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1-D Relaxation from Hyperbolic to
Parabolic Systems with Variable
Coefficients

DONATELLA DONATELLI AND PIERANGELO MARCATI *)

SUMMARY. - In this paper we study the relaxation of semilinear hy-
perbolic systems to parabolic system. The singular limits are stud-

ied using Gérard’s generalized compensated compactness.
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1. Introduction

This paper is concerned with the semilinear system of partial differ-
ential equations

d
Ws+ Y Ej(@)9;W = Bz, W) + F(z, W)
j=1

where W = W (z,t) takes values in RV, 2z € R, ¢t > 0, E;(z), j =
1,... .disan N x N matrix for any x € R. We want to investigate the
relaxation phenomena where the relaxed equilibria are described by
means of an equation (or a system) of parabolic type. A study of this
kind is usefull to understand the hydrodinamical limit of Boltzmann
equation when the Mach number and the Knudsen number are of
the same order and we deal with a discreet set of velocities. In fact
in this case Boltzmann equation can be rewritten as a semilinear
system.

In particular we extend the result of [23] and of [6]. In [23] they
consider a semilinear system with constant coefficients and by energy
estimate they obtain that it relaxes to a parabolic equation. In [6]
they studied the following semilinear system

{ U+ KVo, Y =0

1 1
oV + HAo,U + K@ (2)0,V° = R uv. (1)

where e > 0, (z,t) € Rx Ry, U =U(z,t) € R¥, V = V(z,t) € RNk,
KW, H® K@ (z), R(U) are matrices such that K1) ¢ M (N=k)s
H® e My_ysh, KD (2) EM(n_pyx(n—-k)» RU) € M(n—kyx(N—k)-
Using energy estimate they obtain also that (1) relaxes to a parabolic
equation.

In our paper we consider (1) when all the coefficients are variable,
namely

oU + KD (2)9,V = FO (z,U, V)

{ oV + H? (2)0,U + K@ (2)9,V° = éR (z,U)V + FO(z,U,V).
(2)
In order to study the relaxation phenomena we will focus our atten-
tion on the investigation of the convergence problem. We will achieve



1-D RELAXATION FROM HYPERBOLIC etc 65

this aim using the same techniques like in [6] but with a difference.
In [6] one of the main mathematical tools used is Tartar’s Compen-
sated Compactness ([26], [27]), since in this case all the coefficients
are variable classical compensated compactness doesn’t work and so
we use a generalization of compensated compactness due to P.Gérard
[9].

The plan of the paper is the following. In Section 2 we give defi-
nitions and we describe our scheme of investigation of this kind of
problems. In Section 3 we show the complete theory. We provide a
priori estimates on the sequences of solutions as € | 0 and combining
energy estimates with Gérard’s Theorem, we get the convergence re-
sult. We investigate also the parabolic nature of the relaxed system.
Finally we dedicate Section 4 to the reverse problem. We use the
previous result to approximate a given parabolic system by means of
a suitable hyperbolic system. To conclude we remark that we will not
investigate the existence of solutions of the relaxing problem since in
this paper we are interested to the convergence analysis only.

2. General Framework

2.1. Prerequisites

In this section we introduce the main notations and definitions used
in the article and we recall the principal notions and results that will
be used later. Therefore

(a) (-,-) denotes the scalar product in R?, (¢ = 1,2,...) and | - | the
usual norm of R? (¢ = 1,2, ...),

(b) || - || denotes the norm in L?(R x R, ),

(c) D(R x R;) denotes the space of test function C§°(R x Ry),
D'(R x R;) the Schwarz space of distributions and (-,-) the
duality bracket in D'(R x Ry ),

(d) M, xn denotes the linear space of m x n matrices,

(e) H is a separable Hilbert space, L(H) the space of bounded op-
erators, C(H) the space of compact operators,
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(f) we denote by Hj} (€, H) the classical local Sobolev space of order
s, ie. uw € H (WLH) < Vo € C, (pu) € LA (R, (1 +
[€[%)*dé).

Since in our limit process we need to study the convergence of qua-

dratic forms with variable coefficients, now we recall Tartar’s and

Gérard’s generalization of classical Compensated Compactness The-

orem ([28], [9]). So let as consider H, H* separable Hilbert spaces,

Q € R, an open set. Take m € N, and, for every @ € N" such that

la| < m take an € C(Q, L(H, H")) so that the formula

Pu(z) = Y 0*(aa(z)u(z)) (3)
laf<m

defines a differential operator P : L2 (Q) — H;;™(Q2, H"). Finally

loc

we denote by p the principal symbol of P, given by
p(w,6) = Y £%aq(x).
|a|=m
We have the following theorem
THEOREM 2.1. (Compensated Compactness)
Let P defined by (3) and {uy} be a bounded sequence of L?, (Q, H),

loc
such that up, — wu. Assume that there exists a dense subset D €

H' such that, for any h € D, the sequence ({Puy,h)) is relatively
compact in H, (). Moreover, let ¢ € C(Q, K(H)).
(i) Ifg=q" and

V(z,§,h) € STQx H,  (p(z,§)h=0) = ((q(z)h,h) > 0)

Then, for any nonnegative ¢ € C3°(Q)

liminf/ﬂ(p(q(m)uk,uk)d:BZ/@(q(m)u,u)dm

k—oo Q
(ii) If
V(z,&,h) € S*Q x H, (p(z,&)h =0) = ({(g(xz)h,h) =0)
Then

(q(x)ug,ur)  converges to  {q(x)u,u) in D'(Q)
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We will also make use of the notion of parabolicity for systems of
equations in various way (see Taylor [30] volume III, [29], Eidel’man
[7], Kreiss and Lorenz [10]). Let us consider the system

Uy + Z APE (4, Dl u)d;0ku + B(t, z, Diu) = 0, (4)
ok

where u € RP, A9*(t,2, D! u) € Myyp, B(t,z, Diu) € RP and D/ is
a differential operator of order not greater than two. The system is
said strongly parabolic if there exists ¢g > 0 such that for all £ € R¢
one has

> AME(t, 2, Dhu)&ié < —col¢T.

.k
Namely, if we denote L(t, z, Dl u,¢) = — ZAj’k(t,x,D;u)fjfk this

7,k

condition is equivalent to say L + L' is a positive definite matrix.
Unfortunately this condition is often difficult to be verified then we
formulate now a more general notion of parabolicity (which in the
book of Taylor [30] volume III, [29] is referred to as Petrowski parabol-
icity).
We say that the system (4) is parabolic if, denoted by i (¢, z, DL u, &)
the eigenvalues of the matrix L(¢,z, D! u,£), one has there exists
ag > 0 such that, for all ¢ € R?,

Re(t, 2, Dju, &) > apl¢]”.

The latter notion of parabolicity is equivalent to ask the existence of
a matrix Py(t,z, D! u,£), homogeneous of degree 0 in &, such that

PyL + L*Py > alé[*1.

2.2. Formal limit analysis

Here we will give, at a formal level the basic ideas that we will use
to study the relaxation phenomena. Let us consider the following
semilinear problem

d
1
W+ Y E;0W = ~B(@, W)+ F(z,W) (5)
j=1
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where s > 0, W € RY. Moreover we assume the following hypotheses
hold.

(A.1) there exists an open set O C RY such that B € C' (O,R")
and F € C! ((’),RN)

(A.Z) Ej GMNXN,j: 1,... ,d,

d
(A.3) setting A(W)¢ = ijEjW, the system (5) is hyperbolic,
=1
namely for all nonzero vector ¢ € R%, the N x N matrix
Dy A(W) - £ has real eigenvalues and is diagonalizable,

(A.4) there exists a matrix P € Mgyn, 1 < k < N, such that
PB(W) =0, for all W € O and rank P = k.

Let us consider [o1,... ,0n_] a vector basis for the subspace ker P
and denote by @ the (N — k) x N matrix having o; as row vectors.
Then we set

p1!
U =PW, V =QW, M:[Q] )

Then there exists matrices H](.l) € Mpxk, KJ(I) € ka(ka) , HJ@) €

M(ka)xka KJ(Q) S M(ka)X(ka) and F() S Rk, F@) € RV=F such
that

HVU + KV = PE;M (U V) FO(2,U,V) = PF(z, M(U,V))
HPU + K2V = QE;M (U,V) FO(2,U,V) = QF (z, M(U,V)).

Hence the system (5) becomes

d d
o,U + Y HVo,u + S KV o;v = FO(2,U,V)

=1 j=1
d d
on @ - L 2
oV +Y 1, U+ K70V = “R(z.U)V + FO(z,0,V),
i= i=

(6)

where R (z,U,)V = QB (M (U,V)). The most important assump-
tion which is needed to develope our theory is given by
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(A.5) H =0forall j=1,... d

In particular we shall confine ourselves to the case d = 1 with the
assumption that all the coefficients of the system depends on the
variable z, namely

KM = KW (g) K® = K@)(z) H® = HO(z).
Hence we are going to study the following semilinear system in 1-D.

85“(?/7 3) + KW (y)ayV(y, 8) =FW) (m,u(y, 8), V(ya 8))

() £ HOMOU. )+ KO V0-9) = )
e R(y,U(y, $))V(y, s) + F(2,U(y,s),V(y,s))
where (y,s) € R >< Ry, U = Uy,s) € REYV = V(y,s) € RV7F,

KW (y), H? (), K(y), R(y,U) are matrices such that K (y) e
M (v—)» HP(y) € M(n_iyis K@ (y) € M(n_iyx(n—ky Ry, U)
€ Mn_iyxv—ky FO (U, V) € RE, FA(y,U,V) € RV~F. The
hypotheses in order to perform a rigorous analysis will be given at
the beginning of next section. Since we are interested in the asymp-
totic behaviour as s — oo for solution of system (7) we are going to
explain the construction of the scaling that is needed. For any € > 0
we set

t
Yy =z, §= -,
€
Us(z,t) =U |z ! Ve(z,t) = lV x ! (8)
7 ’6 7 7 e ’6 7
then we have
t 1 t
0,U(z,t) = OU <m, g> , wU*(z,t) = gasu <:v, g) ,

1 t 1 t
€ _t v € — z
0, Ve (z,t) = 68y]2 <x, 6) , Ve (z,t) = 05V <x, 6) .
With previous position the system (7) transforms into

U (z,t) + KW (2)0,VE (x,t) = FY(2,U%(z,1),eV(z,1))

e20,Ve(z,t) + HO(2)0,U% (z,t) + e KD ()8, Ve (x,t) = 9)
R(z,U%(z,t))Ve(z,t) + FO(2,U¢(z,t),eVE(x, 1))
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If we denote by (U, V) the limit profile as € | 0, formally we obtain
that the system (9) relaxes to the system

{ U (z,t) + KM (2)9,VO(x,t) = FD(z,U°(x,1),0)

H®)(2)8,U%(z,t) = R(z,U%(z,t))V°(z,t) + F® (z,U%(z,1),0)
(10)

where U? satisfies formally the resulting system

UKD (z) (R(m, U H® (2)U°— R(x, U®) "L F® (2, U, 0)) -

T

F(z,U°,0). (11)

In the next section we will find sufficient conditions in order to justify
rigorously this formal analysis. In particular this will be done when
(11) is parabolic.

3. Estimates and Convergence

3.1. A priori estimates
Let us consider the system (7)

U + KW ()9,V = FY (y,U,V)
sV + HA (y)o,U + K@ (y)9,V = e 'R(y,U)V + FO (y,U, V).
(12)

By applying the rescaling (8) the system assumes the form

oUe + KW (2)0, Ve = FO) (z,U°,eV*)
e20,Ve + H (2)0,U° + e K (2)8,Ve = R(x,US)VE+ (13)
F@)(z,U%,eV*).

We want to show that, as ¢ | 0, the weak solutions of the rescaled
system satisfy

Ue — y° a.e. In R xRy,
Ve . p0 weakly in L?(R x R, ),
eVe —5 0 strongly in Lj, (R x Ry),

Vi — 0 in H/(RxRy) .
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To this purpose this section is devoted to establish a priori estimates,
independent of ¢, for the solution of the system (9). We make on (9)
the following hypotheses

k N—k

(B.1) U(z,0) =Up(z) € [L*(R)]", V(z,0) = Vo(z) € [L*(R)] ,

(B.2) there exist symmetric positive definite matrices Bg(z) €
Mk, DU(,’E) S M(ka)X(ka) such that (K(l)(x))TBg(x) =
Do(x)HO) (z), Vo € R, [Bo(z)| <7, [Do(x)] <7,
meas{z | detBy(z) =0} =0,

(B.3) R(z,U) € C(Rx R*, My _gyx(n—1));
Do(z)R(z,U) + R(x,U)T Do(x) is negative definite Vz € R,
namely there exists A€ R, A > 0

such that Do(z)R(z,U) + R(z,U)" Do(z) < =X\ Vz €R,

(B.4) K € CY R, My (n-1)), KW (z) is bounded Vz € R and
det [KW (z) (KM (2))T] # 0 Vz € R,

(B.5) H® ¢ CHR, M (N—_kyxk); H®(z) is bounded Vz € R and we
set M = sup ((Do(m)H(Q) (m))m),
zeR

(B.6) K®eC! (R, M(n_gy(n—k)), for every z € R, Dy(z)K?) (z) =
(K@ (2))" Dy(x) and there exists N € R, such that |u;(z)| <
N,Vj=1,...,m, where y;(z) are the eigenvalues of

(Do(2) K@) (), + (Do) K ()),)",

(B.7) F(z,U,V) = (FV(2,U,V),F?(z,U,V)) € RV, is a a- lips-
chitz function of (U, V), a € R moreover F(z,0,0) = 0Vz € R,
FO(z,U,0)=0YU e R, F@(£,0,V)=0VV e RN,

Most of the previous hypotheses can be obtained if we suppose the
system strictly hyperbolic. Since K(!) € M (N—k), from elemen-
tary linear algebra we deduce condition (B.4) is violated whenever
k> N/2. Now we can establish the following result

THEOREM 3.1. Let us consider the solution {U®},{V*®} of the Cauchy
problem for system (9). Assume that the hypotheses (B.1), (B.2),
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(B.3), (B.4), (B.5), (B.6), (B.7) hold. Then for € small enough,

one has

(i) there exist M € R, M > 0, independent from e, such that ||V¢|| <
M and supel|[VE(, )| 2wy < M
>0

(ii) {e®VF}  relatively compact in Hl_oc1 (R xRy)
(iii) {U*®} is uniformely bounded, with respect to e, in L> (]R+ , LQ(R)) ,

namely there exists M € R_,M > 0, independent from e, such
that sup ||U° (-, t)|| 22 r) < M.
>0

Proof. Multiplying the first equation of (9) by By(x)U®, we obtain,
(U7 Bo(2)U") + (KW (2)Vy, Bo(2)U?) = (F! (2, U°, V), By (2)U?).

Multiplying the second equation by Dgy(z)V*, we have

(Vi Do(@) V) +(H® (2)Us, Do(2) V) +e (K (2) Vi, Do(2)V7) =
(R(z,U°)V®, Do(x)V°) + (FP) (2, U, eV*), Do (2) V),

if we sum the two relations, using hypotheses (B.2) and (B.6) we get
the following energy identity
2
b+
1

Oy {(H<2> (2)U®, Do(z)V?) + 5(51((2) (2)Ve, Do(m)VE)}

2 2
o, {% ‘Dé/Q(m)Vf n % ‘Bé/z(:c)Ug

—  (Do(2)R(z, US)VE, Vo) + % (= (Do) () ve,ve)+
(V’S, (Dg(m)H(2) (m))m US) + (FO(2,U°, eVF), Do(z)VE) +
(F(z,U*,eV?), Bo(z)U?).

Taking into account the hypotheses (B.2), (B.3), (B.5), (B.6) and
(B.7) we have
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2 2
at{% ‘D;/Z(m)v }+

Oy {(H<2> (2)U®, Do(z)V?) + 5(51((2) (x)VE,DO(m)VE)}

N
< <—A +e <E + a’y)) [VE2 + M (U5, VE) + ay|US .

A
We can choose € < ————— and for all 6 > 0 it follows that
N + 2ary
2 }

UF [ + o[V (14)

2 2
) {‘i ‘Dé/Q(x)Vg

+ = 5 ‘Bé/Q(x)UE

<-Zvep 4+ MY
2

Now we set

dz

+oo 2
E(t):/ = D@y

—Oo0

2 +oo q 2
d:v—i—/ ‘Bl/Q YUt

—Oo0

Integrating (14) on [0,¢] x R we obtain the energy E(t) satisfies for
all 6§ >0

A t +oo t +oo
E(t) <E(0) — 5/ / \VE|2dzds + 5/ / \Ve|2dads
0 J—o0 0 J—o0

M t p+4oo _ 2
+ —ga'y / / ‘BU 1/2($)Bé/2(x)UE dzds.
0 J—oo

A
Choosing § < 8 and using (B.2) we get

A t p+oo t
) < E(0) — g// Ve |2dads + c/ E(s)ds
0J—oco 0

E(t
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with ¢ constant, ¢ > 0. Applying Gronwall’s lemma we obtain
E(t) < E(0)e” (15)

and the following estimate

t p+oo
// Ve 2dzds < cE(0) (e + 1) (16)
0J—00

By using (B.2) and (16) we can conclude that there exists M > 0,
indipendent from e, such that
VIl < M, supellVEC, t)llnew) < M sup [[US(, 8)l| p2ry < M.
>0 >0

In this way we proved (i) and (iii). Let us consider w relatively
compact in R x Ry, then

|2Ve 1) =  sup  [ERVE @)= sup / / ﬁthdxdt‘
161113y =1 161113y =1
< & sup (V] < M
||¢HH6(“,):1

3.2. Strong convergence

In this section we study the limiting behavior as € | 0 of the solutions
of (9). We begin with a simple consequence of (i) and (ii) of Theorem
(3.1).

THEOREM 3.2. Let us consider the solution {V¢} of the Cauchy prob-
lem for system (9). Assume the hypotheses (B.1), (B.2), (B.3),
(B.4), (B.5), (B.6), (B.7) hold. Then there exists V° € [L*(R x
R )V=F, such that, as € | 0, one has (extracting eventually subse-
quences)

ve =~ v0 weakly in L?(R x R, ) (17)
eVe — 0 strongly in L}, (R x R,) (18)
{2VFY — 0 in H;L(R x Ry). (19)
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Our next step is to prove convergence for the sequence {U*®}.
To this end we apply Gérard’s compensated compactness theorem
(2.1). We make now different assumptions on R(z,U) which at the
end will lead to similar relaxation results. The first result is devoted
to obtain the relaxation limit when the sequences {U®}, {V*®} satisfy
only the estimates given in the Theorem (3.1).

THEOREM 3.3. Let us consider the solution {U®},{V*®} of the Cauchy
problem for system (9). Assume the hypotheses (B.1), (B.2), (B.3),
(B.4), (B.5), (B.6), (B.7) and moreover

(C.1) R(z,U) is bounded on U.

Then there exists U° € [L?(R x Ry )]¥, such that, as € | 0, one has
(extracting eventually subsequences)

U — U’ a.e in R x Ry (20)
R(z,U?) — R(z,UY) strongly in LY (R x Ry)
(21)
FD(z,U%,eV®) — FO(2,U°,0)  strongly in L7, (R x R,)
(22)
FO(z,U°,eVe) — F@(2,U0°,0)  strongly in L} (R x R,) .
(23)

Proof. By using the hypothesis (C.1), R(z,U¢) is uniformely bounded
in L* then R(z,U?)V® is uniformely bounded in L? , therefore
R(xz,U*¢)V* is relatively compact in H l_ocl Combining the hypothesis
(B.3), (i) and (iii) of Theorem (3.1) we get also F()(z, U,V ¢) and
F@) (x,U*,eV?) are uniformely bounded in L? and so they are rela-
tively compact in H,;. The distribution (K ) (2))VE is relatively
~1 indeed, for any ¢ € H} one has

compact in H,__,
/ / Ve ((K(2)(x))T¢> dmdt‘

< e VIIED (@) Pl (24)

(KD @)Vi,8)| =
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Hence from the second equation of (9) we obtain that

HP) (2)US = R(z, UV 4+ FO(2,U°,eV®) — e KD (2)VE — 2Vf

x

is relatively compact in H l_ocl

Moreover

U + KO (2)VE = FU)(2,U%,eV?) s relatively compact in H; !,

loc

In order to fit into the framework of Theorem (2.1) we set

P =5 ol e o] [

the principal symbol of P is given by

e = [ e+ [ 0

for &€ = (&,&1) € B2, €] = 1. We notice that

Al Eor+ &KW (2)p =0

for all A € R¥, € RV 7K,

Now if & = 0 then & # 0 and so A = 0, otherwise if £&; # 0 then
H® ()X = 0 and also (KM (2))TBy(z)A = Do(x)H?(z)A = 0, this
entails KM (z)(KM ()T By(z)\ = 0. Using hypotheses (B.4) we
0.

get p(z, &) [2] = 0 implies By(z)A = 0. We take now

q(z) =

o

and for all £ # 0, & = (&,&1) we have

p(z,€) m —0  mplies  (g(x) m , H> —0
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for all A € R¥, p € RN—F,
Now we can apply Theorem (2.1) of Gérard and we conclude that
for any ¢ € D(Q)

// ‘Bé/Q(x)UE

where U? denotes, in view of Theorem (3.1) the weak limit of U*® in
L?(R x Ry). Using the energy estimate we get also

// ‘Bé/Q(m)(UE - UO)‘2 o(z,t)dzdt — 0

and applying hypotheses (B.2) we have

2 1/ ol2
o(z, t)dzdt — ‘BO (x)U ‘ o(z, t)dzdt

Us — UY a.e. in (z,t) (25)

Now we prove (21). Since R(z,U) is continous in U, then by using
(25),
R(z,U?) — R(x,U") a.e. in (z,1)

so it follows that
|R(z,U®) — R(z, U")|P — 0 a.e. in (z,t)

and thanks to (C.1), |R(z,U®) — R(z,U°)|P is bounded (then lo-
cally integrable). By applying the Lebesgue dominated convergence
theorem we conclude

R(z,U?) — R(z,U%) strongly in I (R x R, ).

loc

Finally we prove (22). Let w be a compact subset of R x R, then
using (B.7) we have for i=1,2

. . 2 1/2
<// ‘F(Z)(x,US,eVE)—F(”(x,UO,O)‘ dmdt)

1/2
§a<// \Uf—UO\dedH// |5V5|2d:vdt> .
w w

Combining (iii) of Theorem (3.1) and (18), (20) we conclude that
Fi(z,U®,eV®) — F'(z,U°0) i=1,2 strongly in L} (R x R, ).
U
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In the previous theorem we restricted ourselves to consider R(z,U)
bounded but we would like to extend our result to a larger class of
function. To this goal we replace (C.1) with the following different
assumption

(C.2) {U?} is uniformly bounded in L*(R x R;),

(C.3) there exists ¢ € R, ¢ > 0 such that for any Uy, U, € RF,
|R(.’L‘, U1) — R(.’L‘, U2)| <c (1 + |U1|p71 + |U2|p71) |U1 — U2|, for
some p > 1.

In the next theorem in order to have a broader set of R we need the
additional assumption (C.2), which does not come from the standard
energy estimates.

THEOREM 3.4. Let us consider the solution {U®}, {V¢} of the Cauchy
problem for system (9). Assume that the hypotheses (B.1), (B.2),
(B.3), (B.4), (B.5), (B.6), (B.7),(C.2), (C.3) hold. Then there ex-
ists U° € [L?(R x Ry )]¥, such that, as € | 0, one has (extracting
eventually subsequences)

Ue — U a.e in R x Ry (26)
R(z,U°) — R(z,U°) strongly in L) (R x Ry)
(27)
FO(z,U0°,eVe) — FW(2,U°,0)  strongly in L7, (R x R,)
(28)
FO(z,U%,eVe) — FO(z,U0°0) strongly in L}, (R x R,) .
(29)

Proof. Since R(z,U) is continous in U and by using the (C.2) we
have R(z,U®)V*® is relatively compact in H,} (R x R; ) for the same
reason of the previous theorem. With the same technique used in
Theorem (3.3) we can prove (26), (28), (29) . The proof of (27) is
given by using the hypothesis (C.3). Indeed because of the growth
conditions given therein, for any w compact subset of R x R, , there
exists ¢op > 0, ¢y depending on w and sug US| Lo (RxRy) (Which is
£>
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finite because of (C.2)) such that

1/2
// |R(2,U%) — R(z,U°)| dzdt < cq <// ue —u°|? dmdt)

Taking into account (26) and (C.2) we conclude that
R(z,U?) — R(x,U°) strongly in L}, (R x R})
and finally
R(z,U%) — R(z,U°) strongly in L} (R xR, ) for all p € [1,00).

O

COROLLARY 3.5. Assume that the hypotheses of Theorems (3.2),
(3.8) or (8.4) hold, then (U°,V°) wverifies, in the sense of distribu-
tions, the following system

{ KUz, t) + KW (2)9,VO(z,t) = FV(z,U%x,1t),0)

H®(2)0,U%z,t) =R(x,U°(z,t))VO(z, t) + F@ (z,U°(z,t),0).
(30)

Proof. From (21) or (27) it follows that
R(z,U%)V® = R(z,U°)V® weakly in L2 (R x Ry)  (31)
Now let ¢ € D(R x R, ), be a test function, using (24) we obtain
(eKPD(2)VE, ¢) — 0 inD'(RxRy). (32)
Taking into account (17) and (20) or (26) we obtain that

KW (z)ve — KD (2)v?

x

HP(2)Us — HO(2)U? in D'(R x Ry).

(33)

Then by using (20) or (26), (17), (31), (32), (33), (22) or (28), (23)
or (29) and passing to the limit in (9) we conclude that (U°, V)
verifies (30). O
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An alternative formulation of the system (30) can be given in the
following way

COROLLARY 3.6. In the sense of distribution, U° satisfies the fol-
lowing second order equation

U? + K (z) (R(m, U H® (2)U° — R(z,U°) "1 F® (z,U°, 0))
= F(z,U0°,0).

T

(34)
Proof. By the second equation of (30)

VO = R(z, U TH® (2)U° — R(z,U") ' FO (z,U°,0).
Let ¢ € D(R x Ry ), be a test function, then

/ $(z,1) UUxtdmdt—i—// Pz, ) K x)) VO (z, t)dudt
/¢(:v £ FO (2, U° (z,t),0)dzdt.

Because V0 € L2(RxR ) and R(z,U%) € L*(RxR, ), R(z, UV’ ¢
L?(R xRy ), we have that H® (z)U% € L?(R xR, ) and so

/ bz, ) U dzdt +

/ / (K(l)(:v))ngﬁ(:v,t))m (R(x,UO)—lH@)(x)Ugdxdt)

[ (00 b00) (%) 150 %)
= [#(.0P® (0,07, 0)dat.
O

3.3. Parabolicity
We have proved that UY satisfies this second order equation
U0+ KW (g) (R(m, U H® (2)U° — R(z, UY) " F2(z, U, 0))
= Fl(z,U°,0),

T
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using (B.2) this equation is equivalent to the the following

07 + (KO (@) R(w, %)™ Dy (@) (KO ()" Bo ()02
= (KD (2)),R(z,U") " H®) (2)U?
+ KO () (R(:g,UO)*lF(?)(:g,UO,O)) + FW (4, 0% 0).  (35)

We want to prove that (35) is parabolic in the sense of Section 2.1.
If we denote

C = KD(2)R(z.U°) "' Dy () (K" ()" (Bo(x)

we are going to prove that C' is a negative definite matrix. Since
the notion of parabolicity is independent of similar transformation
we prove there exist a matrix 7' such that 7-1(C +C7T)T is negative

definite. Taking T' = BJI/Q(:E) we get

T7'CT = By (@) K (2)R(2, U) "Dy (2) (K ()" By (a)
and using (B.3) we have

(T710T)€,€) =

(R, 0" D5 @) (KO (@) By (@)¢, (KW ()" By (@)¢)

2

< — [(KD @) By (@)e] -

> =

If det [K(l) m)(K(l)(m))T] > ¢1 > 0 and remembering that Bg(z) is
positive definite it follows

(T7'CT) ¢,8) < —nléf?,

—~

nelR n>0.
In the same way, taking T = Bé/2(m) we get T~ 'CTT negative defi-
nite and so the parabolicity in the sense of Section 2.1.

4. Approximation of Parabolic Systems

In this section we follow a path which is somehow opposite to that
one we followed in the previous part of the paper. We want to show
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here how, given a nonlinear parabolic system, we can construct a
suitable larger semilinear hyperbolic system which relaxes on it. The
advantage of such an approach is that we can apply this scheme to
construct numerical approximation of a parabolic system. Consider
the following system of £ equations

Up = (M(z,U)Us), + (G(2,U))s + H(z,U) (36)
We make the following hypotheses:

(D.1) M(z,U) € C(R x R¥, M), M is an invertible matrix for
any (z,U) and M~ '(z,U) is bounded on U,

(D.2) there exists a symmetric positive definite matrix By(z) €
Mk, such that M (z,U)T Bo(z) + Bo(z)M (x,U) is positive
definite Vz € R (parabolicity) moreover |By(z)| <~y and
meas{z| detBy(z)} = 0,

(D.3) G(z,U), H(z,U)ERF are lipschitz function of U and G(z,0) =
H(z,0)=0, Vz € R,

(D.4) k=14
THEOREM 4.1. Let us consider the system (36), suppose that hy-
potheses (D.1), (D.2), (D.3), (D.4}) hold, then the solution of the
system

Us +V, = H(y,U)

1 _ _
Vs + Bo(y)Uy === Bo(y) M (y,U) "V +Bo(y) M (y,U) ' Gy, 1)
(37)

where (y,s) € Rx Ry, U = U(y,s) € R¥, V = V(y,s) € RV7F,
approximate the system (36) in the sense of the Theorem (3.3).

Proof. Rescaling the variables as in (8) system (37) transforms into

Uf+V;=H(z,U?)

2y7¢e € e\—1y/e (38)

e*Vf + By(z)U; = —Bo(z) M (z,U®) 'V
+BO($)M($aU6)_1G($7UE)
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Let us denote by K' = Iyp, Do = Inxi, H?(z) = By(z), by
hypothesis (D.2) condition (B.2) is satisfied. Now we set R(z,U) =
—Bg(z)M(z,U)"! and we show that the condition (B.3) given in
Section 3.1 is satisfied. Indeed since Dy = I}k,

R(U) + (RU)T = — (Bo(x) M (,U) " + (M(z,U) )T Bo(x))

which is negative definite in view of condition (D.2), moreover, using
(D.1), R(z,U) is continous and bounded. Setting F)(z,U,V) =
H(z,U) and F@(z,U, V) = —By(z)M(z,U)"'G(z,U) and using
(D.1), (D.3) we get (B.7). Finally conditions (B.4), (B.5), (B.7)
follow easily from the previous positions. We can now apply Theorem
(3.3) and Corollaries (3.5), (3.6) and we obtain that the solutions to
(38) satisfy as ¢ | 0 the parabolic equation

U+ (R(z,U°)  HO (2)U9)s = (R(z,U°) ' FO)(2,U0°,0)),
+ FW(z,U°,0).
Since
R(z,U%) '"H® (2) = —M(2,U°)By(z) ' Bo(z) = —M(z,U°)
and

R(z, U 'F®)(z,U,0) =M (z,U°)By(z) "' Bo(z)M (z,U) "' G(z,U)
=G(z,U)

the limit system coincide with our system. O
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