Rend. Istit. Mat. Univ. Trieste
Vol. XXXT Suppl. 2, 145-168 (2000)

Global Existence and Blow-up of the
Classical Solutions to Systems of
Semilinear Wave Equations in Three
Space Dimensions

HipEO KUBO AND MASAHITO OHTA *)

SUMMARY. - We consider the Cauchy problem for a system of semi-
linear wave equations with small initial data whose propagation
speeds may be different. As for a system of quasilinear wave equa-
tions, the discrepancy of the speeds makes the maximal existence
time of solutions be longer, when we treat the critical nonlinear-
ity. In contrast with the quasilinear case, we show that for the
semilinear case, such phenomena does not occur, by establishing
estimates of the lifespan from upper and lower.

1. Introduction and Main Result

In this note, we consider the small data global existence and blowup
for the Cauchy problem of the following system of semilinear wave
equations with different propagation speeds in three space dimen-
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sions:
O?u — c*Au = |vlP, (z,t) € R? x [0, 00),
O?u — Av = |uld, (z,t) € R? x [0, 00), (1)
u(z,0) = efi(z), du(z,0) =egr(x), z € R3,
v(z,0) = efo(x), Ow(x,0) =ega(z), z € R?,

where ¢ >0,0<e<1,1<p<qg<ooand (u(z,t),v(z,t)) is a real
unknown. As for the initial data, we assume that f; € C*(R?) and
g € CARY) (j=1,2)

The small data global existence and blowup problem for (1) has
been recently studied by Del Santo, Georgiev and Mitidieri [21], Del
Santo [20], Deng [5], Agemi, Kurokawa and Takamura [2] and the
authors [16] when ¢ =1 in (1). To state the results obtained by [2],
[5] and [16], [20], [21] here and hereafter, we put

a=plg—2)—-1, B=q(p—-2)-1 (2)

Then, the following results have been obtained for (1) with ¢ = 1.
When a+pf > 0 and p > 2, the small data global existence holds (see
[20] and [21]), and when « + pB < 0, the small data blowup occurs
(see [21] and [5] for a + pB > 0, and [2] and [16] for a + pB = 0).
Here, we say that the small data global existence holds for (1) if for
any f; € C3(R?) and g; € CZ(R?) (j = 1,2) there exists a positive
constant ¢y such that (1) has a global classical solution provided
0 < € < gy. Otherwise, we say that the small data blowup occurs
for (1). We also note that the condition o + p3 = 0 is equivalent to
['(p,q,3) = (¢q+2+p~1)/(pg—1)—1 = 01in [2], [21] and [16], in fact
we have I'(p, ¢,3) = (a +pB)/p(pg — 1).
The system (1) is closely related to the scalar equation

O*u — Au = |ulP, (z,t) € R" x [0, 00). (3)

It is known that the critical power pg(n) for the small data global
existence and blowup is given by

n+14++vn2+10n—7
2(n—1) ’
which is the positive root of the quadratic equation

n—1 n+1
— —-1=0
ey

po(n) =
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(see, e.g., John [12], Strauss [26], Glassey [8], [7], Schaeffer [22],
Sideris [24], Lindblad [18], Zhou [29], [30], Georgiev, Lindblad and
Sogge [6], and the references cited therein). In particular, we note
that for the critical case p = pg(n) in (3), the small data blowup is
proved only for n = 2 and 3 (see [22], [29] and [30]), and it is still
open for n > 4. We also note that if p = ¢ = po(3) = 1+ v/2 in (1),
a=p=0in(2),s0 a+pps=0.

In the present note, we study the small data global existence
and blowup for (1) when the propagation speeds are different from
each other, i.e., ¢ # 1 in (1). This work is motivated by the re-
cent results established by Kovalyov [14], Agemi and Yokoyama [3],
Hoshiga and Kubo [10] and Yokoyama [28]. In those papers, the
small data global existence for systems of nonlinear wave equations
with different propagation speeds has been well developed when the
nonlinear terms depend only on the derivatives of unknown func-
tions but not on unknown functions themselves (see also [25] and [1]
for related results on nonlinear elastic wave equations, and [19] on
Klein-Gordon-Zakharov equations). We explain some of their results
by examples such as the scalar equation

O*u — Au = |owlP, (z,t) € R? x [0, 00), (4)
and the corresponding systems

0?u — 2 Au = Fy(04u, ), (z,t) € R3 x [0, 00), (5)
0?u — Av = Fy(Oyu, ),  (7,t) € R? x [0, 00).

For (4), it is known that the small data blowup occurs when 1 < p <
2, and the small data global existence holds when p > 2 (see John
[13], Sideris [23], Hidano and Tsutaya [9] and Tzvetkov [27]). So,
we may think that the quadratic nonlinearity is also critical for the
small data global existence and blowup for (5). First, we consider the
case when F} = F5, = Jyudyv in (5). In this case, if ¢ = 1, it is trivial
that the small data blowup occurs for (5), by the small data blowup
result for (4) in the critical case p = 2 by John [13]. However, when
¢ # 1, Kovalyov [14] proved that the small data global existence
holds for (5) with F} = F, = Oyudv. Next, we consider the case
when Fy| = (0v)? and F, = (0;u)? in (5). In this case, it is more
difficult to prove the small data global existence, but it is shown in
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[28] that the small data global existence holds if ¢ # 1 (see also [3]
and [10] for two space dimensional case).

Therefore, it is interesting to ask whether the discrepancy be-
tween the propagation speeds in (1) yields the small data global ex-
istence or not, especially in the critical case a+pB = 0. In this note,
we show that the small data blowup occurs for (1) in the critical case
a+pf = 0even if ¢ # 1. To our knowledge, this is the first result on
the critical small data blowup for systems of semilinear wave equa-
tions with different propagation speeds, although, as stated above,
the critical small data global existence has been recently well studied
by [3], [10], [14] and [28]. More precisely, we obtain in [16] and [15]

THEOREM 1.1. Assume that o + pf < 0 with (2),
f](,’E) =0, g](,’E) >0 (513 € R37 J= 172)7 (6)

and g2(0) > 0. Then the classical solution of (1) does not exist
globally in R3 x [0,00). Moreover, there exists a positive constant
Cy, independent of €, such that the life span T*(g) of the classical
solution of (1) satisfies

T(e) <exp (Coe?W170)  if  a+pB=0, (7)
T*(e) < exp (Co&?*”(p’”) if  a+pB=0,p=g, c=1(8)
T*(e) < Coe~PPa=1)/(a+ph) if  a+pB<O. (9)

Here we denoted by T*(g) the supremum of all T > 0 such that the
classical solution (u,v) of (1) exists in R® x [0,T) for given c, p, q,
fj and g;.

REMARK 1.2. When ¢ = 1, a similar result to Theorem 1.1 holds
in two space dimensional case (see [16]). However, there are some
difficulties to treat the case ¢ # 1 in two space dimensional case, so
it 18 an open problem whether a similar result to Theorem 1.1 holds
or not when ¢ # 1 in two space dimensional case.

On the contrary to Theorem 1.1, we obtain in [17] the following
lower bounds of the life span of the solution to (1) with different
propagation speeds.
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THEOREM 1.3. Assume that f; and g; (j = 1,2) satisfy

fi(x) = gj(z) =0 for |z| > R, (10)

where 0 < ¢ <1 and R > 0, and that 2 < p < q. Then there is a
positive number eg = eo(¢, p, q, R) such that for any € with 0 < € < &g
we have

T*(e) = o0 if a+pB>0,
T*(e) > exp (C*sfp(qul)) if  a+pB=0,p#q,
T*(g) > exp (C*e‘p(”‘”) if  a+pB=0,p=q,
T*(e) > C*eP(Pa—1)/T(p,q) if  a+pB<0,

where C* is a positive constant independent of e.

REMARK 1.4. Having in mind the estimates (7)-(9), we see that the
estimates (11)-(14) are optimal concerning the order of €, except for
the case where a+pB =0, p=q and c # 1. In other words, it is an
open problem whether the estimate (7) is optimal or not for the case
when ¢ # 1 and p = q = 1+ 2. And when ¢ = 1, the statement of
Theorem 1.3 was also proved in [2].

In what follows, we denote a positive constant in the estimates
by C, which will change from step to step.

2. Proof of Theorem 1.1

To prove Theorem 1.1, following the argument as in Zhou [29], we
reduce the blowup problem for the system (1) to that for a system of
integral equations with one variable (see Subsection 2.3), and prove
the small data blowup for the reduced system with one variable (see
Subsection 2.2).

2.1. Preliminaries

We denote the spherical mean of a function f(z) of z € R? at the
origin with radius r by
~ 1

flr)= e \w\:1f(TW)dSW
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Let ug(z,t) be the solution of the Cauchy problem to the homoge-
neous wave equation

{ Ofu — c*Au =0, (z,t) € R? x [0,00), (15)

u(z,0) =0, u(z,0) = g(z), z e R

Then, as is well known, ug(z,t) is given by wug(z,t) = I.(g9)(z,1),
where

Lig)(x,1) = ﬁ 9l ctu)ds (16)

We also introduce for (r,t) € (0,00) x (0, 00)
1 ct+r
B O (1)
¢ 2cr |ct—r|

Then we have

LEMMA 2.1. Let g € C(R?) and g(x) > 0. Then we have for (r,t) €
(0,00) x (0, 00)

—~—

Ic(9)(r,t) = Je(g)(r, 1). (18)

Proof. We will use the identity for iterated spherical means (see [11]
at page 81):

1
] / / g(r¢ + pw)dS,dS¢
n J|¢|=1J|w|=1

2wpn—1 /p—l—'r n=3 __
= ——— Mh(p, ;1) 2 g(A)dA, 19
ey | A X0 (19)

where we have set
h(p, Air) = (A +1)* = p*)(p* — (A —1)?).

Then we see from (16), (19) with n = 3 and (17) that (18) is valid.
O

From this lemma, one can derive the following.
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LEMMA 2.2.  Assume (6) and let (u(r,t),v(r,t)) be the spherical
means of the classical solution (u(x,t),v(x,t)) of (1). Then

(r,1) > eo(§1)(r.1) + Le([5])(r.1).
{ o(r,t) > eJi(g2) (r, 1) + La([al?)(r, ) (20)

holds for (r,t) € R2 = (0,00) x (0,00), where

1 t pe(t—s)+r
Le(G)(r.t) = —/ / AG(), s)dAds.
2er Jo Jie(t—s)—r|

2.2. Reduced systems with one variable

We begin by showing the following proposition, from which we shall
derive a result on the blowup for the reduced systems with one vari-
able (36) at the end of this subsection.

PROPOSITION 2.3. Let a, b, p, q, o, B, v and X be constants such
that

I<p<g<oo, <0, v>0, A>1, a+pb—1)>0, a+pB<0

(21)
and suppose that K(z) is a continuous function such that
m:=min{K(z): 0<z<1}>0. (22)
Then, the life span of solution (¢(z),P(z)) of
1 2\¢ ‘ 1— “Az—Q)\ ,—aX Pd
ole) 2 142 | (1= 0) g,
3 2 [ (1= ) K (e - ) Pl
° (23)

for z < 0 is bounded from above by a positive constant depending
only on p, q, B, v and m.

To prove the proposition, we prepare a couple of lemmas. In
what follows, we assume that (¢(z), #(z)) is a solution of (23).
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LEMMA 2.4. Assume that (21) and (22) hold. Let A>0,0< h <1
and Z > 0. Suppose that

p2)>A (2> 7). (24)

Then there exists a positive constant C depending only on p, B and
v such that

o(z) > CAPY(z — Z — 2) (z>Z+2), (25)
@(z) > CAPIRPT2 (2> Z + 2h). (26)

Proof. First we shall show that there exists a constant C > 0 de-
pending only on (3, v and m such that

$(z) > CBXle™Pr (2> Z 4 h), (27)

where we have set B = A9h2. Since A > 1 and 0 < h < 1, we see
that 2z — h/A > Z for z > Z + h. Therefore we have from (23) and
(24)

z
#2) = et ane [
z2—h/A

(1 . e—W—O) KO\(z — ¢))d¢

for z > Z+h. Sincewe have 0 < A(z—() < h < 1lforz—h/A < ( < z,
we see from (22) that K(A(z —()) > m for z— h/X < { < z. Hence,
(27) follows from the fact that

z —h _ 2
/ (1 _ G*A(Z*O) d¢ = et—1+h > n” (0<h<1).

—h/A A e
(28)

Next it follows from (23) and (27) that for 2 > Z + h

o(z) > ,),Bszer(bl)/
Z+h

~BP /Zih (1 _ e—k(z—C)) d¢,

by (21). Thus, (25) follows from (29) and the fact that for z > Z +2
we have

(1 _ e*)\(Z*C)> e~ (PN 4e (29)

v

: 11
/ (1—6*“2*0) dC=2—Z—h—vt e 2N >, 7 9
Z+h A A
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While (26) follows from (29) and (28), since z — h/A > Z + h for

z > 7 + 2h. O

LEMMA 2.5. For any L > 0 there exists a constant Zy = Zy(L) > 0
such that

p(z) > L (22> Zo). (30)

Proof. From (23) we have ¢(z) > 1 for all z > 0. Thus it follows
from Lemma 2.4 (we take A =1 and Z = 0) that

p(2) 2C(z=2) (2>2), (31)

from which we see that the conclusion of the lemma is valid. |

LEMMA 2.6. Let j be a nonnegative integer. Suppose that there exist
constants A; and Z; such that

p2) 2 A5 (22 7). (32)

Then there exists a constant M > 1 such that

0(z) > Ajn (2> Zj41), (33)
where
AP4 9
Ajj1= Lo Zi1=2; : 4
J+1 M(j + 1)4p+47 7+1 J + (‘7 + 1)2 (3 )

Proof. From (32) and Lemma 2.4 (we take A = A;, h = 1/(j + 1)*
and Z = Z; ), we have

, o4 g2
#() 2 Gy ( 24t Gy 1)2> ‘

Thus we obtain (33) with (34). O

LEMMA 2.7.  Let {A;}32, be the sequence defined by (34). If Ag >
Lo := M7 9™ then we have lim;_yo0 A; = 00. Here v =1/(pg—
1) and m = 3237, (pq) " log k.
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For the proof of the lemma, see Lemma 4.6 of [16].

Proof of Proposition 2.3. Put Ag = Lo+ 1. If we take Zy = Zy(Ag)
in Lemma 2.5, we have ¢(z) > Ag for z > Zy. Moreover, it follows
from (34) that Z; = Zy + Y.2_,2/k* for j > 1. Thus if we put
Z* :=supjs Zj = Zo+ Y 5=y 2/k?, we have Z* < co. From Lemma
2.6 for any j > 1 we have ¢p(z) > A; for all z > Z*. Hence, from
Lemma 2.7 we see that the life span of (¢(z),¢(z)) is less than or
equal to Z*. Since the positive constant Z* depends only on p, ¢, 3
and +y, this completes the proof. O

COROLLARY 2.8. Let 1 < p < q < o0, a+ pf < 0 with (2) and
0 < e < 1. Suppose that C1, Cy and C3 are positive constants, and
H(y) is a continuous function such that

min{H(y): e ' <y<1} > 0. (35)

Let T'(e) be the life span of solution (U(y),V (y)) of

Yy
y—n
U(y) = Cie? + Cs / LV y>

Yy

Yy —

=Gy | s (ﬁ)wm)wdn, y>1.
1 Y7 Yy

(36)

Then, there exists a positive constant Cy, independent of €, such that

T(e) < exp (Coefp(”qfl)) if  a+pB>0, (37)
T(e) < Cogfp(qul)/(aﬂﬂ) if a+ps>0. (38)

Proof. First, we show the estimate (37). For the solution (U(y), V (y))
of (36), we put

<p(z) = (Clgp)_lU(e)\Z)’ ¢(Z) — (C16q)_1V(e)‘Z), A\ = g—p(pq—l).
(39)

Then, we have A > 1 for 0 < ¢ < 1, and a direct calculation shows
that (¢(z), ¢(z)) satisfies (23) with (2), K(z) = H(e™?) and

a=1-— M b=1- M, v = min{C:f*lCQ, Cffng}.

p(pg—1)’ p(pg—1)
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Then, we can easily check that the assumptions (21) and (22) in
Proposition 2.3 are satisfied. Hence, from Proposition 2.3 and (39),
we obtain the estimate (37).

Next, we show the estimate (38). For the solution (U(y),V (y))
of (36), we put

o(z) = e PU(e2), ¢(2) =e PV (e 2), (40)
A:%, H=pg— X (41)

Then, we see that (¢(z), ¢(z)) satisfies

hean [F o z2—C
w(z) =C1 + 026P(# 1)—aX /EA D |p(C)|Pdc, z > 6/\’

#0) = a5 [ Z2E (S o, sz
(42)

By (41), we have p(p — 1) — aX =0 and pg — p — A = 0, and since
A > 0, we have ¢* < 1 for 0 < ¢ < 1. Therefore, by the estimate
(37), we see that the life span of the solution (¢(z), ¢(z)) of (42) is
dominated by a positive constant which is independent of €. Hence,
the estimate (38) follows from (40) and (41). O

2.3. An application

In this subsection, we prove (7) and (9) in Theorem 1.1 when ¢ > 1,
by applying Corollary 2.8 together with Proposition 2.12 below. For
the case 0 < ¢ < 1, see Section 4 of [15], and for the proof of (8), see
[16]. Throughout this subsection, we always assume that ¢ > 1 and
1 <p<qg< oo, and put

¥ ={(rt) ER?i_: t—r>1}, Rﬁ_:(O,oo) x (0, 00).

We note that the continuity of go and the assumption go(0) > 0 in
Theorem 1.1 imply that there exists a constant x € (0, 1] such that

g2(r) > 0 holds for r € [0, &]. (43)
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For (r,t) € £1 and such  as above, we define Dj(r,t) € R%

Di(r,t) ={(\,s): ct—r<es+A<ect+r, |s— )\ <k/2},
Dy(r,t) ={(\ys): ct—r<ecs+A<ect+r, 1<s—A<t—r},
Da(r,t) ={(A\,s): t—r<s+A<t+r 1<s—A<t—-r}

Moreover, we define

1
L'Gr,t:—// AG(A, s)d)Mds j=1, 2, 3).
(@) =5 [ A6 ( )

Then we see from Lemma 2.2 and (6) that

{amnzammmmw+aﬂmmmw, )
5 1) > e (83)(r, ) + eLa([al?) (r, )

holds for (r,t) € ¥, where (u(r,t),v(r,t)) be the spherical means of
the classical solution of (1). We prepare a couple of lemmas. For the
proof, see Section 3 in [15]

LEMMA 2.9. There exists a constant C11 > 0 such that

- 2C 1P
Loy ([oP) (r,t) > - (45)

~(t+r)(ct—r)p—2
holds for (r,t) € 5.
For any continuous function f(n) of n € [0,00), we put

flt—r) flt—r)
(t+r)(t—r)? (t+7)(ct —r)p=2

Ry(f)(r;t) = By(f)(r;t) =

LEMMA 2.10. There exists a constant Ci9 > 0 such that

» C Tt —q »
L BP0 0)2 et [ e P
(46)

holds for any continuous function f and (r,t) € 1.
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LEMMA 2.11. There exists a constant Ci3 > 0 such that

L) (| By (H)])(r, 1) (47)

C1s o (t =7 —m)|f ()
= (t+7r)(t—r)i? /1 (t—r){(c—=1)(t —r) + n}tar=2)

holds for any continuous function f and (r,t) € ¥Xy.
From Lemmas 2.9-2.11, we obtain the following proposition.

PROPOSITION 2.12. Suppose that ¢ > 1 and 1 < p < q < co. Let
C11, Cia and Ci3 be positive constants defined in Lemmas 2.9-2.11,
and let (u(r,t),v(r,t)) be the spherical means of the classical solution

of (1) and (U(y),V (y)) be the solution of

Y _
UG) = Cue + Cur [ L Vpdn,  y>1,
1 yrlp q )

B (48)
v =cu [ Lot () ol yz1
where , -2)
Hl(y):<y+<c—1)) '
Then,
w(r,1) > Ry(U)(r 1) = — L= 7) (49)

(t+7r)(ct—r)p2
holds for (r,t) € 31 as long as (u(r,t),v(r,t)) and (U(y),V (y)) exist.
Proof. In this proof, we always assume that (r,¢) € X;. First, it
follows from (48) that for t —r =1

B U(1) B Che?
By(U)(r1) = (t+7r)(ct—r)P-2  (t+ r)(;15 — )P

Thus, from (44) and Lemma 2.9,

. 201 €?P
u(r,t) > e

=) (ct—rp 2~ Bp(U)(r1)
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holds for t—r = 1. Therefore, by the continuity of & and R,(U), there
exists N > 1 such that u(r,t) > R,(U)(r,t) holds for (r,t) € Q;(N),
where we have set

Q(N)={(r,t) e Xy: ct—r <cN}.
Suppose that
Ny :=sup{N >1: u(r,t) > R,(U)(r,t) holds for (r,t) € Q;(N)}.
is a finite number. Then, we have
min{u(r,t) — R,(U)(r,t) : (r,t) € Q1 (N1)} =0. (50)
From (44) and Lemma 2.11, we have for (r,t) € Qy(Ny)
o(r,t) = cLg)(|Rp(U)|*)(r,1)

013 t=r t—’)"—’r] | q
= (t—i—r)(t—r)q—?/l (t_r)nq(pfz)ﬂl T ) [Um)l*dn

Vt—r)
(t+r)(t—r)a2

= Ry(V)(r,1).

Thus, from (44) and Lemmas 2.9 and 2.10, we have for (r,t) €
Q1 (Ny)

u(r, t)

v

Ly ([01°)(r,2) + L2y (|Rq(V)[) (r, 1)

20116p

— +
(t+7r)(ct—r)p2
Cio =r = n P
d
* (t+7)(ct —r)p=2 /1 (t — r)npla—2) [V n)Pdn
Cu&?p U(t — 7")

R CEn R e R At

v

which contradicts to (50). Therefore, we conclude that N; = +o0.
Hence, the proof is completed. ]

Proof of (7) and (9) when ¢ > 1. Since H(y) = Hi(y) satisfies the
assumption (35) in Corollary 2.8, (7) and (9) for the case ¢ > 1
follows from Corollary 2.8 and Proposition 2.12 U
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3. Proof of Theorem 1.3

To prove Theorem 1.3, we shall adapt a blowup criterion on the
Cauchy problem to (3) established in Lindblad [18] among other
things, which provide us a simple way to get the lower bounds of
the life span. The blowup criterion asserts that the solution of the
above problem does not blow up as long as Ex|uP is bounded, where
E denotes a fundamental solution of the wave equation. (See also
Alinhac [4], Chapter III, Section 3). Subsection 3.2 is devoted to
derive basic estimates, from which we establish a priori estimates in
Subsections 3.3.

3.1. Blowup criterion

In this subsection, we shall extend the blowup criterion established in
[18] in such a way to enable us to apply it for the system of semilinear
wave equations (1) when the propagation speeds may be different.
We denote by ¢ the faster propagation speeds in the system,
namely,
¢ = max{c, 1},

where c is the number in (1), and for (zg,%) € R? x R we denote by
C(zo,t9) a backward characteristic cone connected with ¢, that is,

C(wo,t0) = {(z,t) ER* x R : &(t —ty) < —|z — x0l}. (51)

We call an open set  C R3 xR an “in fluence domain” if (z,t) € €

implies C(z,t) C Q.
Next we introduce a definition of “weak solution” for the Cauchy
problem of (1).

DEFINITION 3.1. We say that (u,v) is a weak solution for (1) in an
influence domain €, if they belongs to

W(Q) = {(u,v) € L (Q) x LT (Q) : u(z,t) =v(z,t) =0 (52)

fort <0 and E. x |v|P’, Ey*|ul? € Ly, ()},
where p, q are the number in (1) and satisfy

u="1ug+ Ec.* [P, v=1vy+ Ey*]ul? inQ, (53)
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where the tilde denotes extension by 0 for R™ x (—oc,0), the star the
convolution, and E, the fundamental solution of the wave equation

defined by
By(z,t) = (2ma)~'6((at)? — |2 H(2). (54)

Here 0(s) is the delta function and H(s) is the Heaviside function.
Besides,

Uy = EatEc * f1 + 6EC * g1, Vg = EBtEl * f2 + 6E1 * g9,
where f; and g; are the initial data in (1).

We summarize the properties of ug and vy in the following. For
the proof, see [17].

LEMMA 3.2. Assume that f; and g; satisfy (10). Then ug, v €
C%(R3 x [0,00)) and we have

lug(z,t)] < Ae(1+t+7)" 1+ |ct —r])7L, (55)
lvo(z,t)] < Ae(l+t+r)" A+t -7, (56)

where r = |z| and A is a positive constant depending on p, q, ¢ and
R. Moreover, if 2 < p < q holds, then we have for (z,t) € R® xR

|E. + |0g|P(x,t)] < MoeP(1+t+7r)" A +]|ct—r))7P, (57)
|Ey * |ug|U(x,t)] < Moel(I+t+r)"TA+[t—r))"7. (58)
Here My is a positive constant depending on p, q, ¢ and A.
The following local existence and uniqueness theorem holds.

THEOREM 3.3. Suppose that the assumptions of Theorem 1.1 are ful-
filled. Assume that T > 0 satisfy

qu—lM(Il’*lgp(P—l)TQ <1, 2pq—1Mg*15p(P—1)T2 <1, (59)

where My is the constant in Lemma 3.2. Then we have a unique
weak solution (u,v) for (1) in R3 x (—oc,T) werifying

Eox |v|P < 2PMoe?, By # |ul? < 29Me?. (60)
and
u(z,t) =v(z,t) =0 for|z|>cét+ R, 0<t<T, (61)

where R is the number in (10).
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For the proof, see Section 2 of [17]. Theorem 3.3 leads us to the
following definition of “maximal influence domain”.

DEFINITION 3.4. Let Qynaz be the union of all influence domains )
containing R3 x (—oc,0] such that there is a unique weak solution
(u,v) for (1) in Q. Then Qpqq is the unique mazimal domain with
this property.

The following theorem gives us “blowup criterion” for the system
(1) and “additional smoothness” for the solution. Since the proof
of the theorem is analogous to that of Theorems 3.6 and 3.7 in [18],
we omit it.

THEOREM 3.5. Suppose that the assumptions of Theorem 1.3 are ful-
filled. If (zg,to) € Omas and

C(,’Eg,t(]) C {(IEU,tU)} U Qmama (62)

then either E.« |[v|P or Ey x|u|? is unbounded in Qpaqy N B(zo,t0 : p)
for any p > 0. Here B(z,t: p) stands for the open ball with radius
p centered at (z,t).

Moreover, if (u,v) is a weak solution for (1) in Quaez, then

U, v € C*(Qpaz N (R? x [0,00))). (63)

Now we are in a position to mention our strategy to prove The-
orem 1.1. We denote by Ty(e) the supremum of all T > 0 such
that there is a unique weak solution (u,v) for(1) in R? x (—o0,T)
satisfying for (z,t) € R3 x [0,T)

E. [ofP(2,t) < 2PV MeP(1+r+ )7 (14|t —7))7P,  (64)

where M = (1 + R + 2¢)P~' My with My the constant in Lemma 3.2
and r = |z|. Then we have

0 < Ty(e) < T*(e). (65)

Indeed, by virtue of (60) and (61), we see that Ty(¢) > 0. While, it is
clear that Ty(g) < T*(e), due to (63). Therefore, our task becomes to
show (11) through (14) with T™(e) replaced by Tp(e). Thanks to the
blowup criterion in Theorem 3.5, those estimates follow from suit-
able a priori estimates. (For the details, see Subsection 3.3 below).
Besides, when we prove such a priori estimates, we may assume that
the solution u, v of (53) are of class C2, due to (63).
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3.2. Basic estimates

In this subsection, we prepare basic estimates that will be needed
to establish a priori estimates in Subsection 3.3. First of all, we
introduce the following integral operator

t
Lo(F)(a.1) = 1~ /0 (t— s)ds /| | Fleba(t—s)e, )i, (69

™

where a > 0, (z,t) € R? x [0,T) and F € C(R3? x [0,T)). Notice
that

By % F(z,t) = Lo(F)(z,t) for (z,t) € R x [0,7), (67)

when F € C?(R3 x [0,7)) and F(z,t) = 0 for |z| > ¢t + R. In
addition, we shall use the following notations:

Du(r,t) = (1+t+r)"17F (k<0),
Bu(r,t) = (A+t+r) YA+ t—7))" (k> 0), (68)
Bo(r,t) = (L+¢+r)" <1+log(%))
and
Uu(t) =1 (p>0), C,)=1+1)7" (n<0), (69)

Uo(t) =1+ log(l+1).

PROPOSITION 3.6. Let ¢ >0, >0, T >0 and F € C(R*>x[0,T)).
(i) If k € R and u € R, we have for (z,t) € R? x [0,T)

Le(F) (o, (@, 1)} ! (70)
SCUL(t+r) Hyl(L+ 1yl + )L+ [cs = [yl HHIF (y, )] [l
(ii) Ifx € R and p > 0, we have for (z,t) € R3 x [0,T)
Le(F) s D@, ct)} ! (71)
<C Nyl + Jyl + )41+ s = [yl F (y, 8)] e
(iii) Ifk €R, p >0 and § <0, we have for (z,t) € R® x [0,T)

LelP) D@ ()} (14 7+ 1) (72
s s
<CII(1 -+ 1yl + 974 (14 1o S ) TGy
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Here || - |[eo= - o (m3x[o,r)), 7 = |z| and C is a positive constant
depending only on u, K, 0, ¢ and c.
For the proof, see Section 3 of [17].
COROLLARY 3.7. Let A > 0, ¢ > 0,c >0,2<p<qandw €
C(R? x [0,T)).
(1) If w(z,t) satisfies
lw(z,t)| < A1+t +7)7" 1+ |et — )77 (73)
for (x,t) € R3 x [0,T), and if x satisfies either
k<qg" and K<qg"+0 (74)
or
k<q¢ and K<qg"+p0 (75)
with 8 = qp* — 1, then we have
|Lo (Jw]?) (z,t)] < CLAID,(r,ct)  for (z,t) € R® x [0,T). (76)

where @ (r,t) was defined in (68).
(ii) Suppsoe that w(x,t) satisfies

lw(z,t)] < A®,(r,c't)  for (z,t) € R® x [0,T). (77)
When v > 0, we have for (z,t) € R3 x [0,T) with |z| < mt+ R
| Le(lwlP) (@, O)](1+t +r)(1+ Jet — 7]} < CLAPTy1(T),  (78)
where W, (t) was defined by (69) and m, R > 0.
While v < 0, then we have for (z,t) € R3 x [0,T) with |z| <
mt + R
| Le(lwP) (2, )] (1 + ¢+ ) (1 + |et — )P < CLAP(L+T)' 7P, (79)

Here Cy = Cy(c, ', p,q, k,v,m, R) is a positive constant independent
of A and T.
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Proof. First we prove (76). When (74) holds, we can choose u such
that

O<pu<qg +p—k. (80)
Notice that by (73), k < ¢* and (80), we have
lyl(1+ |y + s)"5(1 + |es — Jy| )T w(y, s)|? < CAY.

Therefore, (70) with F' = |w|? and p > 0 yields (76).
On the other hand, when (75) holds, we can choose p such that

0<p<qg —k. (81)

Therefore, (76) follows from (71) with F' = |w|9, (73), (81) and
¢ +06—k>0.

Next we prove (78). Applying (70) as F' = |w|P, k = p* > 0 and
u=pv — 1, and using (77), we get (78), since r < mT + R.

Finally we prove (79). We use (72) as F' = |w|P, k = p* > 0 and
0 =pv—1 < 0. Besides, we put 4 = p when v = 0, u = 0 when
v < 0. Then (77) and (72) yields (79). The proof is complete. [

3.3. A priori estimates

Let (u,v) be a weak solution for (1) in R? x (—oc,T) such that w,
v € C?(R3? x [0,T)). We shall look for upper bounds of

w1 = Le(Jv]P) = u —ug, wy = L1(Jul?) = v — vy, (82)
provided
|wy (z,t)| < 2p+1M5p(1 +t+ r)_l(l + |et — 7‘|)_p* (83)

holds for (z,t) € R? x [0,7T), where M is the number in (64). Tt is
easy to see from (57) and (58) that

jwi(z,t)] < 2P"YMeP(1+t4+r)" 1+ et —r))7P  (84)
+|Le(|wel?) (z, )]},

lwy(z,t)] < 29 HMel(1+t+r) YA +]t—r)) T  (85)
+| Ly (Jw1 |7) (2, )]},
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since |a + b|P < 2P~ !(|a|? + |b|P) for a, b € R and p > 1. Moreover
(61) implies

suppw; U suppwe C {|z| < ¢t + R}, (86)

where ¢ = max{c, 1}. We shall deal with only the case where a+pS >
0 and 2 < p < ¢. For the other cases, see [17].
First we show that there is a number k verifying

0<k<qg* 1/p<r<qg +p. (87)

Indeed, « + pB > 0 implies ¢* + > 1/p. Moreover, since « > 3 for
p < g, we see that a > 0 when a+pB > 0 and 1 < p < q. Therefore,
we have 1/p < ¢*. Hence, we can find x verifying (87). For such
Kk > 0 we have

PROPOSITION 3.8. Assume that o+ pB >0, 2 < p < q and that
satisfies (87). Let wy and wo be as in (82) and suppose that (83)
holds. Then there is a number €9 = o(p,q,c, M) such that we have
for 0 < e <eg and (z,t) € R®* x [0,7)

lwy(z,1)] < 29Mel(1+t4 )" (1 + |t —r|)7F, (88)
|wy(x,1)| < 2PMeP(1+t+7)" 1+ |ct —r|)7P. (89)

Proof. First we take g9 (0 < g9 < 1) so small that
20t 0y Ml < v, 2rio MY < M, (90)

where C] is the constant in Corollary 3.7. Since k satisfies (74) by
(87), it follows from (83) and (76) with ¢ = 1 that

| Ly (lwn|9) (2, )| (1 + 7+ ) (1 + [t — r|)* < C1 (2P MeP)“.

Using (90), (85) and x < ¢*, we get (88) for 0 < e < gy.
Moreover, since px —1 > 0 by (87), it follows from (88) and (78)
that

| Le(jwa|P) (z, )|(1 + 7 + £)(1 + |ct — r|)P" < C1(21Me?)P.

By (90) and (84), we obtain (89). This completes the proof. O
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Proof of Theoem 1.3 when o+ pfB > 0: As we have discussed at the
end of Subsection 2.1, it suffices to show that (11) through (14)
with T*(e) = Ty(e) hold. By the definition of Ty(e), (83) holds for
T = Ty(e). We consider only the case where o + pf3 > 0.

Suppose that Ty(e) < +00. We see from (88) that wy = Ey * |ul?
is bounded in R? x [0,Ty(¢)). Hence, by Theorem 3.5 we see that

(R? x [0,To()]) N Onaz = 0. (91)
While from (89), we get for (z,t) € R? x [0,Ty(¢))
|E. * [v]P(z,t)] < 2PMeP(14r+1) (1 + |et —7]) 7, (92)

which is a sharper estimate than (64). We thus have a contradiction
to the definition of Ty(e) , hence Ty(e) = +oo. This completes the
proof of Theorem 1.1 when a + p3 > 0. O
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