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The Lifespan of Classical Solutions to
Systems of Nonlinear Wave Equations

HIROYUKI TAKAMURA )

SUMMARY. - Any results in this talk are based on a joint paper with
R. Agemi & Y. Kurokawa [1]. The ezistence of the critical curve
for p-q systems of nonlinear wave equations was already estab-
lished by D. Del Santo & V. Georgiev & E. Mitidieri [3] except
for the critical case. Our main purpose is to prove a blow-up the-
orem for which the nonlinearity (p, q) is just on the critical curve
in three space dimensions. Moreover, the lower and upper bounds
of the lifespan of solutions are precisely estimated including the
sub-critical case.

1. Introduction

We are concerned with the Cauchy problem for p-q systems of non-
linear wave equations

Uu = |U|pa . n
{ Ov = [ul, in R" x[0,00), (1)

where O = 9%/07 — 37%_, 8% /9z7 is a usual d’Alembertian in R™
and p,q > 1. The initial data takes the following form.

{ u(z,0) = ef1(z), (Qu/ot)(x,0) = egy(x), @)
v(z,0) = efa(z), (Ov/0t)(x,0) = ega(z),
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where f;, g; (i = 1,2) are smooth functions of compact support and
€ is a small positive parameter which measures the smallness of the
amplitude of solutions.

The problem (1) sometimes arises from the comparison with
Lane-Emden system and its associated parabolic version in which
O in (1) is replaced by —A or 9, — A. See [3] for details and further
references.

Recently, D. Del Santo & V. Georgiev & E. Mitidieri [3] proved
in any space dimensions n > 2 that there exists a critical curve in
(p, q)-plane which divides the plane into two pieces. One is a range
where we can show the global in time existence of small amplitude
solution. Another is a range where we can give an example of the
nonexistence of the global in time solution. We note that the critical
curve is determined by cubic relation between p and ¢, and has a
cusp at p =gq.

More precisely, defining

p+2+q" q+2+p_1}_n—1

F(p,q Emax{ , , 3
(p.q) o o 5 (3)

they proved the following fact. If F(p,q) < 0, the system (1) with
any data (2) admits a unique global solution provided ¢ is sufficiently
small. Remark that, in general, the solution must be weak whenever
p or q is less than 2 because of the regularity of nonlinearities. By
this reason, the classical solution can be obtained only in the case
n =2, 3, or n = 4 at the cusp only. Conversely, if F(p,q) > 0,
(1) with some positive data (2) has no global solution. The critical
case F(p,q) = 0 was investigated by D. Del Santo & E. Mitidieri [4]
for n = 3 in which nonexistence of global solutions for some positive
data was proved.

Our aim in this article is to clarify the lifespan, the maximal
existence time, of the solution in three space dimensions without
any positivity on data by local in time existence and nonexistence in
long time of solutions. Here, we restrict our attension to a classical
sense so that the lifespan 7T'(¢) is defined by
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T(e) = sup{T € (0,00] : There exists a unique solution (u,v)
€ {C*(R" x [0,T))}? of (1) with any data (2).}.
(4)
By virtue of well-known uniqueness theorem, one has lim._,o7T'(¢) =

oo. For example, see Appendix1 in F. John [10]. We will prove the
following theorem.

THEOREM 1.1. Let n = 3 and p,q > 2. Suppose that both f; €
C5(R?) and g; € C3(R3) do not identically vanish for each i =1,2.
Then there exists a positive constant ey such that, for any ¢ with
0 < e < gy, the lifespan T(¢) of the classical solution (u,v) of (1),(2)
satisfies

T'(e) = o0 (5)
provided F(p,q) <0,
exp (ce‘l) <T(e) <exp (Ce‘l> , (6)
where | = min{p(pqg—1),q(pg—1)}, provided F(p,q) =0 with p # q,
exp (ce—p@—l)) < T(e) < exp (cg—p@—l)) (7)
provided F(p,q) = 0 with p = ¢, and
ce PO < T(e) < e~ Flp0)™ (8)

provided F(p,q) > 0, where ¢ and C are positive constants indepen-
dent of €.

REMARK 1.2. The restriction 2 < p,q < 3 in three space dimensions
of the global existence theorem of [3] was relaxed by D. Del Santo
[2]. Actually he used a weighted L™ estimate originally introduced
by F. John [9] as conjectured in Remarkl.1 of [3]. See also our proof.

REMARK 1.3. In the blow-up part of Theoreml1.1, there is no require-
ment of the positivity of initial data (cf. Theorem3 in [3]). D. Del



228 H. TAKAMURA

Santo [2] also proved the sub-critical blow-up without any positivity
on data. He employed some technique by F. John [10]. But it cannot
be applicable to estimating the lifespan. By making use of the local
ezistence, we will succeed to remove the positivity. Such an argument
can be found in F. John [9] in which the lifespan is estimated for a
single equation with a quadratic nonlinearity.

REMARK 1.4. At the cusp (p,p) on the critical curve F(p,p) = 0,
p must be a number py(3) = 1 + /2 which is the critical power of
the single case. See (14) below. Moreover, the lifespan at the cusp
coincides with the one for single case. See also (18) below.

REMARK 1.5. For 1 < p,q < 2, we cannot expect any existence of
classical solutions by lack of the differentiablity of the nonlinearity.
But we may obtain the same lifespan of C'-solution of the integral
equation associated to (1), (2).

As in [3], it is interesting to compare the result of p-g system
with the one of the single equation

{ Ou = |uf’ in R" x [0,00) (9)
u(z,0) =ef(x), (Ou/dt)(x,0)=cg(x).

It is well-known, as Strauss’ conjecture [16], that the lifespan T'(¢)
of a solution of (9) satisfies T'(¢) = oo for small ¢ if

p > po(n), (10)

where pg(n) is a positive root of the quadratic equation
Y(p,n) =2+ (n+1)p — (n = 1)p* =0, (11)

and T'(e) < oo for some special data with a positivity if

1 <p <po(n) (12)
which can be rewritten as

1+p! -1
P

1 5 and p>1. (13)
p—
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In this sense, pg(n) is a critical value of (9). One can find that

n+1+vn2410n—17
po(n) = 2 =1 , n>2 (14)

We note that po(n) is monotonously decreasing in n and pg(4) = 2.
Therefore, we have to consider the weaker solution rather than C? if
p is in the neighborhood of py(n) in higher dimensions n > 4.

This conjecture was verified by F. John [9] for n = 3 and by
R. T. Glassey [7] [6] for n = 2 except for the critical case. The critical
case was proved by J. Schaeffer [14] for n = 2,3. The blow-up part
in higher dimensions was verified by T. C. Sideris [15] except for the
critical case. For the global existence part, there were many partial
results. A complete result was given by V. Georgiev & H. Lindblad
& C. Sogge [5] in which we can find references on history. The open
problem is the case p = pg(n) for n > 4.

As for the order of T'(e), we have a few results. In the case
n = 2,3, H. Lindblad [13] proved that

lim e2P(P=/ 7P T(e) > 0 exists for 4 —n <p <po(n). (15)

e—0

and, for n =2, p =2,

lima™'(e)T(e) >0 exists if / flz)dz #0

e—0 2 (16)
limeT'(e) >0 exists if f(z)dz =0,

e—0 R2

where a = a(e) satisfies
e2a?log(1 +a) = 1. (17)

REMARK 1.6. Making use of H. Lindblad’s methods, we may have a
limit of the lifespan in the sub-critical case of Theoreml1.1. But this
18 another story.

Zhou Yi [19] [20] proved that there exist positive constants ¢, C
independent of € such that

exp(ce PP~D) < T(e) < exp(Ce™PP~V) for p=py(n), n=23.
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By making use of L?-frame work, Li Ta-Tsien & Zhou Yi [17] showed
that, in the case n = 4, there exists a positive constant ¢ independent
of € such that

T(e) > exp(ce™?) for p=po(4) =2. (19)

REMARK 1.7. The proof of the blow-up result for single equation (9)
with a sub-critical power is essentially due to T. Kato’s blow-up the-
orem [11] for 2nd order ordinary differential inequality. Such an
inequality can be applicable to the sub-critical case of our system (1)
by iteration argument. See [3]. The critical case for single equation is
due to Zhou Yi’s blow-up theorem for 2nd order ordinary differential
equations. We note that his theorem cannot be directly applicable to
our system. Because we have to make a comparison argument with a
system of 2nd order ordinary differential equations which is difficult
to solve. Qur success of the blow-up result on the critical curve is
due to a logarithmic term in the iteration argument which is made
by our new slicing method.

After this work was completed, we were informed a result of
H. Kubo & M. Ohta [12]. They have proved the blow-up part of
Theoreml.1 for n = 2,3, in which data must have positivity, by
comparison argument with a system of integral equations.

Acknowledgments

This talk was given during my stay at L’ Aquila University in Italy
which was planned for a half year, from September 3, 1999 to Febru-
ary 28, 2000. It was fully supported by Japanese Ministry of Educa-
tion via Venture Business Laboratory in University of Tsukuba, and
partially supported by University of Tsukuba Research Projects in
1999-2000. T am really grateful to Professor Vladimir Georgiev for
his hearty hospitalities in Italy.

2. Lower bound of the lifespan

We shall start from well-known integral representation formula of
the solution. Namely, solutions (u,v) of (1), (2) have to satisfy the
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following integral equations.

u(z,t) = 6u0(x,t) + L(|v|P) (=, t),
{ v(z,t) = ev®(z,t) + L(|u|9)(z, 1), (20)

where u° and v° satisfy Ou® = v = 0 with the same initial data
to u/e and v/e respectively. Moreover L(w) satisfies

{ OL(w) = w in R"™ x [0, 00), (21)

L(w)(x,0) = (9L(w)/0t)(z,0) = 0,

where w = |[v|P or |ul?.
Then we have the following two lemmas on the dependence do-
main of the solution.

LEMMA 2.1. Assume that

supp{ fi(x), gi(z)} C {|z] <k}, (22)

where k > 0 and i = 1,2. Then the classical solutions (u,v) of (1),
(2) have to satisfy the following support property.

supp{u(z, 1), (2, )} € {Jo] <1+ ) (23)
LEMMA 2.2. Let n = 3. Assume a support property (22). Then,
uw(z,t) =%z, t) =0 for t—|z|> k. (24)

The lower bound of the lifespan is estimated by proving the fol-
lowing proposition.

PROPOSITION 2.3. Let n = 3. Assume (22). Under the same as-
sumption as Theoreml.1, there exists a positive constant €q such
that (20) admit a unique solution (u,v) € {C?(R? x[0,T))}?, as far
as T satisfies

T < exp (cgf mln{p(qul),q(qul)}) 'l'f (p’ q) = 0 wzth D ;é q,
=) exp (cafp(pfl)) if F(p,q) = 0 with p = q,
ce~Fea)™! if F(p,q) >

(25)

for 0 < e < egq and some positive constant ¢ independent of €.
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We will solve (20) by classical iteration method in suitable func-
tion space. Here and hereafter, it is sufficient to consider the case
p < q. Because, due to the symmetricity of the equation, nothing
new will come by switching p and ¢ to each other. Let us define
sequences of functions {u;, }, {v,} by

tn =0+ L({vm=1)s g sy ang B0 =S (o)
Um = 0 + L(|tm—1]7), - vy = e’

In order to solve this, we shall follow F. John [9]. Denote a weighted
L*-norm of u by

lullj = sup  {w;(|z],D)|u(z, )]}, (G=1,2), (27)
(z,t)eR3x[0,T)

with the weight function

(t+ 7+ 2k <t—r+2k)p_2

k k
when p > 2,
thr+2k (0 442k -1
wi(r,t)=4 ~ k& <°g 7|t—r|+2k) (28)

when p =2, ¢ > 2,
bhr+2 () b2k -1
o T\ B ek

| whenp=¢g=2

and

(

t+ 7+ 2k LT t+r+2k\ "
—_— — 0 —_—
X TR\ T k)
when p =q = 2,

442 [t—r+2k\P g A 3k v
wy(r,t) = 3 k i 6% (29)

when F(p,q) = 0 with p # ¢,
t+r+2k (t—r+2k\"
k k

otherwise,

\
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where i and v are defined by

_pg—p—q  2(p—q)

- p(pg—1)’

_alp—1) (30)
p(pg — 1)

and k is the one in Lemma2.1. yq is a characteristic function of a
set

Si={(z,t) eR3x[0,T) : —k<t—|z| <k} (31)
and x9 is a characteristic function of a set
Sy = {(z,t) e R3>x[0,T) : k<t—|z|}. (32)
REMARK 2.4. We note that p > 2 implies u > 0.
Proposition2.3 is proved by the following two a priori estimates.
LEMMA 2.5. Let n = 3. Suppose that 2 < p < q. Let (u,v) be a
solution of (20). Then there exists a positive constant C' independent

of €, k and T such that

X1 L(|vlP) iy < CE2[lxav[[5D(T),

33
baZ{ul9)ll2 < CRIxuliD(T) (33)
for any T > 0, where D 1is defined by
2T + 3k .
D(T) = { log=—— i p=q=2 (34)
1 otherwise.

LEMMA 2.6. Let n = 3. Suppose that 2 < p < q. Let (u,v) be a
solution of (20). Then there exists a positive constant C' independent
of ¢, k and T such that, for any T > 0,

Ix2L(Jo[)llr < CE{IIxavll5 + [Ixev 521 ()},

35
aL(ul?)]2 < CR{haul? + [xeul By}, &)
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where K1 and Fs are defined by

Ey(T) = By(T) = 1

if F(p,q) <0, 1
T+3k\ " T+ 3k\"
Br) = (10 TEE) T B = (10 )
if F(p,q) =0 wiﬂ%p 7;]3
_|_
Ey(T) = Ba(T) = log
if F(p,q) =0 with p =g,
T + 2\ Pla—DE(@:9) T + 2k \ 1P=DF @)
Br) = () ) = (S
if F(p,q) > 0.
(36)
REMARK 2.7. We note that
q—1
1—pv= > 0. 37
P (37)
Here we introduce a function spaces X defined by
X = {(u,0) € {C2(R? x [0,T))}? o)
supp(u,v) C {|z| <t +k}, [[(u,v)]lx < oo},
where
(s )lx =D (IVaull + [ V5oll2)- (39)

laf<2

Remark that du/d; and dv/0; are expressed by V,u and V,v in
view of the representation formula of the solution. So, it is sufficient
to consider the spatial derivatives only. We also note that X is a
Banach space for any fixed T > 0. Our purpose is to construct a
unique solution in X of the equivalent integral equation (20) which
must be a classical solution of the original p-q systems.

In order to see this, putting

M = Hg{llvﬁuolha IV3°ll2} > 0, (40)
« —
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we also define a closed subspace Y of X by

Y= {(u,v) € X : |xaVaulli,|lx1Vev|2 < 2Me,

41
IxaV2ully < Nev, [xaVevls < Net (o] <2)}, 4V

where N is defined by
N = 2Ck? max{p*(2M)?, ¢*(2M )"} (42)

and C is the one in a priori estimate (33), (35). We note that
M < oc.

The solution will be constructed as a limit of a sequence (u,, vp,)
in Y if € is suitably small. After two solutions are constructed in
each domains, S7 and Sy, we will know that one must coinside with
another on the intersection of both domains by uniqueness of the
solution.

3. Upper bound of the lifespan (critical case)

Denoting a spherical mean of h(z) € C(R?) at the origin with radius
r = |z| by
— 1
R(r) = —
47 |

h(rw)dsS,,. (43)
w|=1
and following John’s iteration argument together with a new slicing
method, we shall estimate the upper bound of the lifespan in the
critical case. The sub-critical case is much easier than this.

PROPOSITION 3.1. Let n = 3. Assume that (u,v) be a classical solu-
tion of (1), (2) in the domain R3 x [0,T) under the same assumption
as Theoreml1.1. Then, for sufficiently small € and some positive con-
stant C independent of €, T cannot be taken as

exp (05— min{p(pq—l)ﬂ(pq—l)})
provided F(p,q) =0 with p # q,
exp (Cg—p(p—l))
provided F(p,q) =0 with p=q = pg(3).

T > (44)

In order to prove the blow-up result, we have to make an iteration
frame.
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LEMMA 3.2. Let (u,v) be a classical solution of (1), (2) with the
support condition (22). Assume that 2 < p < q. Then there exist a
positive constant M independent of € such that

1 MeP
N o
a(r,1) > HT//RMMU(A,TN dhdr +

// Ma(A, 7)[9dNdT
R(r,t)

o(r,t) >

t+r
(45)

i X, for sufficiently small €, where

Yo=A(rt) :k<t—r<r}
R(r,t) ={(\7):t—r < ANT7+A<t+rk<717-AX<t—r}
(46)

REMARK 3.3. If we assume that the initial data is positive in some
sense, Lemma3.2 becomes an easy application of the single case in
H. Takamura [18]. For example, one may assume that

fa(z) =0 and go(z) > 0(x 0) (47)

while f1 and g1 can be arbitrary. In order to remowve the positivity on
the initial data, we have to use the local existence of solutions which
gives us a restriction p,q > 2. As a consequence, once we get a local
solution of associated integral equation (20), Lemma3.2 will be valid
for p,q > 1 without the positivity on the initial data.

Proof of Proposition3.1.
Throughout this section we assume that 2 < p < ¢. In this case, we
note that p < p(3) =1 + V2 < ¢ for

—-1=0. (48)
The opposite case is proved by replacing u, p by v, g, respectively.

Let (u,v) be a classical solution of (1), (2) in R? x [0,7). Let us
define the blow-up domain. For j7 > 1,

Yj={(nt) e Ry x[0,T) : LjE<t—r<r}, (49)
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where [; = 142 14 --+27J. We will use the fact that a sequence {;}
is monotonously increasing and bounded, 1 <[; <2, s0 X1 C Y.
This is the slicing of the blow-up set.

Assume an estimate of the form

u(r,t) > Cj og =) i w, (50)
S S T T N %

where a; > 0 and C; > 0. Putting (50) into the second inequality of
(3.2) and noticing that ¢t + r > 3(t — r), we get an estimate of T in
Y9541 such as

c
o(r,t) > J
H O v T s T T 1)
t—r qa;
BIP=2A (¢ —r — ) <log ﬂ) dg.
Lok lajk
At this stage, the proof must be divided into two cases.
Case p # q.
It follows from
1—qg(p—2)>0 for F(p,q) =0 withp#gq (52)
and
lgj 1
1— : 53
l2j+1 92j+2 ( )

that (-integral is greater than

b= 1—q(p—2)—1 B\
—q(p—2)—1(4 _  _ log -2
/(lj/l‘)j+ )(t—r)ﬁ i=r=4) (Og lek) s
2 /l2j+1 (54)

1 t—r %
> a(P=2)=6_—_(y _ py2-a(p=2) (] .
> AL 8L,k

Hence we obtain an estimate for v such that

o(r.t) > Dj oe L2 s 55
o) = Gy e s 18 ok in- Zgjr,  (55)
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where we put

q

Ct
D; = 3*‘12q<P*2)*7ﬁJj. (56)

Similarly, putting (55) into the first inequality of Lemma3.2, we
have a new estimate for w in 3g;, o as follows.

DP t=r 4 /8 /8 pqa;
au(r,t) > J / <lo ) d
( ) - 2- 3p(t + ’)") (t — ,r-)p—l lajirk ﬁ 8 lgj.Hk) ﬁ
(57)
because
plpg—q—3)=1 when F(p,q) =0. (58)
The integration by parts yields that the S-integral is equal to
1 /t—r < /8 )anj-l-l
T — lo dg. 59
pgaj +1 Ji, 1k ® loj ik (59)
Hence, for (r,t) € ¥o;40, the B-integral is greater than
1 t—r pga;+1
e )
Pea; + 1 J a0 ftaj40)6-r) \ 7 L2k (60)

1 t— pga;+1
> . 1 t—r).
~ 224/ (pga; + 1) <Og l2j+2k> =)

Therefore we finally obtain

_ Cit1 t—p \POUtH
t) > J log —— Yo, 61
U(’l”, ) - (t + ’l") (t — ’l”)p_2 < Og l2j+2k> m 2J+2’ ( )

where we put

p
Cjy1 = 2*33*1’#. (62)
’ 41 (pga; +1)

Now, we are in a position to define sequences in the iteration. In

view of (3.2), the original estimate is

MeP
(t+r)(t —r)p=2

u(r,t) > in ¥ (63)
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so that, with the help of (50), (55) and (61), a sequence {a;} must
be defined by

aj+1 = pqag + ]-a .7 > ]-7
{ ap = 0. (64)

Another sequence {C}} is determined by

DP
Ciy1 =233 P—~ __  j>1,
A 4 (pqa; + 1) )= )
C 65
. = 3—99a(p—2)-T7__J_ ;
DJ 3712 16]’ J Z ]-7
Co = MEeP.
One can readily check that
aj= ——{(pg ~1}. 21 (66)
7 opg—1 T
which gives
1 pg—1
> pq) . 67
pa+12 g (pq) (67)
Hence one can find that
Pq
where F and F are positive constants defined by
9pa(P—2)=TP=3 (g — 1
E= g =1)  p_ jortipg, (69)

3p(g+1) Pq
Repeating this inequality j-times, we get
log Cj >

(pq)’ <log Co + i (pg)" Tlog B = (m — 1) (pa)” ™ logF> . (70)

(pq)’

m=1
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The sum part of the above inequality converges as j — oo by d’Alem-
bert’ criterion. It follows that there exists a constant .S independent
of j such that

C; > exp{(pq)’ log Co + S)}, j > 1. (71)

Combining all estimates and using the monotonicity of X;, we
can reach the final inequality

exp {(pg) I(r,1)} b\ P!
(t+ ) (t — r)p—2 <log 2k )

a(r,t) > (72)

for (r,t) € Loo = {(r,t) € Ry x [0,T) : 2k <t—r <r}, where we

put
b\ a7
I(r,t) =log { Me°eP <log 5% ) . (73)

At this stage, it is clear that there exists a point (£9/2,%y) € Yoo such
that I(t9/2,tp) > 0 provided

T > 4k exp {(Mes)l”’qe’p(”q’l)} . (74)

Taking j — oo, we get a desired result w(ty/2,t9) — oo which con-
tradicts to the assumption that u is a classical solution in R3 x [0, T).
So, the proof of the critical case for p # ¢ is completed.

Case p = q = po(3).

This case will proved in the almost same way as previous case. In
fact, nothing changed must appear before the inequality (51). From
now on, we denote g by p.

It follows from the definition of po(3) = 1 + v/2 and related
quadratic equation

v(p,3) =2+ 4p — 20> =0 with p= po(3) (75)
that

1—p(p—2)=0 when F(p,p)=0 with p=po(3). (76)
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Therefore, S-integral in (51) is equal to

t—T‘t_,r._lB< ﬁ)paj
lo dg. 7
I (77)
So, the integration by parts yields that g-integral must be
1 t—r /8 >paj+1
log — dg. 78
paj+1/52j < & Tojk p (78)

Hence, by slicing again, we obtain the following estimate for ¥ instead
of (55).

D; t—r pa;+1
o(r,t) > log — in Yo,
o) 2 G = <Og 12j+1k) i Bje (79)
where we put
CP
D,=27337P 4
J 3 47 (paj + 1) (80)

Similarly to the previous case, we have a new estimate for w in
22]'_1_2 as follows.

_ (D})?
) 25 i =

e (paj+1)
/t 7t r—#8 <log B )P ! dg.
l

sk B laj 1k

(81)

Hence the same treatment on the S-integral implies an new estimate

_ Cii1 t—p \PPGFHDHL
t) > J log —— Yo
R T T e <°g 12j+2k> A
(82)

where we put
(D})”
4 (p(pa; +1) + 1)

Cjyp =27337P (83)
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along with the same procedure, we can reach the final inequality

exp {psz’(r, t)} <log t— r) ~(e-1)7!

Wt 2 =2 2%k

(84)

for (r,t) € Xoo = {(r,t) e Ry x [0,T) : 2k <t—r <r}, where we

put
t—1r (p—17!
I'(r,t) =log { MeSeP <log oF ) . (85)

Hence there exists a point (t9/2,tg) € o such that I(tg/2,t9) > 0
provided

T > 4k exp {(Mes )1—1’5—?(?—1)} . (86)

Taking j — oo, we get a desired contradiction. The proof is now
completed.

REMARK 3.4. We note that the above proof never require that p > 2
except for the assumption in Lemmad.2. This means that the result
may be still valid for C'-solution of associated integral equations (20)
with a low power 1 < p < 2. See Remark3.3.
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