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Some New Results on Global
Nonexistence and Blow-up for
Evolution Problems with Positive
Initial Energy

ENzO VITILLARO )

SUMMARY. - This paper deals with some new results on blow-up or
global nonezistence for evolution equations with positive initial
energy. The positive level of the energy which can be reached has
a Mountain Pass type characterization, which is emphasized in
the paper. We consider wave problems with source and damping
in the interior or at the boundary of the domain and porous media
equation with source, in both the slow diffusion and fast diffusion
cases.

1. Introduction

This paper is concerned with global nonexistence results for evo-
lution equations which can be described by the abstract model

(P(ue))e + A(u) + Q(F,we) = F(u), 1 €[0,00) (1)

where A, F', and P are possibly nonlinear operators in appropriate
Banach spaces, respectively having potentials A, F, and P , un-
derstanding that A is a divergence type differential operator, P an
evolution operator (which can also be zero) and F' a driving force.
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The operator @) represents a damping term, that is Q(t, us)u; > 0
in some appropriate sense. To the solutions of (1) is associated, at
least formally, an energy function

E(t) = P (ur) + Au) — F(u)

where P*(u;) = P(u)ur— P(u). There is a large literature on global
nonexistence and blow—up for solutions, with negative initial energy,
of equations which belongs to the class described by (1), from the
classical papers [3], [10], [11], [14], [17], [18], [19], [20], [28], [25], [26],
[27], [40], [41], [43], [44] when P and @ are linear, mainly obtained
with the so called convexity method, to the more recent papers [13]
(dealing with the case Pu; = u; , A = —A), [32] (dealing with
equation (1)), [29] (dealing with the nonlinear parabolic case), [30]
(in which A and F can be also time—dependent).

Much less is known when the initial energy is positive. In [36]
was studied the Cauchy-Dirichlet problem

uy — Au = |u|P~2u, in [0, 00) x €,
u =0, in [0, 00) x 00 (2)
u(0) = g, ut(0) = uy

where €2 is a bounded and smooth subset of R*, n > 1,2 <p <r
(here and in the sequel r = 2n/(n — 2) if n > 3, r is arbitrarily large
ifn=2r=ocifn=1),u € H}(Q), u1 € L*(Q). The authors
proved that, if F(0) < d and J'(ug)ug < 0, the solution blows-up in
finite time, while if E(0) < d and J'(ug)uo > 0 the solution is global,

where (here and in the sequel || - ||, denotes the usual L” norm),
d= inf sup J(Au), 3
wEH(Q),u#0 \>0 ( ) ( )
1 1
J(u) = 5IIVullz - el (4)
1
B(0) = 5 llwallz + 7 (uo). (5)

The result can be usefully visualized in the following way: note that

1 By
E(0) = §IIVU0H§ - jllVUng = g([IVuoll2),
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Figure 1: The four regions A, B, C and D in the plane (\, E(0)),
where A = || Vug||2.

where Bj is the optimal constant of Sobolev embedding H{ () —
LP(€2). Then the behavior of the solution u is known when
(IIVugl|2, E(0)) lies in the regions A, B and C of the plane charac-
terized by (see Figure 1)

A={(N\E)€[0,00) xR:g(A\) <E<E;,\ <A},
B={(ME)€[0,00) x R:max{g()),0} < E < Ey,A > A},
C={\E)€e0,0) xR:g(\) <E <0},

where A1 is the absolute maximum point of g and E; = g(A1) > 0. It
is easy to see that Ey = d (see section 2 below) and that, under con-
dition E(0) < Ey, J'(ug)u, < 0(> 0) if and only if [jug|lp, > A (< A1).
So the quoted result can be restated as follows: if (||ugl|p, £(0)) € A
the solution is global, while if (||ug||,, £(0)) € C blow—up in finite
time occurs. In [16] a similar result is established for the parabolic
problem

up — Agu = |ulP~2u, in [0,00) x Q,
u =0, in [0,00) X 99, (6)
u(0) = ug,

where Agu = div(|Vu|*~2Vu), s > 1, and d is again given by (3)
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and (4), with the obvious modifications due to the presence of the
s-Laplacian operator (see subsection 3.1 below).

More recently IKEHATA studied in [15] the case of wave equa-
tions with source, like (2), with the addition of a nonlinear damping
(see (9) below), proving blow—up of the solutions when E(0) << d.
Moreover Pucct and SERRIN dealed in [37] with the case in which P
and () are linear, and A and F' can be also time-dependent. Finally
LEVINE and TODOROVA studied in [34] wave equations with nonlin-
ear damping and source terms, proving blow—up for arbitrarily large
initial positive energy, with a particular choice of initial data.

The same lack of knowledge in the positive energy case occurs
when A(u) = —A(lul™ tu), m >0, m#1, P=0and Q(¢,us) = uy,
i.e for the porous media equation with source, which is not of type
(1). We refer to [12], [31] and [35] (see also the recent book [39]) in
the so called slow diffusion case m > 1, and to [9] in the fast diffusion
case 0 <m < 1. See section 4 below for more information on known
results for this problem.

In the first part of this paper (see section 2 below) we show some
interesting and new applications of the global nonexistence result of
[37] to some concrete evolution problems which were not studied by
Pucct and SERRIN. More precisely we study the situation in which
the evolution process, developing in some bounded domain 2 of R,
is governed by the wave operator (i.e. A = —A and Pu; = u; in (1)),
in presence of a damping operator ) and a source operator F' taking
their origin from the boundary of Q. This type of problems, known
as wave equation with boundary stabilization, has been widely inves-
tigated in the framework of Control Theory when F' is an attractive
force or F' = 0. See [5], [6], [8], [7], [21], [22], [23], [24], [38], [48], and
the more recent paper [4].

The case in which F' is a source term, but ¢ = 0, has been
investigated in [33], where the authors consider the problem

Ut — Ay = 0, in [0, OO) X Q,
u=0 in [0,00) x Ty,
% :f(u)a in [0,00) XFla

u(0) = up, ug(0) = u1,

where € is a bounded regular domain of R™, roughly 92 = I'g U Ty,
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and f(u)u > 0.
Here we consider the following two problems: first of all

uy — Au + a(z)uy = |uP~2u, in [0, 00) x €,
u=0 in [0, 00) x Ty, 7)
g_}j = _b(w)uta in [01 OO) X Fla

u(0) = wo, ut(0) = uy,

where Q (as before) is a bounded regular domain of R” and 99 is
the union of two measurable subsets I'g and I'; having intersection of
zero (n — 1)-dimensional Lebesgue measure. Moreover we suppose
that Ty has positive (n — 1)—dimensional Lebesgue measure, that
2 < p <, that a € L*(Q), b € L*>®(T"1) be nonnegative and that
ug € H&(Q), Uy € LQ(Q).

Next we consider the problem

uy — Au+ a(z)up = 0, in [0,00) x Q,
u=0 in [0,00) x Tg, (8)
% = —b(z)uy + |ulP2u, in [0,00) x I'y,

u(0) = up, uy(0) = u1,

where Q. T'g, 'y, a, b, ug and u; are as before, and 2 < p < 1+ 1r/2.

The first aim of this paper is to show that for the solutions of (7)
and (8) a global nonexistence result for initial data (||Vugll2, E(0))
in region B U C' can be proved, where E; has a variational charac-
terization (which is d for problem (8) and a similarly characterized
level for (7)). To prove these two results it is at first necessary to
give a (formally) more general version of the abstract result of [37].
Moreover we extend these two results also for initial data in region
D.

The second purpose of the paper is to illustrate as the abstract
global nonexistence result of [37] for initial data in the region BUC
can be extended to the case of nonlinear operators () and P, that is to
problem (1), studied by LEVINE and SERRIN in [32] when E(0) < 0
(i.e. (||[Vuoll2, £(0)) € C). The complete statement of the result for
equation (1) and the proof of it are contained in the author’s recent
paper [46], so the aim of this part is essentially expository. For this
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reason we give in section 3 the result and a (self-contained) version
of the proof in the case of the model equation, first introduced in
[13].

ug — Au + |ug|™ 2uy = |ulP~2u, in [0, 00) x Q,
u=0 in [0, 00) x 99, (9)
u(0) = wuy, u(0) = uq,

where Q, up and u; are as before, 2 < p < rand 1 < m < p.
In this way we show the exact generalization of the blow—up result
of [36] to the case of nonlinear damping terms. Moreover we show
some applications of the result of [46] to concrete evolution problems
arising in the applications.

The last aim of the paper is to give a blow-up result for initial
data

(I (Juo|™ *uo)|l2, E(0)) € BUCUD

(which sets have to be conveniently defined) for the non linear case
A(u) = —A(|u|/™ 'u), that is for the Cauchy-Dirichlet problem re-
lated to the porous media equation with source

ug = A(Ju|™ u) + |uP~2u, in [0,00) X Q,
u=>0 in [0,00) x 09, (10)
u(0) = g,

where  is as before, m > 0, max{2,m+ 1} <p < 1+r(m—1), and
luo|™ tug € HE(Q). The proof is only sketched, as a complete one
can be founded in the forthcoming paper of the author [45].

2. Problems with boundary damping and source

This section is devoted to apply the result of [37] to (7) and (8),
and to generalize these applications to initial data in region D. To
reach this goal it is necessary, at first, to slightly modify the abstract
setting of [37]. For our purpose it is enough to consider the case in
which A and F are autonomous. We consider the abstract equation

Puy + Q(t)ug + B*R(t) (Bu)r + A(u) = F(u), on [0,00). (11)
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Our assumptions on P, ), A and F are the same of the paper quoted
above, and we recall them here for the reader convenience. There are
Hilbert spaces V, Y, and Banach spaces W, X, respectively having
duals V', Y’ and W', X', and operators

PecL(V,V), AecCcW;W'),
FeC(X;X"), Qe ([0,00); L(Y,Y"))

where L(A, B) denotes the space of bounded linear operators from
the Banach space A to the Banach space B. The linear operator P is
symmetric and nonnegative definite, while the (possibly) nonlinear
operators A and F respectively possess C''—potentials

A:WoSR  F:XoR

normalized with the condition A(0) = F(0) = 0. Moreover Q(t) is
symmetric and nonnegative definite, and Qy(¢) is non positive defi-
nite (and necessarily symmetric) for all ¢ > 0.

Concerning the additional term *R(t)(Bu); introduced in (11),
we suppose that R € C'([0,00); L(Z, Z')) for some Hilbert space Z
(with dual Z'), and that R(¢) and Ry(t) verify the same symmetry
and sign assumptions verified by Q(¢) and Q(t). Moreover (3 is a
fixed bounded linear operator from W to Z, and B* denotes the
usual adjoint operator §* € L(Z'; W'), defined by *v = v o 3 for all
veZ.

As in [37] we suppose that there is a nontrivial subspace (non
necessarily closed) G of V., W and Y. We define

K=1{¢:[0,00) = G suchthat B¢ c HL ([0,00);Z) and
¢ € C([0,00); W) N C([0,00); X) N C([0,00); V) N Hige ([0, 00); V).

Adapting the analogous definition of [37], and denoting (-,-) 4 as the
usual duality product in a Banach space A, we say that u € K is a
strong global solution of (11) if:

(a) the distribution identity

Pul). 6], = [ (P, i)y = (A, Sy~ (Que t)y

—(R(Bu)¢, Bo)z + (F(u), d)x
(12)
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for all t > 0, ¢ € K, is verified;

(b) the energy conservation law (in the weak form of inequality)

B(t) - B(0) < — / (Ques )y + (R(Bu), (B))z]  (13)

holds for ¢t > 0, where

B(1) = 5 (Pu(t) ui(t))y + A(u(t)) — Flult), € [0,00),
(14)

is the total energy associated to u.

Moreover we suppose that there are constants p > ¢ such that
(A(u), wyw — (F(u),u)x < qA(u) —pF(u)
for all (t,u) € [0,00) X G.

REMARK 2.1. It is clear that if the solution u satisfies the further
regularity u € HL _([0,00); W), the one can avoid to introduce the
additional term B*R(t)(Bu); in (11), subsuming it in Q(t)us, conve-
niently redefining Q as Q + B*RB on Y N W. However this further
regularity is not known in the applications we consider later, moti-

vating the generalization we made here.

We can then state the generalization of [37, Theorem 1, (i)],
which reads as

THEOREM 2.2. If p > 2 there is no strong global solution u of (11)
such that

A(u(t)) > Ao > 0, t € [0, 00), (15)
and

E(0) < (1—gq/p)Ao := Do. (16)
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Proof. We generalize the proof of [37, Theoreml, (i)] by modifying
the main auxiliary function which is needed in the proof, which is
now defined by

Z(t) = (Pu(t), u(t))v +

t
[ K@) uloy + (Rer)pu(r). putr)) s

+

Ot
+/0 {(7 = OUQi(r)u(7), u(r))y + (Ri(7)Bu(r), fu(T)) z] d7
+

(To — ) [(Q0)u(0), u(0))y + (R(0)Bu(0), Bu(0)) 7] +~(t + to)?,
where tg, Ty, and  are positive constants to be fixed. The proof
can be completed arguing as in the quoted paper, and using the
properties of R and R; in addition to the assumptions we taken from
[37]. O
2.1. Application to problem (7)

To handle with (7) we set
V =I1%*Q), Pv=u, (17)
1
X=LXQ), F(u)=uf"u, Flu)= EIIUHQ, (18)
Y=V, Qu=a(z)v, Z=L*T1), Rv=bx)v. (19)
Next, using the trace operator from H'(§2) to L?(99) we can define
the projection operators fr, : H(Q) — L?(T;) for i = 1,2. Then we
set
1
W={ueH' (@) fru=0},  Au=—Au, Afw)=|Vul3
(20)
G =W and 8 = fr,|w. Clearly in this case
K ={¢ € C([0,00); W) N C}([0, 00); L*(2)) :
(Be) € Line([0,00), L*(T1))},

which is exactly the kind of regularity founded for the solutions of
such type of problems when f is an attractive force. If the addi-
tional regularity Vu; € L2((0,T) x §2) was known for the solutions

(21)
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of (7) one could use directly the abstract result of [37] without the
generalization we made. However this kind of regularity cannot be
expected, due to the nonlinear nature of (7) (see [21]).

The distributional identity (12) reduces to

| wts)ote)

t

0

t
:/ </ ury — VuVe — a(w)urd + [ul’*ud
o \Ja

_ /F | b(x)ut¢>

which is exactly the (weak) formulation of (7) in K.
As Ty has positive (n — 1)-dimensional Lebesgue measure, by
Poincaré inequality (see [47, Corollary 4.5.3]) we can endow W with

the equivalent norm ||ullyw = ||Vull2. Set B; to be the optimal
constant of the embedding inequality
lully < Bil[Vul2,  weW, (22)
that is
- o [ Vullo
1 L= (23)

ueWuz0 |ullp
and
AL = B2 By =(1/2—1/p)B; /"D (24)
We can now state the result concerning (7).

THEOREM 2.3. When 2 < p < r there are no strong global solutions
of (7) on [0,00) such that

IVugll2 > A1, and E(0) < Ej.
Moreover, if a > 0, the same is true for solutions such that
[Vugll2 > A1, and E(0) = Ej.
Proof. Let us denote A = ||Vug|]2 and Eg = E(0). By (22)

1 1 1 1 1
B(t) =gllue(®)l3 + 51 Vu®)]5 - @l > SIIVu®)llz - 0L

P
> IVu) 13 = ZHVu) = g(IVu())])
(25)
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where g(A\) = A2/2 — BYMP /p for A > 0. It is easy to see that g takes
its maximum for A = Ay, with g(\1) = Ej, being strictly decreasing
for A > A1, and that g(\) = —ococ as A — oc. Then, as Ey < Fy, there
is A2 > Ay such that g()\Q) = FEy. Since, by (25), g(j\) < Ey = g(>\2),
it follows that Ay < .

It is clear from (13) that

E(t) < Ey for t > 0. (26)
We claim that
IVu(®)s > X fort>0. (27)

Suppose for contradiction that ||[Vu(ty)|l2 < A2 for some tg € (0, 00).
By the continuity of |Vu(-)||2 we can suppose that A\; < ||Vu(to)]|2.
Then, using (25), E(tg) > g(|[Vu(to)||2) > g(A2) = Ey, in contradic-
tion with (26), so proving (27). Then

1 1 1
Afu(t) = 5IVu)I = 533 > 532

Setting Ag = %)\%, one has Fy = (1—2/p)Ag, so we apply Theorem 2.2
and conclude the proof in the main case F4 < Fy. When E; = Ej we
argue as follows. By the continuity of | Vu(-)||2 only two possibilities
can occur:

(a) there is top > 0 such that E(ty) < Ey and ||Vu(tg)|l2 > Ai;
(b) there is g > 0 such that E(t) = E; on [0, ¢g).

In the first case, shifting the time origin to #y and applying the
previous case, we conclude the proof. In the latter, by (13),

t
//a(:v)|ut|2:0 for t € [0, 20),
0 JO

and then, as @ > 0, uy = 0 and hence u(t) = ug on [0,&9). Then,
putting ¢ = u in (12), we obtain that —||Vugl|3 + |Jugl/5 = 0. Hence,
using (27),

1 1

1 1
Bi = Bo 2 §IVul} - HVul > (3- 1) %> B

a contradiction. O
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It is easy to see that E; has the variational characterization

Ei = inf A 2
1 e Sup T () (28)

where J(u) = 5| Vul3 — ;7Hu||g for u € W (argue as in [45, Final
remarks|) and, moreover that, when p < r, E; is the Mountain Pass
Level of the functional J on W, i.e.

E, = inf sup J(y(t))
YEA tg[0,1]

where
A={yeC([0,1; W) : v(0) = 0, J(7(1)) < 0}, (29)

which is associated to the mixed boundary values problem

—Au = |ulP2u, in Q,
u =0 in Ty,
0

a—z — 0, in T,.

This second characterization can be proved as in [46, Final re-
marks|, first observing that [2, Proof of Lemma 7.2] shows that J
satisfies the Palais—Smale condition.

Moreover it is also easy to see that, when FE(0) < FEj, condition
J'(ug)up < 0 used in [36] is equivalent to the condition ||Vuglla > A\
used here. Indeed, if J'(ug)ug < 0, then |[Vul3 — BY||[Vug|5 < 0, so
[[Vugll2 > A1. Conversely, if | Vug|l2 > A1 then

J'(uo)uo =I|Vuol} — uolly < pBr — (& 1) I1Vuol

<pE1—(g—1)A§:0.

2.2. Application to problem (8)

When considering problem (8) we keep the settings (17), (19) and
(20) we made in previous application, while (18) has to be modified
as follows:

X=H'(Q), F(u)=|ful bu f(U)Z%HﬁUIIZ,
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where we use again the trace operator § = fr,, which now, as p <
1+7/2) (see [1]), can be considered having values in LP(I';).

The solution space K is exactly given by (21), and (12) reduces
to

t

[t = [ [ [ vt - 7o - atayus
o [ = b

which is exactly the weak formulation of (8) in K.
We set B to be the optimal constant of the trace inequality

|Bull, < Bi||Vul2,  forue W, (30)

that is

B-l_ [Vl
1 )
ueW,Buz0 || Bullp

where we are using again Poincaré inequality. We consequently mod-
ify the definition of A; and Ei, indicating the corresponding new
values with as A\; and Fq, that is

A = B/ By = (1/2—1/p)B; /P72
We can now state

THEOREM 2.4. When 2 < p < 1+ r/2 there are no strong global
solutions of (8) on [0,00) such that

| Vuglla > A, and E(0) < E;.
Moreover, if a > 0, the same is true for solutions such that
|Vuglla > A1, and E(0) = Ei.
Proof. Argue as in Theorem 2.3. O
Also in this case El has the variational characterization

B, = inf sup J(\u
! u€W,fr, u#0 )\>Ig ( )
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where

. 1 , 1
J(u) = SVl = EIIﬁUHﬁ,

and, as before, when p < 1+ r/2, E, can be recognized as the
Mountain Pass level of J on W, that is

E, = inf sup j'yt ,
1= Iof sup (v(2))

where A is given in (29).

To prove this characterization one can first adapt the proof of [2,
Lemma 7.2] quoted before using compactness of the trace operator
(see [1]) for sub critical levels of p, to prove that the Palais—Smale
condition holds. Then one can repeat the proof of [45, Final remarks]
with the further observation that, any critical point wq of Jon W
such that

J(wo) = inf sup J(y(t)) >0,
7€A0 ¢e0,1]
is nonzero and such that % .J (Awo)|x=1 = 0. Hence || Vwol2 = ||Bu|},
then SBwy # 0.
This level is clearly associated to the problem

Au =0, in Q,
u =0 in [y,
Z—Z = |ulP~2u, inT;.

3. Nonlinear damping problems

Let us now consider problem (9). The energy function naturally
associated to any solution « is given by
1 , 1 , 1 )
B(t) = gllu@lz + 51IVu®)z — ;;HU(t)Hp- (31)

Let now B; the number introduced in (23), in the particular case
'y = 0, that is

[Vull2
ueHy(@)uz0 [|ullp

Bi'= (32)
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and Fy, A1 be the numbers given by (24).

The interaction between the damping term |uy u; and the
source |u|P~2u has been studied by LEVINE in [26] and [27] in the
linear case m = 2 and, recently, for m > 2 by GEORGIEV and
TODOROVA in [13]. In the last paper the authors determined suit-
able domains for the parameters p, m where there is global existence
for any initial data, or alternatively, blow—up in finite time for the
solutions of (9). In particular they proved that, when m < p and
p < 147/2, then all solutions for which E(0) is sufficiently negative
blow—up in finite time. This result has been recently extended in the
quoted paper [32] to initial data with negative energy.

These results do not extend completely the result of [36] to the
case with damping, there still remaining the case 0 < E(0) < Ej.
As quoted before Pucct and SERRIN handled this case in [37] but
only for linear damping terms (m = 2). IKEHATA considered in
[15] positive values of E(0), with m > 1, but for a damping term
blug|™ 2uy and only for sufficiently small values of b, and assumed
that E(0) < Ejp, where FEj is always strictly less than E;. The aim
of this section is to show that the arguments of [13], as refined in
[32], can be conveniently modified to study the case ||[Vugll2 > A1,
E(0) < Ej in the general case m > 1. In this way we extend the
results of [37] to nonlinear damping terms. Moreover we show that
the presence of the damping term also allow us to consider the case
IVugll2 > A1, E(0) = Eq, as in previous section.

We consider global strong distribution solutions of (9), i.e. func-
tions

|m72

ue K =C;Wh)N) n (T [LH)Y),

satisfying

t
[t = [ [ e = TuT0 = a2+ 12
(33)

forallt > 0and ¢ € C2°([0, 00) x2), with the natural energy identity

E@+AWM%=E@. (34)
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A global strong distribution solution in this sense is a global
solution of (9) in the sense introduced in section 2, that is in (33) we
can take test functions ¢ in K instead that in C2°([0,00) x Q). The
proof of this fact, based of convolution argument, here is omitted
(see [46]).

Our first result concerning (9) is the following global nonexistence
theorem

THEOREM 3.1. When 2 < p <r and 1 < m < p there are no global
strong distribution solutions of (9) such that

||VU(]”2 > A, and E(O) < Ej.

Theorem 3.1 is special case of [46, Theorem 2], where we es-
sentially use the technique of [13] as refined in [32]. For the ex-
pository nature of this section we report a self-contained proof of
Theorem 3.1.

One could also assume that (34) be verified in the weak form of
inequality as in (13). Here we choose to present the result assuming
classical energy identity in order to make more clear the idea of the
proof.

Proof. The proof is done by contradiction, so we assume that there is
a global solution u of (9). We set Ey = E(0). We first consider the
case Fy < FEy, where the proof essentially differs from the proofs
of Theorems 2.3-2.4. As in these we first obtain that there are
A9 > B1A; and A3 > Ay such that

E@) < Eo,  lu®)llp = A2, and [[Vu(@)2 2 A3 (35)

for ¢ > 0. We set H(t) = E1 — E(t) which, by (34), is an increasing
function. Then

H(t) > Ho:=H(0)=E, —Ey>0  fort>0. (36)

Next, by (31)

1 1
Ht) < B =g Vu@l3 + Cllu(@lly - foriz0. (37)
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By (35)3
E, — Z|[Vu(t)]s < E1 — zA] = —=A1 <0 for t > 0,
2 2 P
hence
1
Ho < H(t) < ;;Hu(t)Hg for t > 0. (38)

Next, putting ¢ = u in (33), using (31) and (37)

d

77 [ ZHUtH%—IIVUH§+HUIIZ—/ Jue| ™ P ugu
Q Q

—2ugll? + (1 — 2/p)|[ull?, — 2 — /Q g™
2l + (1 — 2/p)|[ull? + 2H — 2B, — /Q fag ™ g,
Then, using (35)2,

2 _
o 202 + (1 _2 2E1A2”) ol + 20— [l 2
dt Jq p Q

—2lfur]2 + collulls + 2H / g™ g
Q
(30)

where ¢cg =1 — % — 2E1)\2_p > 0 because Ao > BiAq.
Now, to estimate the last term in (39), by applying Hélder’s
inequality, we obtain

‘/ |ut|m_2utu
Q

and then, by (38), Hélder’s inequality again, Young’s inequality, and
the fact that H' = ||u||, we obtain, for any £ > 0,

‘/ |ut|m*2utu
Q

< el Nallm = eallg /™ ealld ™ e 17"

<enllully /™ [y a7y

<e| PImy s~ m—1
<calullp el (40)
<ca(e™fullp + e furll) H

<ca(e™[ullf + ™ H)H ™,
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where & = % — % > 0, and we denote by cy,co, ... , suitable positive

constants. Now let 0 < a < a. By (36)

‘/ |ut|m72utu
Q

Now we introduce, as in [13] and [32], the main auxiliary function
which shows the blow—up properties of u, i.e.

< eo(e™Hy b+ e HYIH M), (41)

Z(t)=H'""(t) + 5/ w(t)u(t),
Q
where ¢ is a (small) positive constant to be fixed later. By (39)(41)

Z'>1—a)H “H' +6 [2||ut”% + col|ullh +2H — / |ut|’"2utu]
Q

>(1— a— deae ™HG IVH OH + 8(co — cae™Hy )|[ull
+ 26| Jug |3 + 20H.
(42)

Now let § < (1—a)cy 'e™ HG™®. Then we can drop the first term on
the right hand side of (42). Moreover, choosing ¢ sufficiently small
we can estimate ¢ — coe™Hy " > %co, SO

2" > ~cod|lulll + 28]l + 20H > ed(||ull? + lugll3 +H).  (43)

N | —

Letting § sufficiently small we have Z(0) > 0, so Z(t) > Z(0) > for
t>0.

Now set » = 1/(1 — ). Since a < & < 1 it is evident that
1 <r<f:=1/(1—-a). Using Young’s inequality again

20 <PV H A+ ubluly) < ca(H + udll3 + Jully/ 7).

Now choose a € (0, min{a, 1/2—1/p}). Then |jufls/*™® < 1+4{ful?
because 1/2 — a < 1/p, so we have

Z" < es(H A+ lluell + [lul®),

which, combined with (43), as r > 1, concludes the proof when Ey <
E,. When Ey = E; we argue as in the proof of Theorem 2.3. O
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The global nonexistence result given above can be combined with
local existence and continuation results (and it is a logical continu-
ation of these) to obtain blow—up for the solutions of (9). In par-
ticular, using the local existence result of [13], one obtains blow—up
under the more restrictive assumption 2 < m < p < 1+ 1/2, as
done in [46, Theorem 5]. On the other hand, is nowadays available
the technique of [42]. Arguing as in this paper (which deals with the
more difficult case 2 = R™), it is possible to prove the following local
existence theorem

THEOREM 3.2. Suppose that

m>1,2<p<l+4+r/2, or m>r/(r+1—p), 1+r/2<p<Tr.
(44)

Then, for T > 0 small enough there is a strong a.e. solution of (9)
as an abstract differential equation in H='(Q) + L™ () such that

u€ ([0, T} Hy(Q)), w € C(0,T; L*(Q)),  w € L™((0,T) x Q)
(45)

and the energy identity

1 2 1 2 t ‘ m ! p—2
Slw()z + 5IVulz] + [ Nwlm = [ulP"Fuwy - (46)
2 2

0 Jo 0 Ja

holds for t € [0,T).

It is easy to see that solutions of (9) given in the last Theorem are
strong distribution solutions. Then, using the standard continuation
procedure, the fact that T' depends as a decreasing function from
[ Vuol|3 + |[u1]/3 (see [42]), one can easily yields the following blow—
up result.

THEOREM 3.3. Suppose that (44) holds, and let u be the solution
giwen in Theorem 3.2. Then there is Tpqy > 0 such that ||u(t)|l, — oo
(and then ||u(t)]|cc = 00) ast — T, ..

Theorem 3.1 has been extended in [46] to problem (1), under
some specific assumptions on P, A, F' and (). Here we show only
some concrete evolution problems to which the abstract setting is
applicable.
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3.1. A canonical model
We consider the system
(||~ 2ug) ¢ — Agu + [ug™2uy = [ulP~2u, in [0,00) x €,

u =0, in [0,00) x 9Q, (47)
u(0,) € Wy (), uy(0,-) € [ )]V,

where €2 is a bounded regular open subset of R", u = u(t,z), u :
[0,00) x Q — RN with N > 1, n > 1.

1<l <p, 1<m<p, 1<g<p<ryg (48)

where 7, is the Sobolev critical exponent of WO1 4 that is rq = ng/(n—
q)ifn>gq qg<ry<ooifn=gq,ry=o00ifn <q. In this case we set
[Vullq

Bl = :
ueWOI’q(Q):u;éO ||u”111

The energy function is given by

-1 1 1
E(t) = —||wl|t + =||Vul|? — =||u|P.
(t) 7 lluely q|| 13 pll 15

Let
A\ = B;ij/(pfq)El =(1/q - 1/p)B;ptg/(pftJ)
Also in this case it is easy to verify that (28) holds in the space
W, 9(Q2), where now J is given by
1 1
J(u) = =||Vul|d — =||ul/?b.
(u) ql\ 13 pH 4

Moreover also the Mountain Pass type characterization of F; is still
true, arguing as in section 2, in connection with the Dirichlet problem

—Aqu = |ulP?u, inQ,
u =0, in 0f).
The statement of Theorem 3.1 continues to hold for strong distri-

bution solutions of (47), which are defined generalizing in the obvious
way previous definition.
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3.2. A problem in elasticity

We consider the system

p(x)ugy — div(C(z)Vu) + d(z)|ug| " 2uy = f(z,u), in [0,00)%x €,
u =0, in [0, 00) x 092,
u(0,-) € [Hy ()", (0,) € [L2(Q)]",

(49)

where  is as before, u : [0,00) x Q — R, p € L®(Q; RS) and
C € L®(Q; L(R*™; R2")),

that is C(z) is a linear operator from R?" to itself for all = € €, i.e.
a tensor of rank 4 which can be represented as C(z) = (cijri(x)),
i,J,k, 0 =1,...,n, and ¢;j € L*°(€2). We assume that C is sym-
metric, i.e.

(C(z)y, z) = (C(z)z,y) for all z € Q, y, z € R*",
and that it is uniformly positive definite in €2, that is
(C(x)y,y) > aolyl>  forallz € Q, y € R*",

for some constant ag > 0. We also assume that f(z,u) = V,®(z,u)
for some ® € C'(Q x R"), we assume that ® be p—homogeneous in
u, that

inf{®(z,u) : |lu| =1,z € Q} > 0,

and that 2 < p < 2n/(n — 2). Moreover d € LP/?=m)(Q), d > 0.
System (49), when n = 3, describes the effect of a nonlinear

damping and forcing terms in the classical equations of linear elas-

ticity, and has been studied by LEVINE (see [26, Example V, p. 15]

when @ = 0). Clearly the term C(z)Vu represents the engineering

stress tensor, or first Piola—Kirchoff stress tensor, and (49) express

the Cauchy first law of motion, with boundary and initial conditions.
In this case the energy is given by

B =4 /Q (o)t + (C )V, Vi) — 20z, w)] dar,
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B is the constant given by

n UQ(C(w)Vu, Vu) dm] 1/2

inf
weHY(Q), ut0 [ [, p®(w,u) dz] /"
and )\, E; are the numbers given in (24). !  With these modifica-
tions the statement of Theorem 3.1 continues to hold for solutions of
(49). Moreover, it is also easy to give the variational characterization
of F4 as a Mountain Pass level associated to the problem
—div(C(z)Vu) = f(z,u), in Q,
u =0, in 0Q2.

B'=

3.3. The clamped plate equation
Consider the problem

(2p(z)h1ue/ha)e + (—A)u + d(@)u ™ 2wy
= f(z,u), in [0, 00) X,
u=0,Vu =0, in [0, 00) x 012,
u(0,-) € H5 (), u(0,-) € L*(2),

(50)

where () is as before, hy,ho > 0, p € L(Q; R(J{) We assume that f
and d satisfy the assumptions of previous subsection. The problem
describes the motion of a damped clamped plate with density p > 0,
flexural rigidity ho > 0 and thickness 2h; > 0, with a given loading
function f acting vertically on the plate, which has been studied by
LEVINE in the case d = 0 (see [26, Example IV, p. 15]).

In this case 2

Bl_l = 2inf ”AU||2 1/p7
wEHF(Q)u0 | [ p®(z,u)]

! Actually the value of E; founded in [46] can be less that the value given
above. However, it is not difficult to obtain the value we indicate here, conve-
niently modifying the proof

2Also in this case one has to slighty modify the proof of [46] to obtain the
value of E; given above
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the energy function has the form

1 2 h
E(t) = —/ &|ut|2 + |Au? = 28 (z,u)| dz,
2 o | ho

and \j, E; are again given by (24). The Mountain Pass characteri-
zation of F is still true, in connection with the problem

(_A)Qu = f(iE,’LL), in Qa
u=0,Vu =0, in 0Q.

4. The porous media equation with source

We consider the Cauchy-Dirichlet problem for the porous media
equation with source term (10), which (see [12] and [39]), when
ug > 0, describes the propagation of thermal perturbations in a
medium with a nonlinear heat—conduction coefficient and a heat
source depending on the temperature. Local existence for the so-
lutions of (10) has been proved when m > 1 (the so called slow
diffusion case) in [12], [31] and [35] (see also the recent book [39])
and, when 0 < m < 1 (the fast diffusion case) in [9]. More precisely,
in the slow diffusion case, if |ug|™ 1ug € H{ () and
2(m+1)

p<lam+ T2 (51)
n

local existence of a solution w such that
™ tu € L°(0, T; Hy (), |u]™ V2w € L(0,T; L*(Q)),
(Jul (D 2u), € L2((0,T) x ),
(52)

has been proved in [12] and [35]. If ug € L*>°() (see [31]), local
existence of a solution u such that

u € L*((0,T) x Q),  [u[™"u € L*(0,T; Hg (),

(Ju|™m=D724), € L2((0,T) x Q), (53)

is known, without adding restrictions from above on p. In the fast
diffusion case (see [9]) local existence of a weak solution, when solely
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ug € L®(Q), and of a strong solution, when also |ug|™ tug € HZ ()
is proved in the class of functions u such that

[ul™ " € C(0,T; () N L (0, T3 Hy (2)) N L2((0,T) x ),
lu|m=D2y e H'(0,T; L*(Q)).
(54)

Global existence has been proved in the quoted papers when p <
max{2,m + 1} (see [39] for a more precise statement in the delicate
case p = m + 1), while the blow—up of the solutions is proved (in
the fast diffusion case blow—up is proved only for strong solutions),
when

p > max{2,m + 1}, (55)

luo|™ tug € HE(Q), and the initial energy
1 -1 2 m +p—1
B(0) = SlIV (fuo[™ uo)llz — mﬂuomﬁq

is negative, i.e the initial data are in region C' (see Figure 1).

In this section we show how the blow-up result for initial data
in region C of Figure 1, known for problem (6), can be extended
to m # 1. Indeed, the global existence result for initial data in
the region A has been extended in [12] to the slow diffusion case,
while there are not extensions, in author’s knowledge, of the blow—
up theorem for initial data in the region B. The method used in
the proof is inspired to the arguments of [37], where the classical
convexity method is adapted to handle with positive initial energy for
abstract evolution equation of hyperbolic type. The main idea in [29],
in which (10) is treated by the change of variable v = |u|™ lu, cannot
be extended here to the important slow diffusion case, due to the
singularity that appears in the transformed equation. However we
adapt the method of [37] using the change of variable in a somewhat
implicit way. In order to have an unified proof for the slow and fast
diffusion cases, and to minimize the assumptions on p in the first
one, when also ug € L*(Q), we consider distributional solutions of
(10), i.e. functions u defined on a suitable cylinder Q7 := (0,7T) x 2,
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such that

[ ot~ = [ [ b= 19Gu e 2w v

+ |ulP 2ug)

(56)

for all t € [0,T] and ¢ € C°([0,00) x ), such that
ju|™~"u € L*(0,T; Hy () N L(0, T; L' (), (57)
[ul D20 € H'(0,T5 27(2), (58)

and wu verifies the energy identity
B0 = 50) ~ 0 [P0 6
(m+1)2 Jo e

for a.a. t € [0,T], where the energy function E, naturally associated
to u, is given by

B(O) = 519" )1~ " O (60)

Then we prove a global nonexistence result for this type of so-
lutions of (10), which includes as a particular case the solutions
founded in [12], [31], [35], and the strong solutions founded in [9],

while the weak solutions obtained in [9] are "too weak” to prove
global nonexistence. More precisely, we prove

THEOREM 4.1. Let A\; and E; be the number defined (24) and (32),
with p replaced by (m +p —1)/m. If lug|™ ‘tug € HE (D),

IV (Juo|™ " uo)|2, £(0)) € BUC U D,
then the corresponding solution u of (10) is not global.

This global nonexistence result can be conveniently applied to
the local solution founded in [12], [31], [35], and the strong solutions
founded in [9], to obtain a the following blow—up result.
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THEOREM 4.2. Let u be a solution of (10) whose existence is proved
in one of the papers quoted above. Assume that (55) holds, that

p<l+m(r—1) (whenn>3), (61)

and that |uo|™ tug € H}(Q), (IV(lug|™ tug)l|l2, E(0)) € BUCUD.
Then

(i) if (51) holds and m > 1, there is To > 0 such that ||u(t)||m+1 —
ocast—1T, ;

(ii) if ug € L°(Q), then there is Ty > 0 such that |u(t)||sc — o0
ast — T, .

The two different cases (i) and (ii) arise from local existence re-
sults available in the literature and quoted above.

Sketch of the proof. The proof, given by contradiction, is based on
the inequality
-1
[ollmsp—1 < BulV([o]™ 0)]2

for v € H}(2) (which is an obvious consequence of (61) and of
Sobolev embedding theorem) and on the identity

t
2 m— m— m—
[ gl D2l 02 9

- |u|m+p71 = Oa t> Oa

(62)

which is valid for the solutions of (10) satisfying (57)—(58) (see [45]).
We sketch the proof in the main case Ey := E(0) < E1, as in the case
FEy = E1 one can complete the proof as in Theorem 2.3. First of all we
observe, as in Theorem 2.3 that, if (| V (|ug|™ ug)|2, E(0)) € BUC,
then there are Ao > B1\; and A3 > A\ such that, for all ¢ > 0,

E®)<Ep  u®)Dpor 2 e, and [V(ju" )]l = Aa.

The global nonexistence is then proved by the convexity method as
in [37]. The main auxiliary function of [37] is replaced by

t
(1) = / [l 4 (T — a7 + A+ 10)? (63)
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where to, Ty and «y are positive constants to be fixed later. Then
t
Z'(t) :2/ / (Jul ™2 w) o u ™D Puda + 2y(t + to),
0 Jo

and, using (62),

11’// _m + 1

ST =—5—Ma/2 = DIV(ul™" )|} - ¢F] +

Using the energy identity and the explicit values of A\; and E; one
gets

(m+1)q

L 4m /t (m—=1)/2 2
_T" > _ -
ST > kEl R e el AL O E2

so, choosing v = (m + 1)*(E; — Eg)/2m > 0,

4mq [*
> () S O o
> (1) 2 [y e

Clearly Z'(0) = 2vto > 0, Z(0) = To|luol[l1 + vt3 > 0. Moreover,
7" > 0 by (64), so Z' and Z are both positive. The proof can then
be finished as in [37] by proving that

I7" — o(T')* >0  on [0,Ty], (65)

where a = [1 +mg/(m+1)]/2, redefining the quantities A, B, C used
in the quoted paper as

/Hmmﬂ+wt+mf, (66)

C=A|mmm*ﬂ%»%+w, (67)

and B = 7'/2. O
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