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Between Semi—closed Sets and
Semi—pre—closed Sets

M.K.R.S.VEERA KuMAR ¥

SUMMARY. - In this paper a new class of sets, namely 1-closed
sets is introduced for topological spaces. This class falls strtictly
in between the class of semi-closed sets and the class of semi-
preclosed sets. This class also sits strictly in between the class of
semi-closed sets and the class of semi-generalized closed sets. We
also introduce and study a new class of spaces, namely sema-T} /3
spaces. Further we introduce and study 1-continuous maps
and -irresolute maps.

1. Introduction

N. Levine [21] and M.E.Abd El-Monsef et al. [1] introduced semi-
open sets and [-sets respectively. (-sets are also called as semi-
preopen sets by Andrijevi¢ [2]. Levine [22] generalized the con-
cept of closed sets to generalized closed sets. Bhattacharya and
Lahiri [7] generalized the concept of closed sets to semi-generalized
closed sets via semi-open sets. The complement of a semi-open (resp.
semi-generalized closed) set is called a semi-closed [8] (resp. semi-
generalized open [7]) set. A lot of work was done in the field of
generalized closed sets. In this paper we employ a new technique
to obtain a new class of sets, called 1y-closed sets. This class is
obtained by generalizing semi-closed sets via semi-generalized open
sets. It is shown that the class of 1-closed sets properly contains

) Author’s address: J.K.C. College, Guntur-522 006, Andhra Pradesh, India
1991 AMS Classification: 54 A 05, 54 D 10

Keywords and Phrases: semi-closure, sg-open sets, semi-T;,, spaces, semi-T} 3
spaces



26 M.K.R.S.VEERA KUMAR

the class of semi-closed sets and is properly contained in the class of
semi-preclosed sets. Further it is observed that the class of 1-closed
sets is indipendent from the class of preclosed sets, the class of g-
closed sets, the class of ga-closed sets and the class of ag-closed sets.
Moreover this class sits properly in between the class of semi-closed
sets and the class of semi-generalized closed sets.

Bhattacharya and Lahiri [7], Jancovi¢ and Reilly [19] and Maki
et al. [25] introduced semi-T /2 spaces, semi-Tp and T} /o spaces re-
spectively. Later Dontchev [13] [14] proved that ,T} /o, semi-Tp and
semi-T'  separation axioms are equivalent. R. Devi, K. Balachan-
dran and H. Maki [5] and R. Devi, H. Maki and K. Balachandran [4]
introduced T} spaces and T}, spaces respectively. As an application
of 1-closed sets, we introduced a new class of spaces, namely semi-
Ty3 spaces. We also characterize semi-T7/3 spaces and show that
the class of semi-T' /3 spaces properly contains the class of semi-T7 /o
spaces, the class of 4T} spaces and the class of semi-T7 /3 spaces.

We also introduce and study two classes of maps, namely -
continuity and 1-irresoluteness. i-continuity falls strictly in be-
tween semi-continuity [21] and [-continuity [1]. )-continuity also
falls strictly in between semi-continuity [21] and sg-continuity [30].

2. Preliminaries

Throughout this paper (X, 7), (Y,7) and (Z, 7) represent non-empty
topological spaces on which no separation axioms are assumed un-
less otherwise mentioned. For a subset A of a space (X, 1), cl(A),
int(A) and C(A) denote the closure of A, the interior of A and the
complement of A in X respectively.

Let us recall the following definitions, which are useful in the
sequel.

DEFINITION 2.1. A subset A of a space (X, T) is called

1. a semi-open set [21] if A C cl(int(A)) and a semi-closed
set if int(cl(A)) C A,

2. a preopen set [27] if A C int(cl(A)) and a preclosed set if
c(int(A)) C A,
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3. an a-open set [29] if A C int(cl(int(A))) and an a-closed set
if cl(int(cl(A))) C A,

4. a semi-preopen set [2] (=p-open [1]) if A C cl(int(cl(A)))
and a semi-preclosed set [2] (=(-closed [1]) if int(cl(int(A))) C
A,

5. a regular-open set if A = int(cl(A)) and a regular-closed
set if cl(int(A)) = A,

6. a semi-regular set [11] if it is both semi-open and semi-closed
in (X,7),

7. a 0-closed set [31] if A= cls(A), where
cs(A) ={z € X/int(dl(U))NA# D,z €U and U € 7}.

The semi-closure (resp. a-closure, semi-preclosure) of a subset A
of (X,7) is the intersection of all semi-closed (resp a-closed, semi-
preclosed) sets that contain A and is denoted by scl(A) (resp. acl(A),
spcl(A)). The union of all semi-open subsets of X is called the semi-
interior of A and is denoted by sint(A).

The following definitions are useful in the sequel.

DEFINITION 2.2. A subset A of a space (X, T) is called

1. a generalized closed (briefly g-closed) set [22] if cl(A) CU
whenever A C U and U is open in (X, ),

2. a semi-generalized closed (briefly sg-closed) set [7] if scl(A) C
U whenever A C U and U is semi-open in (X, T), - the com-
plement of a sg-closed set is called a sg-open set -

3. a generalized semi-closed (briefly gs-closed) set [3] if scl(A) C
U whenever A C U and U is open in (X, ),

4. an a-generalized closed (briefly ag-closed ) set [26] if acl(A) C
U whenever A CU and U is open in (X,7),

5. a generalized a-closed (briefly ga-closed) set [25] if acl(A) C
U whenever A CU and U is a-open in (X, ),

6. a ga**-closed set [25] if cl(A) C int(cl(U)) whenever A C U
and U is a-open in (X, 1),
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a generalized semi-preclosed (briefly gsp-closed) set [12]
if spcl(A) C U whenever A C U and U is open in (X, 1),

a d-generalized closed (briefly dg-closed) set [15] if cls(A) C
U whenever A CU and U is open in (X,7),

a Q set [20] if int(cl(A)) = cl(int(A)).

DEFINITION 2.3. A function f: (X,7) — (Y, 0) is said to be

1.

10.

11.

semi-continuous [21] if f~1(V) is semi-open in (X,7) for
every open set V of (Y, o),

pre-continuous [27] if f~1(V) is pre-closed in (X, T) for ev-
ery closed set V of (Y,0),

a-continuous /28] if f~1(V) is a-closed in (X,T) for every
closed set V of (Y,0),

. B-continuous [1]if f~1(V) is semi-preopen in (X, T) for every

open set V of (Y, o),

g-continuous [6] if f 1(V) is g-closed in (X,7) for every
closed set V of (Y,0),

sg-continuous [30] if f~Y(V) is sg-closed in (X, T) for every
closed set V of (Y,0),

gs-continuous [10] if f=Y(V) is gs-closed in (X, ) for every
closed set V of (Y,0),

ga-continuous [25] if f1(V) is ga-closed in (X,T) for every
closed set V of (Y,0),

ag-continuous [18] if f~1(V) is ag-closed in (X, T) for every
closed set V of (Y,0),

gsp-continuous [12] if f~1(V) is gsp-closed in (X, T) for ev-
ery closed set V of (Y,0),

irresolute /9] if f (V) is semi-open in (X, T) for every semi-
open set V of (Y, o),
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12. sg-irresolute [30] if f1(V) is sg-closed in (X,T) for every
sg-closed set V of (Y, 0),

13. pre-semi-open [9] if f(U) is semi-open in (Y,o) for every
semi-open set U of (X, T),

1. pre-semi-closed [9] if f(U) is semi-closed in (Y, o) for every
semi-closed set U of (X, T).

DEFINITION 2.4. A space (X, T) is called a
1. Tyyy space [22] if every g-closed set is closed,
2. semi-T} o space [7] if every sg-closed set is semi-closed,

3. semi-Tp space [19] if every singleton is either open or nowhere
dense,

4. oT; space [25] if a space (X, T%) is T;, where i =1/2,1,

©

aTl”‘/2 space [25] if every ga**-closed set is a-closed,
oL space [25] if every ga™*-closed set is closed,
Ty space [4] if every gs-closed set is closed,

oIy space [5] if every ag-closed set is closed,

AN R

semi-T space [23] if, for any z,y € X such that x # vy, there
exist two semi-open sets G and H such that x € G, y € H but
z¢ Handy ¢ G,

10. feebly-T) space [19], [24] if every singleton is either nowhere
dense or clopen,

11. T34 space [15] if every 0-g-closed set is §-closed.

3. Basic properties of i-closed sets

We introduce the following definition:

DEFINITION 3.1. A suset A of (X, 7) is called a 1-closed set if
scl(A) C U whenever A CU and U is a sg-open set of (X, 7).
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REMARK 3.2. If A is -closed and U is sg-open with A C U, then
scl(A) C sint(U). This follows from the Theorem 6 of [7].

THEOREM 3.3. 1. Every semi-closed set, and thus every closed
set and every a-closed set is ¥-closed.

2. Every 1)-closed set is sg-closed, and thus semi-preclosed (by
Theorem 2.4 (i) in [14]) and also gs-closed.

Proof. Follows immediately from the definitions. O

The following examples show that these implications are not re-
versible.

EXAMPLE 3.4. Let X = {a,b,c}, 7 = {0,X,{a,b}}. Then A =
{a,c}. A isp-closed. B is not a semi-closed set.

EXAMPLE 3.5. Let X = {a,b,c}, 7 = {0, X,{a},{b,c}}. Then B =
{b} is sg-open and sg-closed. Since scl(B) = {b,c}, B is not -
closed.

Thus the class of 1/-closed sets properly contains the class of semi-
closed sets, and thus properly contains the class of a-closed sets and
also properly contains the class of closed sets. Also the class of 1)-
closed sets is properly contained in the class of sg-closed sets, and
hence it is properly contained in the class of semi-preclosed sets and
contained in the class of gs-closed sets.

THEOREM 3.6. 1. t-closedness and g-closedness are independent
notions.

2. -closedness is independent from ga-closedness, ag-closedness
and preclosedness.

Proof. 1t can be seen by the following examples. O

EXAMPLE 3.7. Let X = {a,b,c}, 7 = {0, X,{a},{a,c}} and C =
{c} and D = {a,b}. C is a 1-closed set but not even a g-closed set
of (X, 7). D is a g-closed set but not a 1p-closed set of (X, 7).

The following two examples show that -closedness is indipendent
from ga-closedness, ag-closedness and preclosedness.
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EXAMPLE 3.8. Let X = {a,b,c}, 7 = {0, X,{a},{b},{a,b}} and
E = {a}. E is t-closed but it is neither a ga-closed nor an ag-
closed set. Also E is not a preclosed set.

EXAMPLE 3.9. Let X, 7 and B ba as in the example 3.5. B is not
a -closed set of (X, 7). However B is a ga-closed set hence it is an
ag-closed set. Moreover B is also a preclosed set of (X, ).

The following Theorem characterize the 1-closed sets.
THEOREM 3.10. Let A be a subset of (X, 7). Then

1. A is ip-closed if and only if scl(A) — A does not contain any
non-empty sg-closed set,

2. If A is i-closed and A C B C scl(A), then B is 1-closed.

Proof. 1. Necessity: Suppose that A is 1¢-closed and let F' be a
nonempty sg-closed set with F' C scl(A) —A. Then AC X — F
and so scl(A) C X —F. Hence F C X —scl(A), a contradiction.
Sufficiency: Suppose that for A C X, scl(A) — A does not
contain a non-empty sg-closed set. Let U be a sg-open set
such that A C U. If scl(A) ¢ U, then scl(A) NC(U) # 0. It
follows from theorem 2.3 in [16] that scl(A)NC(U) is sg-closed,
a contradiction.

2. Follows from tha fact that scl(A) = scl(B).
U

THEOREM 3.11. For a subset A of (X, 7), the following conditions
are equivalent:

1. A is sg-open and )-closed,
2. A is semi-regular.

COROLLARY 3.12. For a subset A of a space (X,T), the following
conditions are equivalent:

1. A is pre-open, sg-open and 1)-closed,

2. A is regular open,
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3. A is pre-open, sg-open and semi-closed.

The following example shows that a subset G of a space (X, 7) need
not be a closed set even though G is pre-open, sg-open and a )-set.

EXAMPLE 3.13. Let X = {a,b,c} and 7 = {0, X, {a}} and G = {a}.
Clearly G is pre-open, sg-open and a QQ-set but not a closed set.

THEOREM 3.14. For a subset A of a space (X, 1), the following con-
ditions are equivalent:

1. A is clopen,

2. A is preopen, sg-open, Q-set and -closed.

Proof. 1 = 2 is obvious. 2 = 1: Since A is preopen, sg-open and a
p-closed set of (X, 7), then by the Theorem 3.12 A is a regular open
set. This implies A is open. On the other side, A = int(cl(A4)) =
cl(int(A)) C cl(A) since A is a Q-set. So A is closed. Therefore A is
a clopen set of (X, 7). O

REMARK 3.15. Union of two 1-closed sets need not to be 1p-closed.
Let X ={a,b,c}, 7 =10, X,{a},{b},{a,b}}, A={a} and B = {b}.
Both A and B are 1p-closed but AU B, their union, is not a 1-closed
set of (X, 7).

REMARK 3.16. The following diagram shows tha relationships estab-
lished between 1p-closed sets and some other sets. A —» B (resp.

A «——» B) represents A implies B but not conversely (resp. A
and B are independent of each other).
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cIosed———» g -closed —» ag -closed

a—closed —> gor -closed

semi- cI / gs-clo — Qgsp-closed
q}c o > sg cIo%d/'
seml preclosed preclosed —» gsp-closed

4. Semi-T) 3 spaces
We introduce the following definitions:

DEFINITION 4.1. A space (X, T) is said to be a semi-T; /3 space if
every P-closed set in it is semi-closed.

THEOREM 4.2. Every semi-T7 o space is a semi-Ty3 space.

The converse of the above theorem is not true as it can be seen
from the following example.

ExAMPLE 4.3. Let X = {a,b,c} and 7 = {0, X,{a},{b,c}}. (X,7)
is not a semi-T' /o space since {b} is a sg-closed set but not a semi-
closed set of (X, 7). However (X,7) is a semi-T} 3 space.

We characterize semi-T} /3 spaces in the following Theorem.

THEOREM 4.4. For a space (X, T), the following conditions are equiv-
alent:

1. (X,7) is a semi-Ty 3 space,
2. Every singleton of X 1is either sg-closed or semi-open,

3. Bvery singleton of X 1is either sg-closed or open.
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Proof. 1 = 2: Let x € X and suppose that {z} is not a sg-closed
of (X,7). Then X — {z} is a sg-open set of (X, 7). So X is the
only sg-open set of (X,7). So X is the only sg-open set containing
X — {z}. Hence X — {z} is a 9-closed set of (X, 7). Since (X,7)
is a semi-T' 3 space, then X — {z} is a semi-closed set of (X, 7) or
equivalentely {z} is semi-open set of (X, 7).

2 = 1: Let A be a t)-closed set of (X, 7). Clearly A C scl(A). Let
z € X. By assumption, {z} is either sg-closed or semi-open. Case
(i): Suppose {z} is sg-closed. By the Theorem 3.10 scl(A) — A does
not contain any non-empty sg-closed set. Since x € scl(A), then
z € A. Case (ii): Suppose {z} is a semi-open set. Since z € scl(A),
then {z}NA # 0. Sox € A. Thus in any case, scl(A) C A. Therefore
A = scl(A) or equivalentely A is a semi-closed set of (X, 7). Hence
(X, 7) is a semi-T} /3 space.

2 & 3: Follows from the fact that a singleton is semi-open if and
only if it is open. O

THEOREM 4.5. Every Ty space (resp. T34 space, Ty space, OCTI*/2
space, T space, oTh space, oTy/o space) is a semi-Ty 3 space but
not conversely.

Proof. Since every T} space (resp. T /4 space, T1 /5 space, o171 space,
oTim space, OéTl*/2 space, T2 space) is a T4 space [15] (resp. T}
space [15], semi-T /5 space [7], oT1/2 space [25], aTl*/2 space [25],
T /2 space [25], semi-T} /; space [14]), the first assetion is true. The
space (X,7) in the example 4.3 is a semi-T} /3 space but not even a
semi-T7 /o space. ]

REMARK 4.6. Dontchev [13], [14] showed that 4Ty /o, semi-Tp, semi-
Ty)p separation azioms are equivalent and also that oTiness and
feebly-Tiness are equivalent. Dontchev and Ganster [15] proved that
every space T34 space is a semi-Ty space but not conversely.

THEOREM 4.7. Every Ty, space is a semi-Ty 3 space and an T} space
but the respective converses are not true.

Proof. First we observe that every Tj space is an 7T} space since
every ag-closed set is a gs-closed set. Tha fact that every Ty space is
a semi-T} /3 space follows from the Remark 6.10 of [10] since every T,
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space is a Tt /o space. The space in the example 3.8 is an 4T} space
but not a Ty, space. The space in the example 3.5 is a semi-T' /3 space
but not a T} space. ]

THEOREM 4.8. Every oTj space is a semi-T 3 but not conversely.

Proof. The first assertion follows from the Theorem 5.3 [5] and the
Theorem 4.2 since every T /5 space is a semi-T} ;5 space. The space
in the example 3.5 is a semi-T' /3 space but not an 7T}, space. O

DEFINITION 4.9. A function f: (X,7) = (Y,0) is called a pre-sg-
closed if f(U) is sg-closed in (Y, o) for every sg-closed set of (X, ).

THEOREM 4.10. If the domain of a bijective, pre-sg-closed and pre-
semi-open map is a semi-T' /3 space, then so is the codomain (=range).

Proof. Let f:(X,7) — (Y,0) be a bijective, pre-sg-closed and pre-
semi-open map. Suppose (X, 7) is a semi-T' /3 space. Let y € Y.
Since f is a bijection, then y = f(z) for some z € X. Since (X, 7) is
a semi-T7 /3 space, then by the Theorem 4.4, {z} is either sg-closed or
semi-open. If {z} is sg-closed, then {y} = f({z}) is sg-closed since
f is a pre-sg-closed map. If {z} is semi-open, then {y} = f({z})
is semi-open since f is a pre-semi-open map. Thus every singleton
of Y is either sg-closed or semi-open in (Y, o). By the Theorem 4.4
again, (Y, o) is also a semi-T} /3 space. O

REMARK 4.11. The following diagram shows the relationships among
the separation azioms considered in this paper. A —» B (resp.
A «—» B, A «——» B) represents A implies B but B need
not imply A always (resp. A and B are equivalent, A and B are
indipendent).
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T 1—>al vz ol vz ol

To—4Tp mml Tp

Tl—bT 34— T1/2—> semi- Tl/2

semi- Tl,

5. Continuous and -irresolute maps

We introduce the following definitions:

DEFINITION 5.1. A function: f: (X, 1) — (Y, 0) is called 1)-continuous
if f=Y(V) is a 9-closed set of (X,T) for every closed set V of (Y,0).

THEOREM 5.2. 1. Ewery semi-continuous map and thus every con-
tinuous map and every a-continuous map s P-continuous.

2. Every -continuous map is sg-continuous and thus B-continuous,
gs-continuous and gsp-continuous.

Proof. 1. Let f: (X,7) — (Y,0) be a semi-continuous map. Let
V be a closed set of (Y,0). Since f is semi-continuous, then
f1(V) is a semi-closed set of (X,7). By the Theorem 3.3,
f~H(V) is also a ¢-closed set of (X, 7). Therefore f is a 1)-

continuous map.

2. Let f: (X,7) — (Y,0) be a 1-continuous map. Let V be a

closed set of (Y,0). Since f is 4-continuous, then f='(V) is

a -closed set of (Y,0). By the theorem 3.3, f~1(V) is sg-

closed and thus (-closed, gs-closed and gsp-closed set of (Y, o).

Therefore f is a sg-continuous map and thus S-continuous, gs-
continuous and gsp-continuous.

O
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The converse in the above Theorem are not true as it can be seen
from the following examples.

EXAMPLE 5.3. Let X = {a,b,c} =Y, 7 ={0,Y,{a},{b}} and 0 =
{0,Y,{a},{b},{a,b}}. Let f be the identity map from (X,T) into
(Y,o0). f is not even semi-continuous since {a,c} is a closed set
of (Y,0) but f~'({a,c}) = {a,c} is not a semi-closed set of (X, 7).
However f is a -continuous map.

EXAMPLE 5.4. Let X = {a,b,c} =Y, 7 = {0, X,{a},{b,c}} = 0.
Define g : (X,7) = (Y,0) by g(a) = ¢, g(b) = a and g(c) = c. ¢
is not a p-continuous map since {a} is a closed set of (Y,o0) but
g '({a}) = {b} is not a v-closed set of (X,7). However g is a
-continuous map.

Thus the class of -continuous maps properly contains the class
of semi-continuous maps and thus it contains the class of contin-
uous maps the class of a-continuous maps. Also the class of 1)-
continuous maps is properly contained in tha class of sg-continuous
maps and hence it is contained in the classes of #-continuous maps,
gs-continuous maps and gsp-continuous maps.

THEOREM b5.5. 1. tp-continuity and g-continuity are independent
of each other.

2. -continuity is independent from ag-continuity, ga-continuity
and precontinuity.

Proof. 1. Let X = {a,b,c} =Y, 7 = {0,X,{a},{a,c}} = o.
Define h : (X,7) — (Y,0)by h(a) = a, h(b) = ¢ and h(c) = b.
h is not g-continuous since {b} is a closed set of (Y,o) but
h=t({b}) = {c} is not a g-closed set of (X, 7). However h is
a 1)-continuous map. Define 0 : (X,7) — (Y,0) by 6(a) = ¢,
0(b) = b and 6(c) = a. 6 is not 1-continuous since {b,c} is a
closed set of (Y,o) but 871({b,c}) = {a,b} is not a 1)-closed
set of (X, 7). However 0 is a g-continuous map.

2. Let X = {a,b,c} =Y, 7 ={0,X,{a},{b},{a,b}} and 0 =
{0,Y, {a}, {a.c}}. Define ¢ : (X,7) — (¥0) by dla) = a,
¢(b) = b and ¢(c) = ¢. ¢ is a 1-continuous map. ¢ is neither a
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pre-continuous nor an ag-continuous map. Moreover ¢ is not
a ga-continuous map. The function g in the example 5.4 is not
1p-continuous. However g is pre-continuous, ag-continuous and
ga-continuous.

g

The composition of two 1-continuous maps need not be 1-continuous
as it can be seen from the following Example.

EXAMPLE 5.6. Let X,Y,7,0 and ¢ be as in the above result. Let
Z =X and n ={0,7,{a},{b},{a,b},{a,c}}. Define f : (Z,n) —
(X,7) by f(a) = b, f(b) = a and f(c) = c. Clearly both f and
¢ are 1p-continuous maps. But ¢ o f : (Z,n) — (Y,0) is not 1)-
continuous since {b} is a closed set of (Y,0) but (po f) 1({b}) =
Yo7 (b)) = F7L({b}) = {a} is not a -closed set of (Z,7).

We introduce the following definitions:

DEFINITION 5.7. A function f(X,7) — (Y, 0) is called )-irresolute
if f7Y(V) is avp-closed set of (X, T) for every 1p-closed set V of (Y, o).

Clearly every i-irresolute map is t-continuous. The converse,
however is not true as it can be seen from the following example.

ExamMPLE 5.8. Let X,Y ,7,0 and f be as in the ezample 5.3. f is not
a y-irresolute since {a} is a yp-closed set of (Y, o) but f~1({a}) = {a}
is not a 1p-closed set of (X, 7). However f is a 1-continuous map.

THEOREM 5.9. Let f : (X,7) — (Y,0) and g : (Y,0) — (Z,n) be
any two functions. Then:

(i) go f: (X,7) = (Z,n) is p-continuous if g is continuous and
f is Pp-continuous.

(1) go f :(X,7) = (Z,n) is irresolute if g is 1p-irresolute and f is
p-irresolute.

(iii) gof : (X, 7) = (Z,n) is p-continuous if g is 1p-continuous and
I is y-irresolute.

Proof. Omitted. O
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THEOREM 5.10. Let f : (X,7) — (Y,0) be a bijective 1-irresolute
map. If (X,7) is a semi-Ty 3 space, then f is an irresolute map.

Proof. Let V be a semi-open set of (Y,0). Then C(V) is a semi-
closed set of (Y,0). By the Theorem 3.3, C(V) is a 1-closed set of
(Y,0). Since f is a ¢-irresolut map, then f~1(C(V)) is a ¢-closed set
of (X, 7). Since (X, 7) is a semi-T} /3 space, then f~1(C(V')) is a semi-
closed set of (X, 7). Since f is a bijection, f~1(V) = C(f~1(C(V))).
Thus f (V) is a semi-open set of (X, 7). Therefore f is an irresolute
map. ]

THEOREM 5.11. Let f: (X,7) = (Y,0) be a surjective sg-irresolute

and a pre-semi-closed map. Then for every -closed set A of (X, 1),
f(A) is a 1p-closed set of (Y,0).

Proof. Let A be a 1)-closed set of (X, 7). Let U be a sg-open set of
(Y, 0) such that f(A) C U. Since f is a surjective, sg-irresolute map,
then f~1(U) is a sg-open set of (X, 7). Then scl(A) C f~1(A) since
A is a y-closed set and A C f~Y(U).This implies f(scl(A)) C U
Since f is a pre-semi-closed, then f(scl(A)) C scl(f(scl(A))).

scl(f(A)) C scl(f(scl(A))) = f(scl(A)) C U. Therefore f(A) is a
-closed set of (Y, 0). O

THEOREM 5.12. Let f : (X, 7) — (Y,0) be a surjective, 1-irresolute
and a pre-semi-closed map. If (X, ) is a semi-T 3 space, then (Y, o)
is also a semi-Ty 3 space.

Proof. Let A be a 1p-closed set of (Y,0). Since f is a 1)-irresolute
map, then f~1(A) is a 1-closed set of (X, 7). Since (X, 7) is a semi-
T /3 space, then f~1(A) is semi-closed in (X, 7). Then f(f~'(A))
is semi-closed in (Y, o) since f is a pre-semi-closed map. Since f is
a surjection, then A = f(f~'(A)). Thus A is a semi-closed set of
(Y,0). Therefore (Y,0) is a semi-T} /3 space. O
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