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Constructing Weak Solutions in a
Direct Variational Method and an
Application of Varifold Theory

KouJ1 Kikucur )

SUMMARY. - A weak solution to a fourth order parabolic equation is
constructed by the method of discretization in time and minimiz-
ing variational functionals. The convergence of nonlinear terms
s obtained by the use of varifold theory.

1. Introduction

Let Q be a bounded domain in R" with 9 sufficiently smooth.
Let V be a reflexive Banach space and V), be a closed subspace of
V. Suppose that V and V, are continuously imbedded in W2(Q)
and W01’2(Q), respectively. For w € V we define W,, C V by {v €
W2(Q);v —w € Vp}. Given a functional J : V — [0,00), we
suppose that i) J is Gateaux differentiable on V), ii) J is weakly
lower semicontinuous, iii) there exist constants ¢y and ¢; such that
J(v) > ¢o ||v]|ly —c1 for each v € W, and iv) there exists a constant
o such that J(v) < pg ||v]|y for each v € V.
Here we consider the following evolution equation:

Ju

oy +gradJ(u) =0 (t>0), (1)

’LL(O) = ug € Wy, (2)
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u(t) € Wy (1> 0). (3)
We say that a function v is a weak solution to (1)—(3) if u satisfies u €

L>((0,00); V), u o U Z%((0,7); V'), (1) holds in | J L*((0,T);V'),
ot 1% T>0
s—}i\z% u(t,z) = ug(z) in L%(Q), and u(t) € Wy, for L'-a.e. t.

Our objective is an approximate solution to (1)—(3) constructed
by the method of discretization in time and minimizing variational
functionals. This approximating method is firstly applied to con-
structing weak solutions to linear parabolic equations ([10]). In [9]
N. Kikuchi has independently rediscovered this method, and after [9]
there are many works in applying this method to constructing weak
solutions to nonlinear partial differential equations ([2], [3], and ref-
erences cited in [8]). Let h be a positive number. First we construct
a sequence {ug} C W, in the following way: we let ug be as in (2)
and for ¢ > 1 we define u; as the minimizer of the functional

1 — s 2
Fi(v) = 5/9 %dw—l—(](v)

in the class W,,. The existence of a minimizer of F; is assured by
assumptions iii) and iv) on .J. Approximate solutions u”(t) and @"(t)
for ¢t € (0,00) are also defined as follows : for ({ — 1)h <t < ¢h

t—(£—1)h _

(4)
ﬂh(t) = Uy.
Then the following facts hold (see, for example, [2]).
THEOREM 1.1. We have

h
, A aait l22((0,00)x2) } 18 uniformly bounded with respect to h

~

2, {||a" | oo ((0,00):0) } 48 uniformly bounded with respect to h

o

{ | uh | oo ((0,00)1) } 8 uniformly bounded with respect to h

4, for any T >0, {||u” lwi20,m)x0)} 8 uniformly bounded with
respect to h.
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Then there exist a sequence {h;} with h; — 0 as j — oo and a
function u € L*((0,00);V) N U WL2((0,T) x Q) such that
7>0

5, wh converges to u as j — co weakly star in L ((0,00); V)

6, for any T > 0, u" converges to u as j — oo weakly in

W2((0,T) x Q)
7, uhi converges to u as j — oo strongly in L*((0,T) x Q)
8, uhi converges to u as j — oo strongly in L?((0,T) x Q)

9, s—%i\r‘% u(t) = ug in L?(£2).

Our problem is whether the limit u in Theorem 1.1 is really a
weak solution to (1)—(3). Theorem 1.1 9) means that u satisfies (2)
in the weak sense. Theorem 1.1 5) implies that u satisfies (3) in
the weak sense since @" — w € L>®((0,00); V) for each h. Thus the
problem is whether u satisfies (1). Since uy is the minimizer of Fy(v),
we have
up — u

ey grad J(ug) =0

grad Fe(ug) = ——

oul — Up_
in V'. Noting that, for (£ —1)h <t < fh, uo_tmeT ! we have,

ot h
for each h > 0,

oul T
W(t) +grad J(@"(¢t)) =0 (5)
in U L((0,7);V"). Now we put f* = grad J(@"). For any T >
T>0
0 we see by Theorem 1.1 3) that f% belongs to L%((0,T) x Q),

Ju

converges weakly to an f in L2((0,T) x ), and satisfies 5 +f=0
in L2((0,T) x Q). Thus (1) follows when we obtain
f=grad J(u) in L*((0,T);V") (6)

for each T > 0.

In this note we present one way of obtaining (6) under a little
more concrete setting. The basic idea is to employ the topology of
the space of “varifolds”, which are a kind of generalized surfaces.
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2. Fourth order parabolic equations
Suppose that F' = F(z,vy,p) is a real valued function in C' (2 x R x

R"). For a function v : 2 — R we define a functional J as
J(v) :/{|Afu|2/2+F(ﬂc,v,VU)}dx. (7
Q

Now J is a functional defined on V := W22(Q), and we consider
that Vo := WZ%(Q). Let w € V = W>2(Q). Then W,, = {v €
W22(Q);0 —w € W(Q)}.

Assumption We assume that there exists a positive constant pg
such that

0 < F(z,y,p) < po(1+ |y|% + |p|™)
|Fp| < po(1 4 [y + [p™)
|Fy| < po(1+ [y|? + |p|™),

where
2n n-+2 n+4
0<QO<—70<Q1<—70<Q2< )
n—4 n—4 n—4
2 2 4
O<rog< —  0<r < T2 gopy<E
n—2 n—2 n—2
when n > 5,

q0>07 q1>0a Q2>0,

2n n+ 2 n—+4
O0<rg<—,0<m<——,0<r<
n—2 n—2 n—2
when n = 3, 4, and

g >0, g >0, >0, 79>0, 71 >0, 79>0

when n =1, 2.

REMARK 2.1. 1. It follows from Assumption and Sobolev’s imbed-
ding theorem that J is Gateauz differentiable on W22().

2. It also follows that J is lower semicontinuous.
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3. By Assumption and Poincaré’s inequality we see that there exist
const ants ¢y and c¢i depending on ) and w such that

J(v) > co [[v]w22@) —c1
for each v € W,,.

Now our equation (1)-(3) is

%(t, x) + N*u — div{Fy(z, u(t, z), Vu(t,z))} (8)
+Fy(z,u(t,z), Vu(t,z)) =0, z €,

(0, z) = ug(z), x € Q, (9)

u(t,z) =w(z), Vu(t,z) =Vw(r), z¢€IQ, (10)

where 1 and w are functions in W22(Q) with ug — w € Wy ().
Throughout this note V and A are used for differentiations with
respect to only z variables. We construct weak solutions u” and @"
to (8)-(10), then Theorem 1.1 holds, and in particular v and @"
converge to a function v . Now our purpose here is to show

THEOREM 2.2 (MAIN THEOREM). u is a weak solution to (8)—(10).

REMARK 2.3. Theorem 1.1 1) implies {u"} is uniformly boun ded
in L®((0,00); W22(Q2)). But we do not have any estimates for the
derivative of W' with respect to t, and th us we cannot obtain the
strong convergence of V.

3. Varifolds

Our basic tool is the varifold theory, and here we briefly review this
theory (compare to, for example, [11, Chapter 8]). Let U be an
open set of R"1, and let G = G(n + 1,n) be the collection of all
n-dimensional vector subspaces of R"T!, equipped with the metric

d(s,T) = (Z (pd — p;Z)Q)%, where pg, pr denote the orthogonal
t,j=1

projections of R"*! onto S, T, respectively, and (pfgj), (pZYZ) are cor-
responding matrices with respect to the standard orthonormal basis
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{e1,...,ens1} for R™1. A Radon measure on U x G is said to be
an n-varifold in U.

Suppose that M is a countably n-rectifiable set in U (refer to [11,
Chapter 3] for the definition and basic properties of an n-rectifiable
set) and that 6 is a locally H"-integrable function on M, where H" is
the n-dimensional Hausdorff measure. We define a continuous linear
functional on CJ(U x G) by

Le) = [ e MG (p € CYU x 6))

where T, M denotes the approximate tangent space of M at z. It fol-
lows from the Riesz representation theorem (see, for example, Theo-
rem 4.1 of [11]) that there exists a Radon measure V on U x G (thus
a varifold V' in U) such that

L(p) = /U ez S5)V(2.5)

Such a varifold is called an n-rectifiable varifold, and it is denoted
by v(M,60). We call § a multiplicity function. When 6 is positive
integer valued, we call v(M,0) an n-integral varifold. When 0 = 1,
it is simply denoted by v(M).

Let V be an n-varifold in U. For each Borel set A C U we define

pv(A) =V(r 1 (A) @:UxG>3(2,8)+—2€U, ACU).

Clearly puy is a Radon measure on U. It is called the weight of V.
We define for S € G(n + 1,n) and X = (X!,..., X"t €
Co(U; R™)
n+1 ]
X
divg X = Jj—
1wvg ”Z:IPS 02

(11)
The first variation 6V for an n-varifold V on U is given by

V(X) = | divsX(2)dV (. S). (12)

We say that V' has locally bounded first variation in U if for each
W CC U and each X € C}(U; R™) with spt X C W there exists
a constant C' > 0 such that

0V(X)] < Csup |X].
U
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For z € U we define the upper and lower densities ©*"(uy, z) and
62 (/LV, Z) by

B
0" 1y, 2) = limsup 1V Br?)
p—0 Wn,P
and
B
O (uv, z) = liminf M’

p—0 Wpp"
where B,(z) denotes the open ball with center at z and radius
p and where w,, is the volume of the n-dimensional unit ball. If
O*™(uy,z) = ©F (v, z), this common value is denoted by ©™ (v, 2)
and it is called the n-dimensional density of uy at z. Now Allard’s
rectifiability theorem is as follows (Theorem 42.4 of [11]):

THEOREM 3.1. Suppose that V' has locally bounded first variation in
U and ©™(uy,z) > 0 for py-a.e. z€ U. Then V is n-rectifiable.

For S € G we let v(S) = (v1(S5), ..., vn(S), vn+1(S)) denote the
unit normal to S with v,,11(S) > 0. It is uniquely determined except
for the case that v,41(S) = 0. For § € G with w unit normal
to S we have ps = I,11 — w ® w, where a ® a denotes a'a for a
column vector a. Thus we easily see that v is a homeomorphism from
G\ irr(G) to ST = {w € S™;wp41 > 0}, where irr(G) denotes the set
{S € G;vp4+1(S) = 0} and where S™ denotes the n dimensional unit
sphere, and that v, is a continuous function on G.

We are going to use the varifold theory for the case that U =
2 x R. We use notations z and z = (z,y) for variables in © and
U = Q x R, respectively. The following theorem is a special case of
Theorems 4 and 5 of [6, I Section 3.1.5].

THEOREM 3.2. Let v be a function in W19(Q), ¢ > 1.

1) The graph G, is countably n-rectifiable.

2) H”(Gv):/ﬂ,/1+|vu(x)|2dx.

8) For L"-a.e. x € (1, the approzimate tangent space Ty y(2))Gy
exists and the vector

R VR TR a0
V1+ Vo2 o

oxl’ oxm’
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is normal 1o Ty (2))Go-

Theorem 3.2 2) implies that for each Borel set C C 2

H(p) " (C)NG) = [ 1+]V0(@)da, (13)

where p, is the projection U > z = (z,y) — x € Q. Especially, if
C C Qis an £" null set, then (p,)~'(C) N G, is an H™ null set.
Hence Theorem 3.2 3) holds for H"-a.e. z = (z,v(x)) € G,. Using
the notation above, we see that Theorem 3.2 3) means, for H"-a.e.
z € Gy,

1 ov ov
S e | gt P g pe(D):
1)

v(T,G,)

By (13) we have, for each measurable function g on {2,

/Qg(m)\/lJrIVv(w)I?dm:/G 9(pz(2))dH" (). (15)

By the use of (15) we have the following lemma.

LEMMA 3.3. ([8, Lemma 2.4]) Put V. = v(G,) for v € Wh4(Q),
q > 1. Then it holds that

[ f@@) Votands = [ s s)avizs)
Q U

xG T Vn—l—l(S)
for each continuous function f on U x R".
Suppose that u € L>((0,00); W2(Q)) N U W2((0,T) x Q) is

T>0
a weak solution to (8), that is,

Iy @) Jo{ 5t (t: 2)¢(x)
+Au(t, ) Ap(z) + Fy(z,u(t, z), Vu(t,z))-Vé(z) (16)
+Fy(z,u(t, z), Vu(t, z))d(x) tdxdt =0

for each 9(t) € C§°(0,00) and ¢(z) € C5°(?). By Theorem 3.2 1)
there is a rectifiable varifold v(G(,.)) in U for L'-a.e. t. Hence by
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(16) and Lemma 3.3 we have

[0t [ Gt 0)6@) + bute.o)agtands 1)

/(5)
* UXG{FP(Z’ _Vn—l—l(S)) -Vé(x)vpi1(S)
+Fy(2, _V:Jr(j)g) )b (2)ni1(S)}dVi(z, S)}dt = 0,

where Vi = v(G,.)) and v/(S) = (v1(5), - - -, va(9))-

Conversely suppose that a function v and a one parameter family
of general varifolds V; for ¢ € (0,00) satisfy (17). Then u is a weak
solution to (8) if

Vi =v(Gyy,) for Ll-ae. t. (18)

4. Outline of the proof of Main Theorem

Let u"(t,2) and @"(t,z) be approximate solutions. Now we put
h
‘/t = v(Gﬂh(t’.))'
The following theorem can be obtained in the same way as in the
proof of Proposition 4.3 of [4].

LEMMA 4.1. ([8, Theorem 3.1]) There exists a subsequence of {V,'}
(still denoted by {V/'}) and a one parameter family of varifolds V;
inU=Qx R, fort € (0,00), such that, for each 1(t) € L*(0,c)
and p(z,8) € C§(U x @),

o0

lim [ (1) /U el SV (z, S)at =

h—0 Jo
/oow(t)/ o(z, 8)dV;(z, S)dt.
0 UxG

By (5) we have

0 uh
[T [ 01000 + 251, 0) o)

+Fy(x,@"(t,x), Vi (t, z))-V(z) (19)
+F, (z,@"(t,z), Va" (t,z))p(z) }dazdt = 0
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for any ¢ € WOQ’z(Q) and any ¢ € C§°(0,00). Then we have by
Lemma 3.3 that for each ¢(t) € C§°(0,00) and ¢(z) € C§°(2)

/ P(t {/ (z) + AT (t, 2) Ad(x))dx (20)
V'(S)
UXG{FP(Z’ _I/n+1(S)) - Vo(z)vni1(S5)

V'(S)
Vn+1 (S)

LEMMA 4.2. ([8, Lemma 3.5]) Let f(z,p) be a continuous function
on U x R" and let ¢ and r satisfy 0 < g <2n/(n—4) and 0 <r <
2n/(n—2). Suppose that the set {z; f(z,y,p) # 0 for some (y,p)} is
contained in a compact subset of Q and that for each z = (z,y) € U
and each p € R"

+Fy (2, — (@) v 1 (S)}dV}" (2. S) Yt = 0.

£ (z,p)] < pa(1+ |yl? +[p[")

holds with a constant py. Then, if {V;*} and V; are as in Lemma
4.1, for each (t) € L*(0,00) we have

i [ [ g VW )S)mﬂ(smvﬂ(z, S)dt
_ / > / ?9 Vomi1(S)dVi(z, S)dt.
0 U><G Vn+1 )

Applying this lemma to (20), we find

LEMMA 4.3. ([8, Theorem 3.2]) The function u of Theorem 1.1 and
Vi of Lemma 4.1 satisfy (17).

Lemma 4.3 implies
Theorem 2.2 < (18).
Thereby our problem is reduced to proving (18). Now there are three
steps in proving (18):

Step 1. py; and H"LG ;) are mutually absolutely continuous
for Ll-a.e. t € (0,00).
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(This implies in particular that spt py, = spt H"LG,.).)

Step 2. Vi is an n-rectifiable varifold v(Gy,.),0;) for Ll-ae.
€ (0, 00).

Step 3. 04(z) = 1 for H"-a.e. z € Gy, for Ll-ae. t.

Step 1 is of course proved by showing both that uy,(A) = 0
implies (H"LGy,.))(A) = 0 and that (H"LGy,.))(A) = 0 implies
py; (A) = 0. In the proof of the latter part Lemma 4.2 is essentially
used ([8, Theorem 4.2]).

Theorem 3.1 implies that Step 2 immediately follows from fol-
lowing two facts.

LEMMA 4.4. ([8, Theorem 4.4]) Vi has locally finite first variation
for L1-a.e. t € (0,00).

LEMMA 4.5. ([8, Theorem 4.5]) O™ (uy,,z) > 1 for py,-a.e. z € U,
for L'-a.e. t € (0,00).

In the proof of Lemma 4.4 we use that

—h
OV ( / dlv VO (VX (a, @) X (2, 7)) do
1+ |Vuh |2

and that by Theorem 1.1 1) | @" | 2o ((0,00);w2:2(0)) 18 uniformly
bounded with respect to h (compare to the proof of [8, Theorem
4.4]).

LEMMA46 (/8, Lemma 4.1]) Put A = {(f,g) € CJ(Q)xCY(Q; R™);

V@2 +]g(@)2 < 1 for z € Q}. For each ¢p € L'(0,00), ¢ €

CO(U), and (f,g) € A we have

[0 [ ottt 0) (@) + gta) - ult)dade

0 Q

= [Te) [ @U@ () - gla) -V (S)dVi(z, )t
0 UxG
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Since |f(x)vp+1(S) — g(z) - V'(S)] < 1 for (f,g9) € A, we have
by Lemma 4.6, for each nonnegative functions ¢ € L'(0,00) and

¢ € CY(U),

/ / P(2)d(H LG, )dt < /0 i) /U d(2)dpy, dt.

Thus, approximating the characteristic function of B,(zy) from above,
we obtain

(H"LGy(1,9)(Bp(20)) < pvi(By(20))

for £!-a.e. t € (0,00). This implies Lemma 4.5.

Finally we show Step 3, the end of the proof of which is at the
same time the end of the proof of Theorem 2.2. When f = 1 on
pe(spt ¢) and g = 0 in Lemma 4.6, we have

/0°° W(t) /Q P(z, u(t, z))dzdt

:/UOO /UXG Nmir (S)dVi(z, S)dt. (21

By the definition of an n -rectifiable varifold we have, for £'-a.e.
€ (0, 00),

P(2)vn1(5)dVi(z, 5)
UxG

_ /U $(2)ns1 (TG ) )0 (2)A(H LGy ). (22)
The right hand side of (22) coincides with
/ ¢($7 u(ta $))0t (IE, u(ta ,’E))dﬂj
Q

by (14) and (15). On the other hand we have by (21) that for £'-a.e.
€ (0,00) the left hand side of (22) coincides with / ¢z, u(t,z))dz.
Q

Then the conclusion follows.
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5. Notes

1. Second order quasilinear parabolic equations
Our method here is also available for second order quasilinear
parabolic equations. More precisely, if J has the form

T(v) = /Q Flz, v, Vo)de (23)

and F satisfies
Ap|? < F(z,u,p) < p(1+ u? + [p|?)

\Eyl, [Fyly [Fuly [Frul < (1 + |ul + |p])
[Fpuls [Fuul < p (24)
n
mlé* < Y Fpopy(@,u,p)éas < MIEJ* for any &
a,B=1

with some positive constants y, A, m, M, then in the same way as in
ours we can obtain our main theorem for this functional. The point
is to obtain uniform estimate of second derivatives with respect to
space variables of approximate solutions @". In fact by the use of
(24) we have

PROPOSITION 5.1. For any ' CC Q and for any T > 0 the set
{|| V" 220,y <)} is uniformly bounded with respect to h.

This proposition can be proved in the same way as in the proof
of Theorem 1.1 of [5, Chapter II]. However condition (24) is some-

what unnatural. For example, a function of the form F(z,u,p) =
n

Z a®P(z, u)papp is not admitted. A natural example which satis-
a,f=1
fies (24) is a function F' which is independent of u. But in this case
the functional J is convex, and, if J is convex, we can obtain our
main theorem in a more simple way (see Appendix of [8]).

2. Vectorial cases

So far we restrict our discussions to scalar cases. Here we briefly
comment on extending our method to vectorial cases.

For a function v : © — R" let us consider a functional J as in
(7) with F € C(Q2 x RN x R™). As a result we can say that, if

n<3 o N2 (25)
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then our main theorem holds. Condition (25) is required in a geo-
metrical reason.

As has mentioned above, our method is also available for J as in

(23). In the scalar case (24) forces F' to be convex with respect to
p. But in the vectorial case (24) can be slightly changed and under
this changed condition F' is not necessarily convex but quasiconvex
with respect to p. As a result, if (25) is satisfied, our main theorem
holds for some quasiconvex functionals. Details about this fact will
be discussed in [7].
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