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Global Existence for a Quasilinear
Maxwell System

SANDRA LUCENTE AND GUIDO ZILIOTTI *)

SUMMARY. - In this work we deal with quasilinear Mazwell system

Oi(eoE + ©(E)) = curl H,
O4H = —curl E,

where g = diag(a®,b?,b%) is a diagonal matriz and ® is a smooth
matriz such that |®| has polynomial growth near E = 0. Under
suitable hypotheses on ®, we establish a global existence result
for small amplitude solutions. The main argument is the study
of pseudo-differential equations obtained diagonalizing the system
and using for these equations a particular von Wahl-type estimate
described in our previous paper [5].

1. Introduction

The aim of this paper is to describe some global existence results on
quasilinear Maxwell system

Oi(eoE + ®(F)) = curl H, (1)
O4H = —curl F,

) Authors’ address: S. Lucente, Dipartimento di Matematica, Univer-
sita della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy, e-mail: lu-
cente@pzmath.unibas.it

G. Ziliotti, Dipartimento di Matematica, Universita di Pisa, Via F. Buonarroti
2, 56100 Pisa, Italy, e-mail: ziliotti@mail.dm.unipi.it

AMS classification MSC2000: 35Q60, 35F25

Keywords: Maxwell system; Sobolev spaces on manifold; Small data.

We express our gratitude to Prof. Vladimir Georgiev for suggesting the problem
and for many stimulating conversations.

This work is also partially supported by M.U.R.S.T. Progr. Nazionale “Problemi
e Metodi nella Teoria delle Equazioni Iperboliche.”



170 S. LUCENTE and G. ZILIOTTI

where E(‘/Eﬂt) = (E15E27E3) € R?)ﬂ H(t,.’L‘) = (H17H25H3) € R?)?
r € R}, t € R. We take a diagonal matrix ¢y = diag(a?,b?,b%) and a
smooth matrix ® such that

1®(E)| = O(|EP), nearE=0, peN.

In this context the following two conservation laws naturally arise
(see [7]):

div(egE + ®(F)) =0,
divH = 0.

From physical point of view F, H represent respectively the elec-
tric and the magnetic vector fields. The most common model is
isotropic linear Maxwell system where €y(F) is the identity matrix
and ® = 0; here instead we are going to point our attention to some
anisotropic media, namely the crystals. Moreover, a particular in-
terest concerns some nonlinear models in electro-magnetics (see [2]);
for this reason we consider a quasilinear perturbation to Maxwell
system.

Dealing with a nonlinear perturbation having polynomial growth
near £ = 0, we treat with small amplitude solutions; then a global
existence result will require p sufficiently large. More precisely, if p >
4 we find that there exists a unique global classical solution for (1)
when considering small initial data which verify previous divergence
free conditions.

The idea is to diagonalize the linear system associated to (1) and
reduce it to single pseudo-differential equations. In [5] we studied
scalar equations of type

ug —iA(D)u =0,

where A\(D) is a first order pseudo-differential operator of convolution
type, having symbol a real function homogeneous of degree one. We
established a decay estimate for the solution of this equation when
the manifold

Er={A¢) =1}

is strictly convex. Our result may be regarded as a generalization
of classical von Wahl estimate (cf. [8]) for the wave equations; in
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particular, taking initial data in W*!, the L> norm of the solution
decays like t("=1)/2

It is worth to mention that the strict convexity of the manifold
3y is not fulfilled by the characteristic roots of

€00 F = curl H,
{ OyH = —curl E,

if ¢ has three different entries. This loss of convexity implies that
the expected decay rate t~! is not available and is replaced by a
weaker ¢t~ 1/2. This phenomenon was analyzed by O. Liess in [4] and
reflects the physical difference between uniaxial and biaxial crystals.
In uniaxial crystals, there is a single axis along which light can prop-
agate without exhibiting double refraction; along other axis a light
beam splits into two different components which travel at different
velocities. This corresponds to the choice ¢y = diag(a?,b?,b%). On
the contrary, since biaxial crystals have low symmetry, conical re-
fraction take place: a ray incident on a surface of the crystal in a
certain direction splits into a family of rays which lie along a cone. To
examine this case one takes ¢y = diag(a?,b?,c?) with a # b # ¢ # 0.

The plan of the work is as follows: in section 2 we recall the
decay estimate for the solution of the pseudo-differential equation
established in [5]. In section 3 we apply this result to quasilinear
Maxwell system in uniaxial crystals. Finally, in the last section we
sketch the proof for a similar result in biaxial crystals.

Few remarks about the notations: we put || f||, :== ||f|lzr. The
inner product of z,y € R" will be denoted by (z,y). With Jac,f
and V2 f we mean respectively the Jacobian and the Hessian matrix
of a smooth function f(z). Our choice for the coefficients of Fourier
transform is

f(2) = F(f) = (@m) "2 / e 18 £(£) de.

If f depends on (z,t) then we use Fourier transform with respect to
the space variable only. Finally, given a space B of real functions
defined on R™, considering a vector function ® : R* — R™, by ||®|
we mean the norm of |®| in B.
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2. A von Wahl type estimate

We consider the Cauchy problem

{ut—i)\(D)u:(], reR" n>2 @)

u(z,0) = g(z),

where A(D) is a first order pseudo-differential operator having sym-
bol A. We shall put

Yy = {A(f) = 1}a

and require that Xy is strictly convex in the sense of the following
definition.

DEFINITION 2.1. (see [1]) Let A > 0 be a smooth function. For any
a € Ry we consider the hypersurface

Yre = {Az) = a}.

We say that X 4 is strictly convez if {\(xz) < a} is a convez set and
Gaussian curvature for Xy , is strictly positive.

In other words X , can be locally represented, as a graph of a convex
function having non-degenerate Hessian.

LEMMA 2.2. Let X\, be as above. For any wg € Xy, there exist
j€1l,....,n and a local chart (V,1) such that

Wy = P(wi,--- s Wj—1,Wj1, - ywp) Yw eVl

Since wy € V, denoting by 0p = (wo,, "+ ,Wo;_,, W0, 415" " >Wo,) One
has 1(0o) = 0, and Vip(0o) = 0 . Finally,V?i) is positive defined.

This lemma in turn implies that {A(z) < a} is on one side of the tan-
gent space to X ,. The strict convexity for X is the key assumption
for the proof of the L'-L> estimate obtained in [5]:

THEOREM 2.3. Let \(D) be an elliptic pseudo-differential operator
with real symbol A(€) homogeneous of degree 1 which satisfies either

(i) A(&) >0, and Xy is a strictly convex and compact set of R",
or
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(i) A(§) < 0, and X_y is a strictly convex and compact set of
R™.
Let u(z,t) be the solution to the Cauchy Problem (2) with g € C3°(R™).
Then:

_n=1
[u(®)lloo < Ct™ 2 |lgll;pa1enn VE2 1, (3)
where h =1 if n is even, h = 2 if n is odd.

We remark that the assumption g € C°(R") can be relaxed by
the aid of a standard density argument. The proof is based of sta-
tionary phase method applied to the solution

u(z,t) = (271')”/ / ei@*y’é)“w‘(ﬁ)g(y) d¢ dy.
After integration by parts with respect to the variable y, using polar

coordinates
{ p=Xé),
w =&/AE),

we reduce to the estimate of the kernel

ek ipt({2=pe) 41) 1
/ () | 9A ) N doy 1) dp. (4
0 N

Hence we describe the surface ¥, by means of strictly convex charts
given by Lemma 2.2 and we arrive to a sum of integrals over R" 1.
To these integrals, we can apply stationary phase method with pa-
rameter pt. In turn this gives the decay rate ¢t—("~1)/2,

REMARK 2.4. For the application to Mazwell system we need a suit-
able modification of the previous result. Let us consider the Cauchy
problem
{ w —iA(D)u =0, ze€R"
u(z,0) = Qg(x),

where Qg = F Y (M(&)§(&)). If M(&) is smooth and homogeneous
of degree zero, then the inequality (3) still holds. Namely, with the
same proof of the previous theorem one can see that it is possible to
avoid @) in the norm on the right side of this formula.
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3. Quasilinear Maxwell system in uniaxial crystals

3.1. The linear Cauchy Problem

In this section we discuss linear Maxwell system in anisotropic media.
We shall apply the obtained results to the quasilinear case. Let us
consider

{ €00 F = curl H, (5)

OH = —curl E,

where E(z,t) = (Ey, By, E3), H(t,z) = (Hy, Hy, H3) andz € R?, ¢t €
R and ¢ is a 3 by 3 matrix. For simplicity we can take ¢y in diagonal
form. Moreover for the reasons illustrated in the introduction, we
take

€0 = diag (a®,b*,b%), a #b#0. (6)
Finally, we denote by (Fy, Ho) the initial data
Ey := E(0), Hy := H(0).
Taking u = (e(l)/ 2E, H), we can rewrite this system as
dyu — Bu =0, (7)
with

B 0 eal/chrl ]

—curl 60_1/2 0

In Fourier transform coordinates we get

(0) = (e/* Eo, Hy),

U
where
0 =M%l To U
Bl = Eneg? 0 “luT oo )
0 —la|71¢5  Jal7'Es
U: = |b|_1§3 0 —|b|_1§1
B TR 3 0
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We see that B(€) is symmetric, hence it is diagonalizable with eigen-
values

A2 =0,
Noa(6) = /6267 + 265 + 263,
As6(€) = b€,

The most relevant point is that X, is strictly convex for j > 3.
Let A(¢) be the diagonal matrix of these eigenvalues. Since the
multiplicity of A; is constant, there exists a smooth matrix Q(&)
such that

Q1 OAQ(E) = B(9).

Denoting by © = Q(£)4, we arrive at the diagonal system

{ o = iA(¢)d o)

If v1 = vo = 0 then we can apply Theorem 2.3, obtaining a decay
estimate for v, whence for u.

Now we prove that the condition v = v9 = 0 occurs whenever
we associate to (5) the other two physical Maxwell conditions

div 60E(] == 0,
{ div Hy = 0. (10)
First of all, we have the conservation laws
divegEy = divegE(t), (1)
div Hy = div H(t).

We notice that
divegEy = 0 = div Hy <= 1(0) L Ker B(¢).

In fact div egEy = 0 = div Hy is equivalent to (¢, eg o) = 0 = (&, Hy).
On the other hand, w € Ker B(¢) if and only if w = (w1, w2) such
that 6(1)/2§ ANwg =0=¢A eal/le that is wo = (£, wy = oze(l]/Qf,
for some o, € R. These informations are sufficient to obtain
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(e(l]/QEg,wl) = (Hy,wy) = 0; this yields (e(l]/QEO,I-iTO) 1 Ker B(¢).
As a consequence, (11) gives

u(t) L Ker B(¢) forallt > 0.

Since Q(&) has the first two rows that span Ker B(£), one deduces
v1 = vy = 0. Moreover, denoting by m();) the projection on the
eigenspace corresponding to A; and using the identity

6
I = TKer B + ZW(AJ'),
=3

for any initial data which satisfy (10), one gets

On the other hand, if ¥ solves (9), then 7(\;)Q (£)% solves @' =
i\j(§)w with initial data m(A;)@(0). Since A; are simple eigenval-
ues we deduce that 7(\;) as function of £ is homogeneous of degree
zero. Then we can combine Theorem 2.3 and Remark 2.4 obtain-
ing the decay of the solution u from the decay of each component
m(A;))Q 1(&)9. We summarize these properties in the following re-
sult.

PROPOSITION 3.1. Let us denote by e'B(Ey, Hy) the solution of (5)
with initial data (Ey, Hy) € C(R3,R®). Suppose (Eq, Hy) satisfy

div 60E(] == 0,
div Hy = 0.

Then for t > 0 we have

0,

0,

{ divegE(t)
divH(t) =

and the following decay estimate holds:

e (Eo, Ho)lloo < C(1+ )7 [|(Eo, Ho)lws.- (12)
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3.2. The quasilinear Cauchy Problem

We can apply the result of the previous section to the following
quasilinear Maxwell system in anisotropic media:

{ Oi(eoE + ®(F)) = curl H, (13)

OyH = —curl E.

with initial data (Ep, Hy). Here € is given by (6) and the nonlinear
perturbation ® is smooth function of £ with polynomial growth near
E=0:

[®(E)| = O(|E[") peN.

Our aim is to study the global existence theory for (13), whenever p
is sufficiently large and data are small and with compact support.
Our first step consists in writing (13) in the form

u — Bu=F (14)

with B a skew-adjoint operator. First we apply implicit function
theorem to the function

M(E) = ¢FE + ®(E)
and obtain, in a neighborhood of M = 0, the rapresentation
E=¢'M + U (M)
with
[W(M)] ~ [M]P.
Meanwhile, we observe that for any ® such that Jacg® is symmetric,
we get Jacy, ¥ is symmetric.

Since we deal with small amplitude solutions, it is now possible
to rewrite (13) in the form

{ O4M = curl H, (15)

O H = —curley ' M + curl O(M).

with initial data (eoEo + ®(Eo), Ho). Taking u = (e, /*M, H) =
(u1,us), and
F(t) = (0,—curl (T(e, us (1)),
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we obtain the expression (14) with B given by (8), which is a skew-
adjoint operator on L?(R3,IR5).

For this reason we can apply Duhamel’s principle and write the so-
lution in the form

u(t) = e'P (e By + ®(Ey), Ho) + / te(t’s)BF(s) ds.  (16)
0

If (eoEo + ®(Ep), Hp) satisfies the divergence free conditions, then
we apply the decay estimate. After this preparation we can state
and prove our main result:

THEOREM 3.2. Let f: R? — R be a smooth real function such that
(E) = V/(E);

and
|®(E)] =O(|E|’) near E=0 peN, p>4.

Consider the quasilinear system

{ Oy(eoE + ®(F)) = curl H, (17)

O,H = —curl E,

with €9 = diag (a®,b%,b%), a # b # 0 and initial data (Eg, Hy) veri-
fying

div (egEg + ®(Fy)) = 0, (18)
div Hy = 0.
There exists a small 0 < € < 1 such that if
[ Eollwe.s + [ Eoll g7 + [ Hollwes + [[Hollp < e, (19)

then (17) admits a unique global solution (E, H) : R® — RS,
Moreover u € C ([0, +o0c); WO N HT).

We shall look for a global solution (M, H) to the system (15);
clearly this will give the global solution for (17).
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Fixing k, h € N, we introduce the following norms:

1
&) = ¥ §/R3<601D‘1M,DQM)+|D‘1H|2dx,
|a|=k

k
Ik (U) = Zgja
j=0

Xnp(u)(t) = Oi‘jﬂt{f“fh(l+T)”Da“(7)”°°+z’f(“)(7)}'

Here and in what follows a = (ag, ') = (g, a1, a9, a3) is a space-
time multi-index and D® = D{** D31 D32 D2%. Being € positive defi-
nite, the following result holds:

l[ull e < T (u).
We shall often omit to write u in the previous norms, when we deal

with the expression (16).

We start establishing an L°° estimate for u. Here the condition
on p appears.

PROPOSITION 3.3. Suppose the assumptions of Theorem 3.2 are sat-
isfied. Then we have

ID%u@lloe < C+ 1) [[u(0) yasiats + X[ ayopjara®)]

Proof. We can write u = u + (u — u) where @ solves (7) with
initial data (Mo, Hy) = (e0Eo + ®(Ey), Hp). In order to apply the
decay estimate (12) we require that the conditions (18) are conserved
in time. This follows directly from (17). Hence we get

ID%ulloo < C(1+8) " (| Eollws+iar.r + @ (Eo) lya+ia s+ Holl st a1)-

At the same time to estimate the function u —u we need divF(s) =0
for all s > 0; this condition is trivially satisfied since F' is expressed
by curl ¥ hence

[P F(5) oo < C(1+ 1= 5) M F(3) o,
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Finally, we find

ID%u(®)oc < O+ u(0)llypstials +

t
+ / (141 —s) | D%url U (es/uy ()| lyyaa ds.
0

It remains to estimate

1D curl @ (eg *ur) [las = [ DOU(M)|lyar =~ S |DPR(M)];
18| <|c|+4

Using chain rule we find

DPyp; (M) = (20)
18] 3

- E E E Ckﬁar—\pDﬂle Dﬂer
’ 8Mk aMk ! "
r=1 k1, kr=1p1++6r=

Bj

where C}, g stands for C, ., 5,..,- In the case 7 = 1 we can use
Cauchy-Schwartz inequality, havmg in mind that |¥| ~ |M|P; we
obtain

DMy, || < M52 M 2| D” My, 2.

1

0,
oMj,

Suppose r > 2; we see that

Db My, -- . DB M, || <

1
Dﬂlel---Dﬁer,H .
1

oy,
DMy, - aMk,
< [ MIE"

We apply the general inequality

S D] D] < (21)
Y1+ Fym =58
lv;1>1
18]-1
<YWl Y D"l Dl
Inl=1 n4v1+o . Avm=

Y1+ FYm
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with v; <[|8|/2], In| > v; . Taking higher derivatives in L? norm we
find

1D My - D7 My, [l < C(L+6)" "2 X155) (€5 1.
Finally, this gives

DO (M) < CA+t)~P=DxP 2 T

[\6|/2}
Then we deduce
1D curl @ (e *u () s < C(1+5)"CAXE 0 L(s).

Since for p > 3, the following inequality is fulfilled:
t
/ (I4t—s5)'(1+s)PDds <1 +1)"
0

we get the conclusion. |

Now we prove energy estimates. For the & we have to exploit
conservation of energy, multiplying the first equation by £ = ¢ "M+
U (M) and the second by H. We see that

div(EAH) = (FE, carl H) — (H, curl E). (22)

Since g is compactly supported and the system has finite speed of
propagation, for all £ € R, one has

_/ SIM, M) + [HP? + 20 (M) dz = 0 (23)

where U := R3 — R satisfies VU = U,

PROPOSITION 3.4. With the previous notations, one finds

&o(t) <
< C (IMa )3 + 1 Holl3 + Mol ) + C(L+ 1)~ DXt T,

Proof. 1t suffices to apply (23) and the evident relations

[ (M)l < [[M][ES" Eol(t),

[ " M. o) + | + 200
R

+1
< || Moll3 + [ Holl3 + 1Mol
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Here we have used the fact that JacW is symmetric. |

It remains to obtain higher energy estimates.

PROPOSITION 3.5. Using the above notations, the following relation
holds:

Ti(t) < C(Mo, Ho) + CXE 1 (H)Ti(2), (24)

where C(My, Hy) is a suitable norm of the initial data and k' =
max{1,[k/2]}.

Proof. We first derive the system applying D® and then we mul-
tiply the first equation by D®E = D®(ey ' M +¥(M)) and the second
by D®H. Using (22), we get

div(D*H A D*(eg "M + U (M))) =
1
= 30 (IDH|* + (¢ ' D“M, D“M)) + (D*¥ (M), 3, D*M).

For any F,G : R?® — R?, we denote (F,G)y = Jra(F,G) dz, hence

Due to the expression (20), we can take
I = (Jacyy W DM, 0, DM ).
We recall our key assumption: Jacp; W is symmetric; this implies
(Jacas U DM, 8, D M)y = %at(JacM\I/ DM, DO M)y — Aq(b),
Ay = %(&(JacM\I/)DO‘M, DOM),. (25)

It is clear that II = 0 when |a| = 1. Let us consider the case |a| > 2.
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We may write

af

m=>y" Z > Cip-

=2 k1,...,kr=1B1++Br=a
0<|Bj1<al

( A
OMy, ... OMy,
laf

dB,., dB
=X X (arer ) = e T

r=2 B+ +Br=a

DP'\ My, --- DPr My, , 8,D* M)y =

0<|8;1<lal
where
Ba,r,ﬁ:
a \I] ﬂl ﬁ'r «
= Z Crplgmr—aar D" Mis - D7 My, , D" M)y,
kla 7'r—1 kl ) kr
Rayp =
i A
= Y G a0 (D" My - DM ) DM,
- ky - Ok,
3
+ Y Cus
kly-"7k’l'+1:1

67"-1—1\1,
s OMy, ... OMy, OMy,

DP" My, - -- DPr My, 9, My, ., D M)s.

r4+17
r+1

This representation and (25) allows us to integrate with respect to ¢
avoiding the loss of one derivative, so that

d
5 (Tacy @ DM, D*M)s + — By — Aq + Ra = 0

or equivalently

g|a\( ) = 5‘04( ) <JaCM\I/(M0) DaMo,DaM(])Q + Ba(O) +
—(Jacy U(M(t)) D*M(t), D*M(t))2 — Ba(t) +

/R d7+/ A, (7) dr.



184 S. LUCENTE and G. ZILIOTTI

It is clear that

|(Jacarp(M (£)) DM (t), D*M(t))s| <
<O+t POXE ()€ (),
|Aa(T)] < C(1+ 1)~V XY (1) 8oy (7).

In order to estimate |B,(t)| and |R,(7)| we use the relation (21),
obtaining

|Ba(t)] < CO+1)~ - 0XP (0T (06 ®),

fa1/210(8 1)1 (D€
[Ra()] < C(1+ 1) DXE Lo o(NZ (7)€ (7).

Hence we have
Ti(t) < Crp(Mo, Ho) + C(1 + t)_(p_l)Xﬁfjol(t)Ik(t) +
+C /1t A\ oz <
o (T+7)P1 k',0 R =
< Ci(My, Ho) + CXZ,  (t)Z(2)
with &' = max{1,[k/2]}. In particular
Cy.(Mo, Ho) < C||Ho| % +
+C | IMoll s + IMollp3y + D 1D MolB | Mol
|| <[k/2]

with C independent of p and k. This gives the conclusion. |

Now we are ready to prove the global existence result for (13)
with small data, our strategy is to establish an estimate of the form

X p(u)(t) < Ce + CXP 7 (u) () + CX] . (u) (1) (26)

with € small and suitable h, k.
Let s > 3/2, h,k € N, k > 2 and ¢ > 0; suppose

1 Holyya+n1 + || Holl 7 + (27)

-1 +1
+|[Mollywans + [ Mol 7 (1 + [ Mol or00) + 1Mol 3y <e,
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from Proposition 3.3 and Proposition 3.5, we get
-1
Xno(t) < Cet CX[p g o prat);
Ti(t) < Ce+ CXEDE} L (0)-

Since X, () < X, 0(t) +supg<,<; Zi(7), we conclude that (26) holds
when o

[(h+4)/2] < h,

h+4<kE,

51 <h.

The smallest indexes we can take are k = 7 and A = 3. It remains to
establish that the condition (19) for sufficiently small ¢ implies the
condition (27); it suffices to use Sobolev embedding theorems and
Moser type inequalities (see [5], [6])
™ gy < Ol 117G
LA™ lwer < ClFIS 20 e

Finally, the contraction mapping argument gives the global existence
result.

4. Quasilinear Maxwell system in biaxial crystals

Here we consider the case of biaxial crystals: this means that in
(5) the matrix ¢y = diag(a?,b?, c?) has three different entries. After
reduction to (7) one see that B(¢) has characteristic form

NN = (A + ()¢ =0,

where
&) = (b "+ el e+ (lal ' + 1l HES + (Jal " + bl )&,
$(&) = [b] el &+ lal el e + lal bl

As in the previous section we add the divergence free conditions (10)
so that null eigenvalues do not influence the decay result. Taking
{A(§) = 1} one gets the Fresnel surface with four singular points.
Hence Xy is not strictly convex. This is consequence of the variable
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multiplicity of the characteristic roots. It follows that our decay
result is not available; conversely for the linear system, O. Liess in
[4], established the following estimate:

LEMMA 4.1. Considering the linear Mazwell system (5) with initial
data (Eo, Hy) which satisfies (10), for great enough m € N one can
find a constant C so that

I(E(), H(t))lloo < Ct 2| (Eo, Ho)llwim-

We want to combine this estimate with the technique used in
the previous section to treat the nonlinear Maxwell system in biaxial
crystals. Since we loose the optimal decay rate, we expect a nonlinear
existence theorem with greater nonlinear exponent. More precisely,
we obtain the next result.

THEOREM 4.2. Let f : R3 — R be a smooth real function such that
O(E) =Vf(E) and

|®(E)] =O(|E|’) near E=0 peN, p>5.

Consider quasilinear system (17) with eg = diag (a®,b%,c?), a # b #
¢ # 0. Take initial data (Eg, Hy) verifying (18). There exists a small
0 < e <1 such that if

1Eollwa + [ Eoll gz + [ Hollwea + [ Holl e < €

for sufficiently large k then (17) admits a unique global solution
(E,H) : R® — RS,

The main difference with Theorem 3.2 is the nonlinear exponent
greater than in the previous case. Moreover, here we don’t give the
number of derivatives of data that we require to be small. This
second fact is consequence of O. Liess result which does not point
out this aspect. To examine the role of the hypothesis p > 5 we
sketch the proof of this theorem. Here one has to consider the norm

Xik(w)(t) = sup {81|1<ph(1 +7) 2| D7) oo +Ik(U)(T)} :

and the restriction on p appears in the proof of the following propo-
sition.
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PROPOSITION 4.3. Under the same assumptions of the previous the-
orem we get

[D%u(t)]loo <

< O+ D)2 |[u(0) lyymrions + XF o me) 21 o 4mst ()]

where m is the same regularity index which appears in Lemma 4.1

The difference with the previous section is that we need the es-
timate

t
/ (41— 5)"12(1 1 5)-0-D/2 45 < C(1 4 1)~1/2
0

which holds for p > 4.
Energy inequality is still given by (24). Combining these esti-
mates one can prove the existence theorem.
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