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Life-Span of Solutions to Nonlinear
Dissipative Evolution Equations: a
Singular Perturbation Approach

ALBERT MILANI ()

SUMMARY. - We investigate the large time behavior of solutions to
nonlinear dissipative wave equations of the general form

euy 4+ up — Au = F(z,t,u, Dyu, Du);

in particular, we study the dependence of the solutions u = u®
and of their life span T, on the (small) parameter . We are inter-
ested in the behavior of u® and T, as € — 0, and in their relations
with the solution v, and its life span T),, of the corresponding
limit equation when € = 0, which is of parabolic type. We look
for conditions under which either T, = 4oc, or T, — T, < 400
ase — 0.

1. Introduction.

1.1 This survey paper presents some problems concerning the large
time behavior of nonlinear dissipative evolution equations of parabolic
and hyperbolic type, which are related when the latter are a per-
turbation of the former. More precisely, we consider a family of
nonlinear dissipative hyperbolic equations of general form

eug + uy — Au = F(z,t,u, Dyu, D2u), e >0, (1)
which we see as a perturbation of the nonlinear parabolic equation

vy — Av = F(z,t,v, Dyv, D2v). (2)
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We call equations (1) “weakly hyperbolic” when ¢ is small; we are
interested in the asymptotic behavior, as ¢ — +o00, of smooth solu-
tions to (1) and (2) when both problems have global solutions, and
in the life-span and blow-up mechanism for either problem, when at
least one of the life spans is finite. We will formulate several ques-
tions related to these problems in a very general setting, and give
some answers in some special cases.

We can consider these equations either in the whole space R", or
in a bounded domain 2 C R" with sufficiently smooth boundary 0f2,
or in the exterior of a bounded domain; in the latter cases, appro-
priate types of boundary conditions, such as Dirichlet, Neumann, or
mixed ones, are of course added to the problem. The proper choice
of conditions for each problem is extremely important, because it is
essential to be able to compare solutions of (2) and (1) in one com-
mon function space. For classical solutions, as in example (5) below,
one naturally considers spaces like W*°(R"), for some k € N; later
on, we shall present some results on the comparison of solutions to a
class of initial-boundary value problems for a quasilinear version of
(1) and (2) in suitable Sobolev spaces H*(£2).

The life span of regular solutions of (1) and (2) may very well be
finite, and in general depends on the size of their initial values, i.e.
respectively

U(ZB, 0) = UO(IL‘), Ut(fE, 0) = Ul(fE) (3)

for (1) and, for (2),
’U(:Ij, 0) = UU(m)a (4)
as well as on the particular form and the growth properties of the

nonlinearity F. A simple example is given by the semilinear initial
value problem in R?

euy + auy — Au = |ul?,
u(z,0) = nep(z), (5)
uy(z,0) = nip(z) :

combining the results of Li Ya-Chun, [24], with those of Li Ta-Tsien
and Yi Zhou, [22],if 1 <p < 2 and

|, @) + plw) dz >0,
R
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the corresponding solution of (5) must blow up in finite time, and
the life span T' = T, of these solutions satisfies the estimates

as n — 0,

(6)
with explicit upper and lower bounds (compare to Linblad, [26], for
the nondissipative case). In fact, if we define as usual the crRITICAL
EXPONENT of problem (5) to be the smallest number p. such that if
p > p. then for all data {ug,u;} there is g > 0 such that (5) has a
global solution for all < g, the following is known:

(1-p)/(2—p) i
T, = O(n p p) if 1<p<2,
O (exp(n'~P)) if p=2,

1. For the parabolic equation, i.e. € = 0, @ =1 (with, of course,
no condition on w(+,0)), p. = 2 (see Fujita, [5]); more generally,
the critical exponent in R" is p, = 1 + %

2. For the undamped wave equation, i.e. € = 1, a = 0, the criti-
cal exponent is larger: p. = (3 + /17)/2; more generally, the
critical exponent in R" is the positive solution of the quadratic
equation (n — 1)p? = (n + 1)p + 2 (see Georgiev, Linblad and
Sogge, [6]).

3. For the damped wave equation, i.e. € = 1, @ = 1, we deduce
from (6) that the critical exponent is again p, = 2; the exact
value of the critical exponent in R™ has only recently been
settled by Todorova and Yordanov, [55], who proved that p, =
1+ % as for the parabolic case. This long standing conjecture
was motivated also by the diffusion phenomenon of hyperbolic
waves, which we shall describe at the end of §2.4 below.

1.2 As we have said, we are particularly interested in the depen-
dence of the life span of solutions to (1) on the parameter ¢, and
its behavior as e — 0. Denoting respectively by T, and T}, the life
span of solutions of the hyperbolic equations (1) and of the parabolic
equation (2), roughly speaking we expect that, when ¢ is small, T
and T}, are comparable, in the following sense:

Q1: If T}, is finite, then so is T}, and their difference vanishes as
e —0.
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Q2: If solutions of the parabolic equation (2) are globally defined
(i.e. T, = 400), then either the same is true for solutions
of the perturbed hyperbolic equation (1) when ¢ is small (the
smallness being in general determined by the data), or T, —
400 as € = 0. Conversely, if T, = +oo for all sufficiently small
g, then also T, = +ooc.

Q3: When solutions to both (1) and (2) are globally defined, their
asymptotic behavior as ¢ — 400 (for example, their growth
rates, stability, convergence to stationary solutions, existence
of attractors) should be similar for small values of ¢, in the
sense that a particular asymptotic behavior of the solutions
of the parabolic equation should imply a similar behavior for
the solutions of the hyperbolic equations when ¢ is small, and
viceversa.

In particular, Q2 means that when ¢ is small the behavior of T,
is essentially controlled by ¢ alone, in the sense that, for any given
data of (1), one of the following possibilities should hold:

1. Either there exists g > 0 such that for all € < ¢y, T, = 400,

2. Or T, — +o0 as € — 0, i.e.

VT >0 dep >0 Ve<er, T, >T. (7)

As an example of the relationship between the life spans of both

type of problems, we mention the comparison made by Sideris in [53]
between the 3-dimensional compressible Euler equations and their in-
compressible limit; in particular, these would admit global solutions
iff liminf. ¢ T, = 400, € being the viscosity parameter. However,
it is generally believed that solutions to the incompressible problem
exhibit blow-up in finite time: one way to show this would be to
prove that the above limit is finite.
1.3. We conclude this introduction by mentioning some possible
applications of results on these questions to several models of phys-
ical systems. A first example is given by Maxwell’s equations in
ferromagnetic media, when the constituent relations between the
electromagnetic fields and inductions can be approximated by the
conditions

H = uy'B + ((B), D =c¢E, J=0E,



LIFE-SPAN OF SOLUTIONS TO NONLINEAR etc. 193

where pg, € and o are (for simplicity) positive constants, and ( is a
nonlinear function simulating hysteresis; € and o are, respectively,
a measure of the displacement and the eddy currents. Resorting
to the usual electromagnetic potentials, i.e. setting B = curl A,
E =—A;4+ V¢, with A, ¢ satisfying the gauge relations ¢, + o¢p =
o 'div A, the complete nonhomogeneous Maxwell’s equations

Di+J—curlH = &
Bi+curlE = 0, (8)
divB=0, divD = g¢

are transformed into the system of second order equations
eAy + oA, — pg 'AA = —curl ¢ (curl A) — @, 9)

which is of type (1). The interest of this model lies in the observation
that in ferromagnetic media displacement currents are usually much
weaker than eddy currents: that is, typically, 0 < ¢ << o, so the
term €Ay in (9) is commonly neglected in numerical simulations.
It is therefore of importance in applications (for example, in the
modelling of transformer cores) to have a control, in terms of ¢, of
the difference A° — A° between the exact solution A of (9) and the
solution A° of its parabolic approximation

oAy — upAA = —curl((curl A) — 9. (10)

Actually, we should remark that the electromagnetic fields vary peri-
odically in time, with a (low) frequency w, and displacement currents
are negligible precisely when ew << o; hence, the importance of de-
termining conditions under which solutions of (9) are guaranteed to
exist in possibly large time intervals [0,T], T = %, and to estimate
Af — A° also in terms of a suitable norm of ®;, which would allow us
to account for the periodicity in an implicit way (a first result along
this line was established in [40]).

Interesting other examples include models of random walk sys-
tems (see e.g. Hadeler, [7]), where the parameter ¢ is related to the
reciprocal of the turning rates of the moving particles; models of
traffic flow patterns (see e.g. Schochet, [50]), where ¢ would be a
measure of the drivers’ response time (hopefully very short!) to sud-
den disturbancies; also, some simple models of laser optic equations
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(see e.g. Haus’ book [8]), where ¢ is related to measures of (low) fre-
quencies of the electromagnetic field. Other examples that are more
readily described by an equation like (1) include Cattaneo’s model
for the heat equation, the heat equation with delay, and a model for
the flow of polytropic gases, which we are going to briefly recall.

In [4], Cattaneo argued that heat conduction in a one-dimensional
nonlinear homogeneous medium should be modelled by the per-
turbed equation

gy + U — (O'(’LLI))I = f, (11)

where ¢ is a measure of the “thermal relaxation” properties of the
medium, and o is a C? function satisfying o”(r)r >0 Vr € R—{0}.
Typically, the thermal relaxation is quite small, but not negligible,
and this corrects the inconsistencies of “instant propagation with
infinite speed” of the heat flow, that one is forced to deduce from
the standard model of the heat equation. In this model, the basic
equations relating the temperature u = wu(z,t) and the flux ¢ =

q(x,t) are
uw+q = f
{ q+ku, = 0, (12)

the second of which expresses Fourier’s law. If there is a delay 7 > 0,
the second of (12) is replaced by

q(z, t +7) = —kug(x,t); (13)

approximating the left side of (13) by means of Taylor’s expansion,
and neglecting higher order terms, we have

gz, t+71) =q(x,t) + Tq(x,t) = —kug(z,t),

from which
Gu(z,t) + 7 que(x,t) = —k uge(z,t).
Replacing this in the first of (12), differentiated with respect to ¢, we
obtain the heat equation with delay
Tuy +up — kugy = f+ 7 ft, (14)

which was extensively studied by Li Ta-Tsien in [20]. An analogous
model can be obtained for nonlinear heat conduction with delay (i.e.
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when £k is a function of u, in the second of equations (12)); in both
cases, one is interested in small values of the delay parameter 7.
A similar analysis can also be carried out for more general reaction-
diffusion processes with delays. Finally, we recall that with the usual
substitution v = uy,, w = uy, equation (11) (with f = 0) is trans-
formed into the first order dissipative system

{ ew; — (0(v)), = —w, (15)

Vy — Wy = 0;

when o(r) = —kr™7, k > 0, 1 < v < 3, (15) is a model for a
polytropic gas in Lagrangean coordinates, where € is a measure of
the inertial forces. The convergence process for weak solutions of
(15) as ¢ — 0 was studied in [35], using monotone operators and
compensated compactness techniques; note that when ¢ = 0 it is
possible to deduce from the corresponding limit system the porous
media equation

v = (0(0)) gy = 0 (16)

(for more on the connection between porous media equation and
conservation laws, see e.g. the monograph [31], as well as Vazquez,
[56], or T.P. Liu, [30], and Marcati, [33], [34]).

2. Life Span and Asymptotic Behavior of Smooth
Solutions.

2.1. In the sequel, we shall refer to the hyperbolic problem (1)+(3)
(together with appropriate boundary conditions if required), as “Prob-
lem (H.)”, and to the parabolic problem (2)+4(4) (also together with
a boundary condition if required), as “Problem (P)”. One of the first
steps in determining the large time behavior of solutions to problems
(H.) and (P) consists in obtaining sharp estimates, with explicit up-
per and lower bounds as in (6), on the life spans of regular solutions
of both problems, in relation to the size of their initial values and
the form and the growth properties of the nonlinearities of the equa-
tions; then, when global existence can be guaranteed, we can try
to determine the asymptotic behavior of the solutions as t — +oc.
In the present case, it is of particular interest to determine how the
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long time behavior results that are available for nonlinear hyperbolic
problems are affected by the presence of the parameter € and, when
appropriate, by the dissipation term wuy; of course, we assume the
data {ug,u;} to be independent of .

For a general review of global existence and regularity results
in absence of dissipation and when £ = 1, we refer in particular to
the monographs of Li Ta-Tsien, [19] and [21], as well as to those of
Strauss, [54], and Racke, [48]; see also the papers by Klainerman,
[12], [14], [15], [16], and Tai-Ping Liu, [29]. For explicit blow-up
results for hyperbolic equations, we refer to the book by Alinhac, [1],
and, for specific examples, to the papers of F. John, [11] and [10], and
Sideris, [52] and [51]. Corresponding results for the dissipative case
are also available; the basic global existence result for quasilinear
equations like (21) below is established in Matsumura’s paper [36],
and regularity and blow-up results for nonlinear dissipative equations
can be found in the papers [22], [24], [23]. For general results on
global existence, asymptotics and regularity for problem (P), we refer
mainly to the books by Lunardi, [32], Amann, [2], Lieberman, [25],
and Zheng, [58]; for corresponding results on finite time blow-up, see
e.g. the monographs [49], or [3], and the references quoted therein.
2.2. We now present, in addition to the problems described in Q1,
Q2 and Q3 above, a list, by no means exhaustive, of related ques-
tions, some of which we propose to study by means of the equivalence
principle described below.

Q4: Determine whether there are cases for which solutions of prob-
lems (P) and (H.) share a common existence interval, at least
if € is small; that is, if

deg >0, 3T, € (0,+<] | Ve<ey, T.>T., T,>T..
(17)

Q5: Whether there are situations for which 77 is in fact independent
of e, at least if ¢ is small; that is, if (17) can be replaced by

deg >0, 3Tp € (0,40c] | Ve<ey, T.="T. (18)

Q6: Determine sufficient conditions on the data {ug,u1}, on € and
the nonlinearity F' under which T, = +oc; for instance, when
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€ = 1 this is often true for equations with nonlinearities inde-
pendent of w if the initial data (2) are small, but in general
not for equation (1), even if the data are small, at least in the
whole space case (see e.g. Linblad, [27]). Concurrently, charac-
terize conditions on vy and the nonlinearity F' which separately
assure that T), = +oc as well.

Q7: When (17) holds and u® converges to some function 7 in a
suitable sense as ¢ — 0, identify the problem (P) to which @ is
the solution in the interval [0, T,]. If T}, is the life span of @ and
Ty = inf.~oT:, determine whether Ty < T}, and if there are
cases when Ty = T),. In this respect, note that the convergence
u = u® — v as € — 0 is singular in time, due to the loss of
the initial condition on u;; in particular, there is in general an
initial layer at ¢t = 0.

Q8: When indeed u° = lim. ,ou® is a solution of problem (P) in
[0,T,], to what extent can one generalize to the nonlinear case
the asymptotic analysis by means of the expansion in ¢

uf = u® + eu + 2u® 4 (19)

that is sometimes possible in the linear case (see e.g. J.L. Lions,
[28], and Zlamal, [59], [60]). In this case, establish suitable
error estimates on the difference u® —u® (for a first step in this
direction, see e.g. [41] for the case of the quasilinear initial
value problem; for an application of this type of estimates to
the time periodic problem in a bounded domain, which could
be applied to the model (9) of Maxwell’s equations, see [40]).

2.3. We now introduce a sort of “equivalence principle” on the long
time behavior of solutions to (H.) and (P), and show how we can
answer some of the questions we have posed, when we can assume
this equivalence principle. We shall then proceed to prove the equiv-
alence principle in the special case of a class of initial-boundary value
problems for the quasilinear version of (2) and (1). The equivalence
principle is the following:

DEFINITION 2.1. The global existence equivalence principle holds for
problems (H.) and (P) if whenever the parabolic problem (P) is solv-
able for any choice of (compatible) data on any time interval [0,T],



198 A. MILANI

the hyperbolic problem (H.) is also solvable for any choice of (compat-
ible) data on the same time interval [0, T, at least if € is sufficiently
small; and viceversa.

In this definition, “solvable” means in a suitable common class of
functions. In most cases, the smallness of € will depend on the data
of (H.) and (unfortunately!) on 7.

To give an example of the results that can be obtained assuming
the equivalence principle, we claim:

PROPOSITION 2.2. Assume the equivalence principle holds in some
class of suitably smooth functions. Set T; = liminf, ,qT, and Ty =
limsup,_,oT:: then

T =T, =T, (20)

Proof. We only prove that T; = Tj,; the argument for T is analogous.
We show first that 7; < T),: otherwise, we choose A > 0 such that
T, < Ty —2X <T;— X < 1T, and g such that T, > T; — X for all
e < gg. Then, since (H.) is solvable on [0,7; — 2] for all £ < e,
by the equivalence principle (P) is also solvable on [0,7; — 2], and
since this interval contains [0, 7T}], T,, cannot be the life span of (P).
Thus, T; < T); if T; # T, we choose 6 > 0 such that T; + 0 < Tj:
since (P) is solvable on [0, T; 4 6], by the equivalence principle we can
also solve (H.) on [0,7; + 4] for all € less than some €. But there
is at least a sequence e — 0 such that T,, <7} + §/2: this yields a
contradiction, and we conclude that T; = T}, ]

As a consequence of this Proposition, lim._,o T, exists, and equals
T); thus, we have a positive answer to question Q1, and to the second
part of question Q2. In contrast, the first part of Q2 remains open
in general if, in the equivalence principle, ¢ is not independent of
T, because in this case it may happen that ¢o(7') — 0 as T' — +oo.
Of course, the second part of Q2 can be proved directly: given
any T > 0, we solve (P) on [0,T]; by the equivalence principle, there
is e > 0 such that we can also solve (H.) on [0,7] for all ¢ < er.
This implies that 7. > T that is, (7) holds.
2.4. The equivalence principle has also the following consequences:
1) On Q5: since by Proposition 2.2 we have
inf T, <T; =T, =Ts <supT,
e—=0

e—0
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T: can be independent of € only if T, = T, for all € (sufficiently small,
depending on Tj,); in particular, this provides a positive answer also
to the first part of question Q2, if T), = 4-o0.

2) A positive answer to the last part of question Q3: if T, = +o0
for all sufficiently small ¢, given any T' > 0, there is e > 0 such that
(H.) is solvable on [0, T] for all € < er; by the equivalence principle,
(P) is also solvable on [0,7], and this implies that T}, = +oo.

3) On Q7: in most cases, it is relatively easy to show that, as
e — 0, smooth solutions of (H.) converge to a smooth solution of
(P) (of course, one of the problems in this regard is exactly that
of determining, in each case, the most suitable class of “smooth”
functions): we can then show that Ty < T),. Indeed, clearly T, > T
and Ty > T¢; proceeding as in the proof of Proposition 2.2, if Ty > T},
we could choose A > 0 such that T, < T, + A < Tjy: then, since
T. > Ty for all €, we can solve (H.) on [0, T}, + A] for all ¢ sufficiently
small. By the equivalency principle, we could then solve (P) on
[0,T, + A], so T, would not be the life span of (P). In contrast,
whether Ty = T}, will in general depend on the particular problem
under consideration.

4) For completeness’ sake, we also report a result on question Q3,
which is not directly a consequence of the equivalence principle, but
does require the concurrent investigation of the asymptotic behavior
of the difference u® — v as t — +o00. Specifically, we consider the
question of the asymptotic stability of the solutions, and the related
diffusion phenomenon for nonlinear hyperbolic waves, established
originally by L. Hsiao and Tai-Ping Liu (see [9]) and further studied
by Li Ta-Tsien and Nishihara (see [20] and [43]). Roughly speaking,
this means that if we compare the solutions to (H.) with that of the
reduced problem (P), as ¢ — 400 the difference of these solutions
should decay to 0 with a rate faster than that of either solution. In
this direction, we have shown in [57] that for equations in divergence
form, the norm [lu(:, %) —v(:,t)|| oo (gn) decays as O(t~(+1/2) while
u and v each decay, in L®(R"), only as O(t~"/2).

3. The Quasilinear Equations.

3.1. In this section we recall two results which show that the equiv-
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alence principle does hold for a class of quasilinear dissipative evo-
lution equations, of the form

euy + ug — a5 (Vu)0;05u = f(z,1), (21)

subject to the initial conditions (3) and, if the problem is considered
in a bounded open domain @ C R"™ with smooth boundary 02,
to homogeneous Dirichlet boundary conditions. The corresponding
parabolic equation is then

vy — a;(Vv)9;05v = g(z,t); (22)

in (21) and (22), as well as in the sequel, summation with respect to
i, § from 1 to n is understood. We assume that the coefficients a;;
are sufficiently smooth functions defined, for simplicity, on all of R™;
they are symmetric (i.e. a;; = aj;), and satisfy the uniformly strong
ellipticity condition

v >0 Vp,g€R", aij(p)d'd > viq’. (23)

Since we also need to apply the classical theory to the quasilin-
ear parabolic problem (22) (see e.g. Ladyzensakya - Solonnikov -
Ural’tzeva, [18], or Krylov, [17]), we shall also have to assume that
the a;;’s are bounded, that is,

Iu>0, Vp,g€R", aij(p)d'd < plgl?, (24)

and that their derivatives satisfy some decay estimates. While these
assumptions are not required for the classical solution theory for hy-
perbolic equations (as for instance in Kato, [13], or Okazawa, [44],
Okazawa and Unai, [46], [45], [47]), they are satisfied in many appli-
cations; for instance, in Maxwell’s model (9) if ¢ is asymptotically
linear, or for the minimal surface operator

Au — di Vu
Ay —div| ——== | .
V14 |Vul?

A more general model would allow the coefficients a;; to depend on
x, t and u as well; in the hyperbolic case (21), the coefficients could
in principle depend also on u;, but this doesn’t seem to be feasible in
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the present context, given the parabolic nature of the limit equation
(22), and the singular nature of the convergence u = u® — v as
e — 0, with the consequent loss of regularity of wu;.

Under the assumptions stated above, local and global existence
results for regular solutions of both problems (H.) and (P) are well
known: for instance, we refer to Matsumura, [36], who provides
global solutions to (H.) (with e = 1) under smallness assumptions on
the data ug, u1 and f, and to [37], where we prove a global existence
result for regular solutions of problem (P) corresponding to data v
and g of arbitrary size.

3.2. The proof of the equivalence principle between problems
(21) and (22) for the pure initial value problem, i.e. when Q = R",
is given in [41]; here, we briefly describe the same result for the
case of a bounded domain, with homogeneous Dirichlet boundary
conditions.

Following Kato, [13], we consider solutions of (21) in the spaces

Xim(0,T) = N0 ([0, T]; H™ ()

for sufficiently large integer m; more precisely, we fix integer s >
(3] +2, [a] denoting the integer part of a, and assume that
HAI) f € Xs_l(O,T), aff € LQ(Q)a ug € H:+1(Q)7 up € H:(Q)a
HA2) {f,ug,u1} satisfy the hyperbolic compatibility conditions
(HCC in short) of order s at 9Q for ¢ = 0, which are defined as
follows: setting

up(z) = (OFu)(x,0), 0<k<s+1, (25)

as formally computed from (21) by means of an explicit formula of
the type

eupyr = (0L f)(-0) —upgr + Agluo, ... up],  0<k<s—1 (26)
(for example,

EUy = f(, 0) —u1 + ag; (VUg)aiajUQ,
Eus = ft(-,(]) — Uz + aj (VUU)aiajul + (Vaij(Vuo) . Vul)aiajw),

etc.), we require that the s+1 conditions uy, € HST1k(Q) for 0 < k <
s are satisfied. These conditions make sense, since our assumptions
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on the data guarantee that w, € H*T17%(Q) for 0 < k < s+ 1,
and are necessary for the solvability of (21) in X41(0,7), for if
u € X,11(0,T) solves (21), then (25) does hold in H**17%(Q), so
the traces of uy on 02 are defined at least for 0 < k£ < s, and must
therefore vanish.

Local in time solvability of (H.) is established e.g. in Kato,

[13] (Theorem 14.3); thus, since global existence for (P) is known,
the equivalence principle implies that these local solutions can be
extended to intervals [O,TE], with v = u® € Xs+1(0,1~“5) and T. —
400 as € = 0.
3.3. To this end, we need to recall some results on the parabolic
initial-boundary value problem (in short, IBV) for (22) for given
data ¢ in @ and v in €. Following [42], we consider solutions of (22)
in the space

HMQ) = {ue H™™2Q)| o ue C([0, T} H" "1 (@)},
YHQ) = HIQ)NCl(@),

withm/ = [mT_l] , and m a sufficiently large integer, so that solutions

of (22) in H"(Q) are, by embedding, also classical ones; that is, they
are in the parabolic Holder spaces C2T®1+2/2(() (see e.g. Krylov,
[17], for their definition, and for the relevant results on the solvability
of (22) in these spaces). Solvability of (22) in the spaces Y"(Q) is
proven in [42], by

THEOREM 3.1. Let m € N and « € (0,1), and assume that
PAL) g€ YI(Q), v H™(Q) N C2e(@),
PA2) {g,vo} satisfy the parabolic compatibility conditions (PCC
in short) of order m.
There exists a unique v € YCT'_J;Q(Q), solution of the IBV problem

for (22).

(The definition of the PCC of order m in Theorem 3.1 is similar
to the hyperbolic case: namely, we require that the functions v, =
(0Fv)(-,0), understood in the same sense as in (25) for the HCC, be
in H™T1-2k(Q) for 0 < k < [m/2]).

3.4. Assume now that the source terms f of (21) and g of (22)
are defined on all of [0,400), and satisfy the corresponding parts
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of (HA1), (PA1) for all T > 0. The equivalency principle for the
IBV problems for (21) and (22) is contained in the following result,
proven in [38]:

THEOREM 3.2. Let T > 0 and {f,ug,u1} be given, satisfying as-
sumptions (HA1) and (HAZ2). Assume that the IBV problem for
(22) has, for all m € N and all choices of compatible data {g,vo}
satisfying (PA1), a solution v € chﬁ‘r"Q'Q(Q). There exists g > 0, de-
pending on T and {f,ug,u1}, such that if ¢ < &g, the local solutions
u € Xs11(0,7) of the IBV problem for (21) can be extended to global
ones in Xs11(0,T).

Conversely: Let T > 0 and {g,vo} be given, satisfying assump-
tions (PA1) and (PA2) of Theorem 3.1, with m = s > [n/2] + 2.
Assume that the IBV problem for (21) has, for all choices of com-
patible data {f,ug,u1} satisfying (HA1), and for all correspondingly
small €, a solution u = u® € Xs41(0,T). Then the IBV problem for
(22) has a unique solution v € H52(Q).

Clearly, Theorems 3.1 and 3.2 together allow us to deduce that
solutions of (21) are defined on arbitrary intervals [0,T], for any
(compatible) data {f,ug,u1} independent of e, provided ¢ is suffi-
ciently small (depending on T'). That is, given arbitrary T' > 0 we
can determine e7 > 0 such that we can solve (21) on [0,7] for all
e < ep: thus, T. > T for all such e, which is exactly (7). Note,
however, that the spaces X;11(0,7) and H:2(Q) are not the best
suited for the desired comparison of the solutions to (21) and (22),
as we can only guarantee that both these spaces are embedded in
C([0,T); H*1(2)). Nevertheless, we realize that this is only due to
the effect of the initial-boundary layer, and as soon as t > 0, the
smoothing effect of the parabolic operator takes over, as we would
expect. Indeed, we have the following regularity result for the IBV
problem for the parabolic equation (22), which is proven in [39]:

THEOREM 3.3. Let m > 1, and assume, in addition to (PA1) and
(PA2), that g satisfies
PA3) g € Xm—1(p,T), 9"g € L*(Q,) for some p € (0,T/4):
then the solution v provided by Theorem 8.1 is such that Vv €
Xm(4:0a T)7 {n—l—lv € L2(Q4p)'
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This result allows us to compare solutions of (H.) and (P) in

Xs+1(4p,T), which is of course sufficient for the study of their long
time behavior.
3.5. We conclude by reporting the main idea of the proof of the
first part of Theorem 3.2 (the proof of the second part is based
on a singular perturbation argument); we present a rather formal
argument, neglecting issues of regularity that would otherwise need
to be taken into account. Assuming that problem (P) has a global
solution for all choices of data {vg, g}, we choose vy = ug and g =
f— ¢°, ¢° being a “small” corrector that takes care of the initial
and boundary layers; in particular, we can choose ¢® so that also
v¢(+,0) = uq, by imposing that ¢°(-,0) = cus. We consider then the
change of variables y = u — v, so that u is globally defined iff so is
y. Now, y solves the equation

ey +yr — aij(Vo+ Vy)0;0;y = (27)
= [aij(Vv + Vy) — aij(Vv)] 6Z~8jv — EVy + <PE,

in which the right side is O(|Vy|) + O(e) (by choosing ¢° = O(e);
all this in an appropriate norm), and y(-,0) = 0, y(-,0) = 0: thus,
we can apply the mentioned global existence result of Matsumura,
[36], and deduce that y, and therefore u, is globally defined if ¢ is
sufficiently small. This argument can be carried out both when Q =
R"™ and when Q is bounded; in the latter case, the major technical
difficulty lies in the different type of compatibility conditions (HCC
versus PCC), which gives rise to the mentioned boundary layer at
01.

Finally, we mention that, since Matsumura’s estimates would
imply that y is uniformly bounded as ¢t — 400, the asymptotic
behavior of u is indeed, consistently with the spirit of this discussion,
essentially related to that of v, and these two questions can be studied
together, as described in Q3 above.
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