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Finite Time Blow-up for Solutions of
a Hyperbolic System:
the Critical Case

ATANASIO PANTARROTAS (*)

SUMMARY. - It has already been proved that for the systems forming
by m wave equations containing polynomial nonlinearities there
exists a manifold that bounds the region of the blow-up in the
half-space to which belong the parameters of nonlinearity.

Here we prove the formation of singularities if the parameters
belong to the critical manifold in three space dimensions.

1. Introduction

In the two previous papers we concentrated our attention to the
following Cauchy problem:

6,52tul - Au1 = |U2 |p1

2 o A — p2

Oigz = Ay = fus| in R" x [0,+00, (1)

Uy — Ay, = |u1|pm

ui(z,0) = fi(z), Ou;(x,0) = gi(x), inR", (2)

where p; > 1, and f;, g; € C°(R") for all i =1, ..., m.

If there exists a m-tuple (u1,us, ..., Uy, ) of C? functions defined
in R™ x [0, +oo] satisfying (1, 2) we say that the problem admits a
global classical solution.

) Author’s address: Dipartimento di Scienze Matematiche, Universitd degli
Studi di Trieste, Piazzale Europa 1, 34127 Trieste, Italy, e-mail: at-
pant@katamail.com
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Blow-up consists in the non-existence of a global solution. In this
case there exist local solutions with initial data like in (2) satisfying
(1) only in R™ x [0,T[ where T' < +00 is called the life-span.

For sake of simplicity we started to study the case of three equa-
tions. More precisely we proved (see [9]) that if

pop3+2p2+2+pT " p1ps+2p3+2+py ' pip2+2p1+2+p3 ! n—1
max , , > ;
p1p2p3—1 p1p2p3—1 p1p2p3—1 2

(3)

and the space dimensions n = 3 then any non trivial C? solution is
defined only locally in the time. If (3) is satisfied but n # 3, then
any solution of the system blows-up in finite time if the average of
the initial data satisfy a certain positive condition. On the contrary
we gave a partial converse result for space dimensions n = 2,3 (see
[10]). More exactly we proved that if

Papa+2p2+24p7 1 pipa+2p3+24py ' pipa+2p1+2+ps " n—1
max , , < ;
pip2p3—1 pip2p3—1 pip2p3—1 9

(4)

and

min {p1, p2,p3} > 2,

then there exists a tern (u,v,w) € C2(R"™ x [0, 4+00[; R)” that satis-
fies (1, 2) provided that the initial data are small in a suitable way.
Instead if

min {pap27p3} S 2a

then (4) implies, under the same condition on the initial data, the
existence of a global continuous solution of the integral problem cor-
responding to (1, 2).

After that we dealt with the question of the m equations. We
showed in [9] that the condition (3) can be widened for large system.
In fact if the parameters of nonlinearity in (1, 2) satisfy

[ty pi +2 (H:’lei + H?;fpi + H;’;fpi + ..+ p2+ 1) +pt

Hglpi_l
n—1
2 b

(5)
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or one of the m inequality obtained by a cyclic permutation, then
any solution is defined only locally in the time under the assumption
of some positive condition of the initial data.

It is interesting to compare these results with the analogous of
the scalar equation and of the Hamiltonian system. It is well known
(see [6], [7], [4], [5], [12], [11]) that for the semilinear wave equation

OZu — Au = |ul’  in R" x [0, +oc],
(6)
U(ZB, 0) = f(.’L‘), 815“(55’ 0) = g(:v),

where f,g € C§°(R"), there exists a critical value p., the larger root
of the quadratic (n—1)z? — (n+1)z—2 = 0, that breaks the behavior
of the solution in two: If 1 < p < p. then the solution of (6) is defined
only locally in the time, while for p > p, small Cauchy data imply
global existence.

Moreover given the p — g system

{ 0Zu — Au = |v|P

2o — Av = |uf? in R" x [0, +o00], (7)

the equality

{q+2+p1 p+2+q1} _n-—1
max , =
pg—1 pg—1 2

identifies the critical curve that plays the same role for this Hamil-
tonian system as the exponent p, in the scalar case (see [2], [3], [1]).

These issues led us to conjecture that there exists a peculiar phe-
nomenon in dealing with the question of global existence for solution
of this kind of systems: given a m equations system, there is always
a manifold of m — 1 dimensions that divides the region of global exis-
tence from that of the formation of the singularities in the half-space
to which belong the parameters of the non-linearity.

In the present paper we make one more step in that direction.
We show that in three space dimensions if the average of initial speed
is positive and

m m—1 m—2 m—3 1
Hpi+2<sz-+ I1pi+ Hp¢+---+p2+1) +py
1=2 1=2 1=2 1=2

™ =1 (8
l;[lpz‘ -1
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then any m-tuple (u,us, ..., Uy, ) solution of (1, 2) blows-up in finite
time.

Hence we prove that the separation manifold belong to the blow-
up case as well.

This paper is organized as follows: in the next section we state
the main result. Section 3 is devoted to present some important tools
in order to prove it. Finally in the last section we give the proof of
the theorem.

2. Result

THEOREM 2.1. Let m € N' —{0,1,2}, T € ]0,+oc] and let (u1,us,
ey Um) € C2((R3 %[0, T[); R)™ be a solution of the following Cauchy
problem

8t2tu1 — Au1 = |UQ|p1

Py — Auy = [us|” in R® x [0,T] 9)

02Uy, — Ay, = |ul|pm

ui(z,0) = fi(z), dpui(z,0) = gi(z), in R, (10)

where fi,9; € C(R3) for all i = 1,...,m. Suppose that all p; > 1
and

/ gi(x) de >0 foralli=1,..,m. (11)
R3
Define
\Il(pla 7pm)
m m—1 m—2 m—3 1
sz-+2<Hpi+ I1 pi + sz-+---+p2+1> + 11
_ i=2 i=2 i=2 i=2
m )
[Ipi—1
i=1

and for all the cyclic permutations nj, j = 1,...,m, of (1,2,...,m),
call

U; = \Il(pﬂj(l)a "'apﬂj(m))'
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If

~max V; =1,
7j=1,...m

then

T < +o0.

3. Preliminary results

213

To prove the main theorem of this paper we use the following two

lemmas.

LEMMA 3.1. Let T € ]0,4+], R >0, G € C*(R? x [0,T[; R), and

f,9 € C§°(R3). Let V be the solution of
av(z,t) = G(z,t) in R>x[0,T],
V(z,0) = f(z), OV (z,0) = g(z) in R3.
Suppose that G is a non-negative function with
suppG C {(z,t) € R* x [0,T[: |z| < R+t},

and furthermore that

suppf,gC{:EER3:|x|§R}, /g(m) dz > 0.

R3

Then

/ V(w,t) dz > / V(m,%)dm,

t t
5 <|z|<t+R lz|<5+R

for allt € 2R, T].

(13)

For the proof of this first lemma we refer the interested reader to

[3, lemma 2.1].
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LEMMA 3.2. Let a, b € Je,+o0] with a < b, and let Cy, R > 0.
Given m functions F; € C?([a,b[,R), i = 1,...,m, suppose that there
exist | > 1, and m real numbers p; € |1, +o0l, i = 1,...,m, such that,
letting oy = 3(p; — 1), the following conditions hold:

Fi(t) > Co(R+t)!(log(R + 1)),
Fi(t) > Co(R+1t) fori=1,..,m,

(14)
FU(t) > Co(R+ )% |Fur ()7, fori=1,..,m —1,

F(t) = Co(R+t)~ [Fy ()™,
for all t € [a,b]. Suppose finally that

m m m—1
! (sz'—1> =3 (sz-—1> -2 (1+p1 +pip2 + ...+ H pl-) .
=1 =1 =1
(15)
Then
b < +oo.

Proof of lemma 3.2. We prove this Lemma by assuming that b =
+o00 and deducing a contradiction. Positive constants arising in the
estimates will be denoted by C', and will change from line to line.
First of all we note that all the F; diverge as ¢ — oo. Moreover
by the convexity we can assume that there exists 77 > a such that
for t > T, F/(t) > 0 for all i = 1, ...m. Hence for ¢ > T}, we have

F{(t)Fp(t) > Co(R+ )~ (Fu (1)) Fi(t).

Integrating by parts on [T}, t] we obtain
t
FOF 0l - [ FOF, @

Tm
t

> ¢ / (R + 7)o (Fy ()P FY/(r)dr,
Tm
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and since a,, > 0, it follows that there exist Ty > T7, C > 0, such
that

FI(t)F () > C(R+ 1) (Fy(t))Pm+!

for all t > Ty. Multipling again by F{(¢), and then integrating on
[T2,t] , we deduce that there exists T3 > T5 such that

(B4 [P
N O

for all t > T5. Using now F"_,(t) > Co(R+1t) “m=1 |F,(t)[P"~ !, we

m—1
can repeat the previous argument to get the following inequality

(R —|— t)_(amfl‘i'pmflam) |F1 (t) |Pm—1(pm+2)+2
VDI

Froa(t) > C

for all ¢ > Ty, where T, > T3 is large enough.
More generally we derive that for ¢ large, say ¢ > T5, one has

(R o+ 1) |y 1)

F,_:(t)>C 16
for 0 < 57 <m — 2, where
Bm = @ms Ym = Pm + 2, (17)
andfor 1 <j<m-—2
Bm—j = m—j+Pm—j(Bm—j+1)s  Ym—j = Pm—j(Ym—j+1) +2,
Om = 2, 5mfj = pm,j((sm,jJrl) + 2.
(18)

Thus

(R+ 1)~ PP | Py (2)|

B0z mmme

whereby after an integration we get

_a14p1fs P12+l
F{(t) 2 C(R+1t) po2f2 |Fy(t)|pro2+2 (19)
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for t > Tg > T5. Observe now that

p1y2+1 _ pi(ye—d2)—1 _ pi(p2(y3—d3))—1 _ _ %y pi—1
p12+2 p102+2 +1= p102+2 +1= T p162+2 +1,

so that the (19) can be rewritten as

a1 +pi1 62 (n{';lpr1+1)

Fi(t) > C(R+1) o2 |F(t)|\ "2 (20)
Next from (14) we have
e, pi—1 lnyilpfl e pi—1
Fyt) W > C(R+ 1) T (log(R+1) miat
and equality (15) implies that
I pi—1
Fi(t) oot (21)
8(ITLy pi—1) —2(14p14.. 1 T ' i) M2, p—1
>C(R+1) P152+2 (log(R +1t)) »1o2t2 .

Observe now that

m m—1
—ay; —pifa+3 <Hp¢ — 1) -2 <1 +piy.+ [1 _m)
i=1 =1
p1da + 2

m m—1
=3(p1 — ) =p1(3(p2—1) +p2f3)+3 <l:[1pz‘—1> -2 <1+p1+...+ II pz‘)

=1

p162+2

m m—1
—3pip2 — p1p2fs + 3 [pi — 2 <1 +pig.4 [ pi)
i=1 i=1

p1(p2ds +2) + 2

m

m m—1
=3[Ipi+31Ipi—2 (1 +pi+.+ 1 pz‘)
_ = i=1 i—1 _ 4

m—1
2 <1 +piy.+ [ pi)
=1
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hence combining (20) and (3), we derive that

I~ pi—1

Fl(t) > C(R+ 1) 'Fi(t)(log(R + t)) pro2F2

Integrating this inequality we deduce that there exists 77 > T§, such
that

ity pi—1

Fi(t) > C(R + t)[los(R+0] 7172

for all ¢ > T%, but that means that

m
e, pi—1 a1+p182

[Fl (t)] 2(p162+2) > C(R + t) p1oa+2 (22)

for all ¢t > T, where T' > T is large enough.
At last by (20) and (22), we arrive at the following ordinary
differential inequality

[Ti%q pi—1

Fi(t) > C (F(t) 2o (23)

that holds for all ¢ > T.

But it is easy to see that a positive function defined in [T, +o0o[
cannot satisfy condition (23). This concludes the proof of lemma
3.2. O

4. Proof of Theorem

In view of the symmetry of the problem we suppose the following
relation among the parameters of the nonlinearity.

P1 < Pm < Pm—1 < oo S P2
Thus the (12) becomes

m—1 m—2

m m—3
Hp¢+2<l_[pz-+ I pi + sz-+---+p2+1> +pp !
1=2 1=2 1=2 1=2

m
[Ipi—1
i=1

= 1. (24)
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We shall argue by contradiction. Hence suppose that (u1,usg, ..., un)
is a smooth solution of (9), (10) with 7' = +o0.

Since the functions have their support in {z : |z| < R + ¢} (see [8,
theorems 4, 4a]), we can define for ¢ > 0 the following C? functions

By Holder’s inequality it follows that

/ ug(z,t) dx
{z:|x|<R+1}

< C flun(, 0)[2h sy (R A1), (26)

p1
|B(t)|" =

and, in the same way, letting 1,41 = w1, Fine1 = Fi1, we have

Fir () < Clluisa (01 oy (R fori = 2,...,m.
(27)

On the other hand differentiating one obtains

F'(t) = d—22/ ui(z,t) doe = / a—iui(:v,t) dx
dt* J{a:(z|<R41) {asla|<R+1} Ot

= / (Oui(z,t) + Augi(z, t))dz,
{z:]z|<R+1}

for all ¢ = 1,...,m. Finally the divergence theorem implies that

B (1) = / Clug(w, £)dz
{wlel <R+

- /{ oy AP = T Oy 09)

Combining (26, 27, 28), it follows that

F'(t)> C(R+ )3V |F ()| foralli=1,...,m. (29)
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Furthermore we note that the functions are convex and, by (11), one
has

d
(0 — ,
F;(0) = p /733 u;i(z,t)dz

:/ 2ui(ac,O)dac:/ gi(z)dz > 0.
o Jrs Ot R3

As a consequence there exist Ty > 0, such that
Fi(t) 2 C(R + 1), (30)

for all ¢ > Ty, for all¢ =1, ...,m.

Our aim is to show that the m function F; satisfy the hypothesis
of lemma 3.2. For this purpose we have only to find a further estimate
on the first function F}. We start recalling that the positivity of the
Riemann function in low space dimensions and the Huygens’principle
imply that

/ |ug [P dmz/ |ud|”* da
{z:|z|<R+t} {@:|z|<R+t}

> [u$|” dz > C(R+t)*",

/{m:R—t§|m|§R+t}

where 1 is the solution of the homogenous wave equation with the
same initial data of wy. This argument yields that there exists Tj
such that

Fi(t) > C(R+1)*™ (31)
for all ¢ > Ty. Consequently from (29) it follows that
F"(t) > C(R+t)3Pm=(R 4 t)pm(4=r1)
for ¢ > Ty, whereby, integrating twice, we get
Fin(t) > C(R + t)>FPmPrbm (32)

for all ¢ > T5, where T5 > T} is large enough. Repeating this argu-
ment several times, we obtain that

Foj(t) 2 C(R + 1) (33)
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for t > T3 > T, where j = 0,...,m — 3, and

Nm = 5+ Pm — P1Pm,

(34)
NMm—j = 9 — 3Pm—j + Pm—jNm—j+1 for1<j<m-3,
so that finally
Fs5(t) > C(R+1t)™, (35)
where
m—1 m
N3 =54 2(p3 + psps + ... + Hp¢)+(1—p1)(sz-). (36)
Observe now that ug obeys the hypothesis of lemma 14, thus
t t
/ uz(z,t)dx > / ug(z, =)dx > C(R+ =)™
L<lal<Rryt 2 2
le|<E+R
for ¢ > 2R. Next using Holder’s inequality we infer that
/ lug (2, )| dz > C(R + 1)*+72(15-9) (37)
t<|z|<R+t
for ¢ sufficiently large, say ¢t > Ty, and from (24) we derive that
3+pa(nz —3) = —py . (38)
Let now ¢t > Ts = (15/2)Ty + 9R, and let k € N, such that
3T, 1 t
— 4+ 1<k< -4+ —. 39
2R tisks ) + 2R (39)
We set

Hy(t)={zeR*:t— (2k+1)R<|z| <t—(2k—1)R}. (40)

Since k > 2, by the D’Alembert’s formula (see [3] for more details)
we derive
t—(2k—1)R t rHi—T

/ wo(z, £)dz > 2 / rdr / dr / Tua (p, 7)dp. (41)

Hy(t) t—(2k+1)R 0 |r—thr
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Next define

A={(p,7) ER?:0<7<t, |r—t+7|<p<r+t—r7},

B={(p,7) € R?: 2(2k+1)R<7 <22k —1)R, 3 <p<R+7}.

(42)
If ¢ — (2k+ 1)R <7 <t — (2k — 1)R, then
B C A.
Hence from (41) we obtain
t—(2k—1)R 202%k—1)R R4
/ ug(z, t)dz > 27 / rdr / dr / plus|”?* (p,7)dp
Hy (1) t—(2k+1)R  2/3(2k+1)R  7/2
t—(2k—1)R 2(2k—1)R Repr
1 _
>5[ v [ @enar [antTalPena.
t—(2k+1)R  2/3(2k+1)R /2
(43)

and since the left hand side of (39) implies that 7 > T}, conditions
(37), (38) yield

t—(2k—1)R 2(2k—1)R
/ ug (z, t)dx > % / rdr / C(R+T1) " ldr
HL(t) t—(2k+1)R 2/3(2k+1)R
(44)
Furthermore
t—(2k—1)R
% / rdr = (t — 2kR)R > C(R + 1), (45)

t—(2k+1)R
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and

2(2k—1)R
/ (R+7)7P1 ~ldr > CkP1 (46)

2/3(2k+1)R
so that we arrive at the following estimate
/ ws(w, t)dz > C(R+ )k 7 (47)
Hy(t)

Finally from (47) using Hélder’s inequality with exponents p; and
p1/(p1 — 1), we infer

/ (s (z, )P dz > C(R + )P (48)
Hy(t)

and noticing that
> E~'> Clog(R +1t) (49)
1
%+1gk§g+ﬁ
for all ¢ > T5, we conclude that

F/'(t) > C(R+1)*P log(R + t) (50)

for all ¢ > T5. Integrating twice this last inequality, we deduce that
there exists Tg > Ty such that

Fi(t) > C(R+t)* P log(R + t) (51)

for all ¢ > Tj.

But condition (51) together with (29), (30), and (12) imply that
the m functions F; satisfy the hypothesis of lemma 3.2. Thus we
have reached the desired contradiction. The proof is complete.
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