOREM 5.9. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be any two functions. Then:

- (i) $g \circ f : (X, \tau) \to (Z, \eta)$ is ψ -continuous if g is continuous and f is ψ -continuous.
- (ii) $g \circ f : (X, \tau) \to (Z, \eta)$ is irresolute if g is ψ -irresolute and f is ψ -irresolute.
- (iii) $g \circ f : (X, \tau) \to (Z, \eta)$ is ψ -continuous if g is ψ -continuous and f is ψ -irresolute.

Proof. Omitted.

THEOREM 5.10. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective ψ -irresolute map. If (X,τ) is a semi- $T_{1/3}$ space, then f is an irresolute map.

Proof. Let V be a semi-open set of (Y, σ) . Then C(V) is a semi-closed set of (Y, σ) . By the Theorem 3.3, C(V) is a ψ -closed set of (Y, σ) . Since f is a ψ -irresolut map, then $f^{-1}(C(V))$ is a ψ -closed set of (X, τ) . Since (X, τ) is a semi- $T_{1/3}$ space, then $f^{-1}(C(V))$ is a semi-closed set of (X, τ) . Since f is a bijection, $f^{-1}(V) = C(f^{-1}(C(V)))$. Thus $f^{-1}(V)$ is a semi-open set of (X, τ) . Therefore f is an irresolute map.

Theorem 5.11. Let $f:(X,\tau) \to (Y,\sigma)$ be a surjective sg-irresolute and a pre-semi-closed map. Then for every ψ -closed set A of (X,τ) , f(A) is a ψ -closed set of (Y,σ) .

Proof. Let A be a ψ -closed set of (X, τ) . Let U be a sg-open set of (Y, σ) such that $f(A) \subseteq U$. Since f is a surjective, sg-irresolute map, then $f^{-1}(U)$ is a sg-open set of (X, τ) . Then $scl(A) \subseteq f^{-1}(A)$ since A is a ψ -closed set and $A \subseteq f^{-1}(U)$. This implies $f(scl(A)) \subseteq U$. Since f is a pre-semi-closed, then $f(scl(A)) \subseteq scl(f(scl(A)))$. Now $scl(f(A)) \subseteq scl(f(scl(A))) = f(scl(A)) \subseteq U$. Therefore f(A) is a ψ -closed set of (Y, σ) .

Theorem 5.12. Let $f:(X,\tau)\to (Y,\sigma)$ be a surjective, ψ -irresolute and a pre-semi-closed map. If (X,τ) is a semi- $T_{1/3}$ space, then (Y,σ) is also a semi- $T_{1/3}$ space.

Proof. Let A be a ψ -closed set of (Y, σ) . Since f is a ψ -irresolute map, then $f^{-1}(A)$ is a ψ -closed set of (X, τ) . Since (X, τ) is a semi- $T_{1/3}$ space, then $f^{-1}(A)$ is semi-closed in (X, τ) . Then $f(f^{-1}(A))$ is semi-closed in (Y, σ) since f is a pre-semi-closed map. Since f is a surjection, then $A = f(f^{-1}(A))$. Thus A is a semi-closed set of (Y, σ) . Therefore (Y, σ) is a semi- $T_{1/3}$ space.

REFERENCES

[1] M.E. ABD EL-MONSEF, S.N. EL-DEEB, AND R.A. MAHMOUD, β open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12
(1983), 77–90.

- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), no. 1, 24–32.
- [3] S.P. ARYA AND T. NOUR, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math. 21 (1990), no. 8, 717–719.
- [4] K. BALACHANDRAN, R. DEVI, AND H. MAKI, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 14 (1993), 41–54.
- [5] K. BALACHANDRAN, R. DEVI, AND H. MAKI, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math. 29 (1998), no. 1, 37–49.
- [6] K. BALACHANDRAN, H. MAKI, AND P. SUNDARAM, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12 (1991), 5–13.
- [7] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), no. 3, 375–382.
- [8] N. BISWAS, On characterizations of semi-continuous functions, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), no. 8, 399–402.
- [9] S.G. CROSSLEY AND S.K. HILDEBRAND, Semi-topological properties, Fund. Math. 74 (1972), 233–254.
- [10] R. Devi, K. Balachandran, and H. Maki, Semi-generalized homeomorphism and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math. 26 (1995), no. 3, 271–284.
- [11] G. DI MAIO AND T. NOIRI, On s-closed spaces, Indian J. Pure. Appl. Math. 18 (1987), no. 3, 226–233.
- [12] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16 (1995), 35–48.
- [13] J. Dontchev, On point generated spaces, Question Answers Gen. Topology 13 (1995), 63–69.
- [14] J. Dontchev, On some separation axioms associated with the α-topology, Mem. Fac. SCi. Kochi Univ. Ser. A. Math. 18 (1997), 31–35.
- [15] J. DONTCHEV AND M. GANSTER, On δ -generalized closed sets and $T_{3/4}$ spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 17 (1996), 15–31.
- [16] J. DONTCHEV AND H. MAKI, On sg-closed sets and semi-λ-closed sets, Questions and Answers Gen. Topology 15 (1997), 259–266.
- [17] W. Dunham, $T_{1/2}$ spaces, Kyungpook Math. J. 17 (1977), 161–169.
- [18] Y. GNANAMBAL, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math. 28 (1997), no. 3, 351–360.
- [19] D.S. Jancović and I.L. Reilly, On semi-separation properties, Indian J. Pure. Appl. Math. 16 (1985), no. 9, 957–964.
- [20] N. Levine, On the commutativity of the closure and the interior op-

- erator in topological spaces, Amer. Math. Montly 68 (1961), 474-477.
- [21] N. LEVINE, Semi-open sets and semi-continuity in toplogical spaces, Amer. Math. Montly 70 (1963), 36-41.
- [22] N. LEVINE, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), no. 2, 89–96.
- [23] S.N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sco. Bruxelles Ser. I. 89 (1975), 395–402.
- [24] S.N. Maheswari and U. Tapi, Feebly T_1 spaces, An. Univ. Timisoara Ser. Stiint. Mat. 16 (1978), no. 2, 173–177.
- [25] H. Maki, R. Devi, and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42 (1993), 13–21.
- [26] H. MAKI, R. DEVI, AND K. BALACHANDRAN, Associeted topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15 (1994), 51–63.
- [27] A.S. Mashhour, M.E. Abd El-Monsef, and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt **53** (1982), 47–53.
- [28] A.S. MASHHOUR, I.A. HASANEIN, AND S.N. EL-DEEB, α -continuous and α -open mappings, Acta Math. Hung. 41 (1983), no. 3-4, 213-218.
- [29] O. NJASTAD, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [30] P. Sundaram, H. Maki, and K. Balachandaran, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, Bull. Fukuoka Univ. Ed. Part. III **40** (1991), 33–40.
- [31] N.V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. **78** (1968), 103–118.

Received April 26, 1999.