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On Global Solutions to a Semilinear
Elliptic Boundary Problem in an
Unbounded Domain
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SUMMARY. - We consider solutions to the elliptic linear equation

P CRL I T "
L R TS
7,j=1
of second order in an unbounded domain
{z = (2 2,) :|7'| <Azl + B, 0<z, <}, 0<o<1,

i R". We study the asymptotic behavior as x, — oo of the

solutions of (1) satisfying the nonlinear boundary condition
o b{a)u(e) P () = 0 &)

on the lateral surface
S={z€0Q, 0<z,< oo},

where p > 0, b(x) > by > 0.

We show that a global solution of the problem can exist not for
all values of parameters p, o and indicate these values.

The boundary problem in the cylinder was studied by us in [1],
[2]. The obtained results generalize some results of B. Hu in [4].
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1. Introduction

We consider the solutions to the elliptic linear equation
n
0 ou
Lu = Z 6—%(%3‘(@%) =0 (3)
7,7=1
of second order in an unbounded domain
Q={z= (2" z,) : 2| < A2+ B, 0<z, <oo}, 0<0o<1,

in R". We study the asymptotic behavior as x,, — oo of the solutions
of (3) satisfying the nonlinear boundary condition

du p— —
N @)|u(@)] tu(z) =0 (4)

on the lateral surface
S={z'| = AzJ + B, 0 < z, < oo},
where p > 0, b(z) > by > 0 and
Ju - ou

v = 2 “il) g,

cos 0;,

0; is the angle between the axis z; and the outer normal vector.
We suppose that

n

D aij(@)&& > colél’ 0> 0, z€Q,

ij=1
and that |a;;(z)| < Cfor 4,5 =1,... ,nand for all z € Q. We don’t
assume that a;; are continuous.

Let us denote 27 and X7 the sections of the domain () and the

boundary S by the plane x, = T, and Qr and St the parts of @
and S between the planes z, =1 and z,, = T.

We consider weak solutions u satisfying (3) and (4). It means
that u € H. (Q) N LY (S) and

loc

/ Z aau gzd +/ b(z)|u(z) P~ u(z)p(z)dS =0 (5)

zgl
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for all functions ¢(z) € H'(Q), equal to 0 as z, = 0 and in a
neighborhood of z,, = co.

We are looking for the conditions of global existence of solutions
to the problem (3)-(4).

2. Auxiliary results

LEMMA 2.1 (HARNACK’S INEQUALITY). Suppose that u > 0 is a
weak solution to the equation Lu = 0 in a domain Q@ C R" and
Q' cC Q. There exists a positive constant C such that

supu < C infu.
Q' 0

IfQ=R-0,Q = R-Q), then the constant C is independent of R
for R > 1.

Proof. See [6, Theorem 8.1, p. 237]. O

LEMMA 2.2 (HARNACK’S INEQUALITY IN A CLOSED DOMAIN). Let
u be a weak solution to the equation Lu =0 and u > 0 in a domain
Q C R™ with smooth (of class C') boundary, Ou/ON = 0 on a
neighborhood of 0} ﬂﬁl, in 0Q where Q' is a bounded subdomain in
R" with boundary of class C', Q' CC Q. Then there exists a positive
constant C' such that

supu < C infu. (6)
o Qf

IfQ=R -0, = R-Q), then the constant C is independent of R
for R>1.

Proof. Let us fix a point yg € I'. There exists a neighborhood w of
this point and a system of local coordinates (y1,...,y,) such that

) wn@Q c{y1y >0} wnl C{y1 =0}

2) operator L has the form

Lu — i i(b ( )ﬁ)
_ij:1 Oy ’ dy;”
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We can suppose that this neighborhood is of the form w = {y :
|y —yo| < r}. The operator Ly (y, D) coincides with L in wt = wNQ/
and with L(—y1,y’,—D1,D’') in w \ Q. Let ui(y) = u(y) in w N
and u1(y) = u(—y1,v') in w\ Q. Then

Li(y, D)ui(y) =0

in w\ {y1 = 0} and du(y)/dy; = 0 for y; = 0F. Let v(y) be the
solution of the equation Liv(y) = 0 in w, coinciding with u; on the
boundary of w. Obviously, v(y) = u1(y) in w.
Let wy = {y;|y — yo| < r/2}. By Lemma 2.1, we have
supv(y) < Cinfo(y),
w1 w1
and therefore,
supu(y) < Cinfu(y).
wi w;r
1
Choosing a finite covering of the boundary I" by the sets of the
form as w; and applying once again Lemma 2.1, we obtain the in-
equality (6). The proof is complete. O

LEMMA 2.3 (HARDY’S INEQUALITY). Let n > 3. Let u € C(Q) N
CY Q) andu = 1 ifz, =1, o(n—1) > 1, and u = 0 if 2, =
1, o(n—1) < 1. There exists a constant C' such that

2
——dz < C | |Vul*dz.
|z[2

Q lz] Q

Proof. Put u = 1ifz, <1, 0(n—1) >1and u =0 if z,, < 1,
o(n—1) < 1. Let ¢ = 2',y, = 7. The domain @ in y-coordinates
has the form

ly'| < Ayn + B.

Using the Hardy inequality
/QUQIyI‘l‘l/"dy < /Q |V yul’ly|' = dy,

(see, for example [3]), we obtain in z-coordinates the inequality

/ u2$;2dy < / (m%(071)|vx/u|2 + uin)dx,
Q Q
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what implies the inequality

w2
/ —dr §03/ |Vu|?dz.
Q || Q

LEMMA 2.4. Let o(n—1) > 1,0 <1,
={z=(2',1,) :|2'| < Az0 + B, 1<z, <}, A>0,B>0.

There exists a weak solution to the following problem:

OF
LE=01inQ, 6—N:00n5, E=1 forz,=1,

from the class H., (Q), such that E(z) > ch(Q_"), ¢ > 0. Moreover,
mignooE ) =0, |/ Zan] dx|—c07é0
Proof. Consider the problem of minimization of the functional
” 8.73]‘ 8.731

in the class of functions u from H'(Q), equal 1 for z,, = 1. By the
Hardy inequality of Lemma 2.3 we have

2
/ f‘?d:g < C/ V| 2dz, (7)
Qe Q

so it is easy to prove the existence of the minimizing function £ and

its uniqueness.
This function is positive and satisfies the equality

BE Oy
/ Z 8% 52,07 =0 (8)

3,j=1

for all functions ¢ from H'(Q), equal 0 in a neighborhood of infinity
and for z,, = 1.
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The function E cannot be equal to a constant in (), since for

c>1/(n—1)
o.¢]
[y

and it contradicts to (7).

The same arguments show that E(z) cannot be estimated from
below with a positive constant. The maximum principle implies then
that

lim E(z)=0.
Ly —0O0
Note that the function F is the limit in H' of the sequence of the
functions uy from C'(Q), equal 0 for z,, > k and 1 for =, = 1.
Therefore,

The limit of the last mtegral as k — oo is equal to
n

—/ > owj(w)a—Ea—Edm

Q ij=1 a.’L‘j a.’L‘Z

and therefore, is not equal to 0. Moreover, using [6, Theorem 7.1],
we can show that up — F uniformly on each compact subset of Q.

Thus,
|/ Zan] —dx|—c07é0
Ql

Let us fix a point 29 € @ and set zg, = T. Let E(xg) = m. By
Lemma 2.2,
caom < E(z) < cam,

ifzre@ T—R<z, <T+Rand ¢ >0,if R=min(7T7,7/2).
Using the homothety z = Ry, we obtain the equation LrFE = 0 in
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a bounded domain of diameter < 2, and the coefficients of the oper-
ators Lg are uniformly bounded and these operators are uniformly
elliptic.

By Lemma 2.2, the constants c¢i,co do not depend on T'. There-
fore,

/ E(z)%dz < Cym?*T".
T—R<z,<T+R

Let h € CY(R), h(z,) =1ifT—R/2< 1, <T+R/2, h(z,)=0
ifz, <T—Rorxz, >T+R, |h(z,)] < Co/R. Put in (8) p(x) =
h(zn)E(z). We obtain

n
OF Ok
/ h D (@) g g de
T—R<en<T+R ;5= Zj 0T

+/T Z anj(z W (zy)E(z)dx

R/2>2,>T—R
+/ Z any xn)E(‘/E)d‘/E =0,
T+R/2<wn<T+R jZ
and therefore,
/ \VE[*dz < Csm?T°(=2),
T—R/2<z, <T+R/2
There exists a constant § €]T — R/2,T + R/2[ such that

/ \VE|?ds’ < Cam?T7™m=3).
=0

Put in (5) the function ¢(z) = h.(z), where h, € C'(R), he(z,) = 1
ifl+e<z,<0—¢, ho(zy,) =0ifz, <1orz, >0, and pass to
the limit for ¢ — 0. We obtain

Zam dm | = co

:vn_ﬂ

for all @ > 1. We have

n

co = an dgc
|/WZ ) amj |
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< 04(/ |VE|2dxl)1/2TU(nfl)/2 < C5mTU(n72)’
Tp=0

so that
m Z CGT(T(Q—H)’
1.e.
E(x) > CﬁxZ(Q_"),
g.e.d. U

LEMMA 2.5. Let 0 < o(n—1) <1, n> 2,
Q={z=(2",z,) : 2| <Azl + B}, 1 <z, <00, A>0, B>0.

There exists a weak solution E of the problem:

E
LE =0 in Q, Z—N:(]onS, E=0 at x, =1,

from the class H}. .(Q), satisfying the estimate E(z) > ¢ > 0 for
Ty > 2.

Proof. Let ur ) be the solution to the equation Lu = 0 in ()7, satis-
fying the boundary condition g—ff = 0 on S and such that

uT’,\(x', 1) =0, uT’,\(x',T) =\ (9)

We can find this solution, minimizing the functional

in the class of positive functions u from C°°(Qr), satisfying (9).
The minimizing function ug  is positive, 0 < upx(z) < X in Q7.
Choosing the value of A\ we can obtain u7 )(yo) = 1, where yq is a
fixed point from (), whose n-th coordinate is equal to 2.

Moreover,

n

Our, Oy
aij(r)—=——dzr =0 (10)
0 25", o
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for all functions ¢(z) € H'(Q), equal 0 for z,, < 1 and for z,, = T.
The function urp )(z) is continuous in Qr, see [6].
Let K be a compact subset in @, and let T be such that K C Q-
By Lemma 2.2, we have |up)(z)| < C(Tp) in Qr, for T > Ty + 1.
Let h(z,) be such a piece-wise linear function that h(z,) =1 for
1<z, <Toy—1, h(zy) =z, for 0 < z, < 1, h(z,) = 0 for z,, > Tp.
Put in (10) the function ¢(z) = h(z,)ur (), where T > T. We
obtain

n

Our ) Our, )
J(T,Ty) = a;j(r)—=——=—"h(z,)dz
Q i,jzzl J ij amz

- ou
= —/ Zanj(m) 8;”-)\ b (z)ur \(z)dz
Q j=1 J

< CJ(T, T0)1/2(/ up\(z)?dz)'/?
QT

< VT, Ty)V2( / dz)'/? < C(T)J (T, Ty) 2.
QT

Thus J(T,Ty) < C1(Tp) and C1(Tp) does not depend on .

Therefore, the set of bounded functions ur ) on K is weakly
compact, and there exists a subsequence {ur, , }, which converges
weakly in H!(K) to a function E. Considering a sequence of com-
pact sets K,,, converging to ) and using diagonalization, we can
find a sequence {uy}, converging weakly in the space H. (Q) to the
function E from this space. Moreover, using [6, Theorem 7.1], we
can show that ugy — F uniformly on each compact subset of Q.

We have also

n

Ouy, 0
Z aij(x)ﬂ—(pdx =0
Q ij=1 a.’L‘j (9ZE1
for all functions ¢(z) € H'(Q), equal to 0 for z,, = 0 and for z,, =
Ty .Passing to the limit we obtain that

n
OF Op
E aij(z) ——-—dz =0
Q ij=1 J a.’L‘j a.’L‘Z
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for all functions ¢(z) € H'Y(Q), equal to 0 for 2, = 0 and in a
neighborhood of infinity, i.e. E is a weak solution of the Neumann
problem. Moreover, E > 0 in @ and E(yy) = 1, so that E # 0.

Let us show that the function £ cannot be bounded. Indeed, let
E(z) < Cin Q. Let h(x,) be a smooth function such that h(z,) =1
ifl <z, <T, h(z,) = 0 for z, > 2T. One can suppose that
|B! ()| < C1T~Y, |W'(z,)| < CoT~2. We have

S OEOE , [ =, N
/Q > h(xn)am(m)aTj amz_dm_ /Q ;h(mn)E(aE)an](m) axjdx

ij=1

<Gs() 3, h(xn)aij(x)%gdw)l/QT 1/24o(n-1)/2
Q=1 j O%i
Therefore,
Z h(xn)ai (m)a—a—dm < C4T_1+U(n—1)’
17]7

and we obtain a contradiction when T" — oo.

Thus there exists a subsequence vy, tending to oo and such that
E(yx) > c1, where ¢; = ming, —oF(z) > 0. By the maximum prin-
ciple and Lemma 2.2, it follows that E(x) > ¢¢ in Q for z, > 2,
qg.e.d. O

3. Existence of positive solutions

Consider the solution v(z) of equation (3), with boundary condition
(4).
THEOREM 3.1. Let

1
Q={z= (2" 1) : 2| < Az% + B, 1< x, < oo}, —1<0§1.
n_

Suppose that v(z) satisfies (3), (4) and v(z) >0 in Q. If

2—0

l<p<ly -9
P= +U(n—2)

then v(z) = 0.
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Proof. The maximum principle implies that v(z) > c¢E(z) for z, > 1,
where FE is the function, constructed in Lemma 4, ¢ > 0, or v(z) = 0.
Indeed, put w(z) = v(z) — cE(z), where ¢ is so small that w(z) > 0,
when z,, = 1. Since Lw = 0 in Q, g—]“\} > 0 on S, the function w
cannot have a minimum point z1 in Qp if z1, > 1. On the other
hand, by the maximum principle,

lim inf w(z) > 0.

N—ooxn >N
Therefore,
w(z) > 0 for z € Qr,
ie.
v(z) > cB(z) > c1zl®™™).
Put in (5)

¢(z) = h(zn)/v(z),
where h(z,) =1 for 1 < z, < T, h(z,) = 0 for 2T < z, and for
xp < 1/2, h is a smooth function for z, > 1,

W (z)] < T, W (z)| < T2

We see that
1 & Ov(zx)
0= J(T) + /Q W) Y oy ()%,
j=1
l — ov(z', 1) 1
+/ =Y ay; *Ldx’,
o v ]Zl .7( ) amj
where
1 & ov(x) dv(x)
T) = n i
1m)= [ nan 3 a0 0

Using the inequality |h'(z,,)|? < c1h(z,)T 2 for z,, > 1, we see that

1 — G,
| , W(wa) > :anj(m)%dﬂz < CyTo=D=1 (7).
T j=1 J
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Therefore,

- (e, 1
J(T) < — /Q Zanj(x)%dchgw("1)/21/2 J(T)
=1 !

— Oy + C4Ta(n—1)/2—1/2m (12)
and
J(T) < CsT°™ D=1 for T >1. (13)
However,

J(T) > / b(@)h(zn)|p(z)P~1dS > CoT—P-Dotn—2-+1+o(n-2)
St

Cs > 0, and this inequality leads to a contradiction for large T if

2—0
1 1+ —.
<p<l+ 7(n—2)
Therefore, in this case v(z) = 0.
If
14 279
p= on—2)

then (13) implies that the integral
/x}l”(”l)|Vv|21)2dx
is converging and therefore,
o) / \Vo2v™2dz — 0
Qrnsupp

for T'— oo.
On the other hand, from (3) and (11) we have

0 < Cg < TP~ Don=2)—1-0(n=2) ypy _ pl-o(n—1) y(T)
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§C7T1_U(n_1)
1/2

—o(n— (%) 2
+Cg | TV 1)/ a dx
Qrn supp n v? JZ nil 835]

Since the right hand side of the last inequality tends to 0 as T' — oc
if o(n — 1) > 1, we obtain a contradiction, i.e. in this case also

v(z) = 0.

The proof is complete. O
THEOREM 3.2. Let
={z=(2',1,) : ]2'| < Azl + B,1 <z, < },0 < o(n — 1) < 1.

Suppose that v(z) satisfies (3), (4) and v(z) > 0in Q. Ifp > 1, then
v(z) = 0.

Proof. Let us show that v(z) > ¢; > 0 for z,, > 1 or v(z) = 0.
Indeed, let ¢ > 0 be so small that v(z) > cE(x) at z, = 1, where E
is the function found in Lemma 2.5. Put

z(xz) = max(cE(z) — v(x),0).
Then z(z) = 0,Vz(z) =0 at z, = 1, 2(z)9z(z)/ON <0 on S. Let

h be a smooth function for z,, > 1, h(z,) =1 for z,, < T, h(z,) =0
for x,, > 2T. Therefore,

Therefore,

x) 0z(x)
/ (zn Zaw amj : dr <

Q
8
Q
S
D
V2]
I3
=
=
<
>=
=
\:_/
[\
iy
&
[\
QL
S
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< ClTQ/ E(z)%dz < Cz/ z, 2E(z)?dz.
QNsupph’ QNsupph’

Since by Lemma 3, the integral fQ 1, 2E(x)%dx is converging, the
integral fQﬂsupph’ 7, 2E(z)%dz tends to 0 as z,, — co. In particular,
it means that v(z) > cE(z) > ¢; > 0 for z,, > 1.

Let h(zyp) = 1 for z, < T — 1, h(z,) = 0 for T < z,, h be a
smooth function for z, > 1,

W (zn)| < c1, B (20)] < €1

Put in the definition of weak solutions the function ¢(x)=h(z,)/v(z).
We have

B B , ln / avml
0= J(T) /Qh<)2:j T MZW o

where

@)= [ by 3 o) G G e

02
3,j=1
—/ b(x)h(x,)|v(z) P~ dS.
St
Using the inequality |h'(z,)|? < 2¢1h(zy) for z,, > 1,we see that

1 dv(z) . 9 a(n—1)/2
| QTh'(xn)EZanj(x)Wjdﬂ < CJ(T)T 12,

=1

Therefore,

/Zan] d + O /] TO’ n—1)/
= O3+ Con/J(T)T "~ D/2

and J(T) < C4T°"~ 1), However,

J(T) > / b(z)h(zy,)|v(z) P~ dS > CsT =2 Oy > 0,
St

and the inequality C5T'*+7("=2) < Cy7°("=1), following from the
above inequality, is impossible for large T'. Therefore, v(z) =0. O
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THEOREM 3.3. Let
Q={r=(2",2,) :|2'| < Ax?+B, 1<z, < 0}, 0<o(n-1) < 1.

Suppose that v(z) satisfies (3) and v(z) > 0 in Q. Suppose that

Zan] (9:15] §0 as T, =1

and dv(z)/ON >0 on S, p > 0. Then v(z) = 0.

Proof. Let € be a small positive number. Put in (5) ¢(x) = h(z,)/(v(z)
+¢), where h(z,) =1for 1 <z, <T, h(z,) =0 for 2T < z,, his a
smooth function for z,, > 1. We have

(z) dv(z)
T = h n 1 d
J(T) /T o v+522a] 81‘3 0x; v

j=1
v(:v)”

+ /ST b(x)h(xn)mds

n

g/ h/(xn)vi&_ Zanj(x)ag—:(;:)dx,

=1

ie.
JT)<C | T %dz < CyT2HHon=1),
Qr
We see tending T' — oo that v(z) = 0.
The proof is complete. O
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