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Weighted Strichartz Estimate for the
Wave Equation and Low Regularity
Solutions

P. D’ANCONA, V. GEORGIEV AND H. KuBo *)

SUMMARY. - In this work we study weighted Sobolev spaces in R"™
generated by the Lie algebra of vector fields

(1 +|z*)/20,,, j=1,...,n.

Interpolation properties and Sobolev embeddings are obtained on
the basis of a suitable localization in R™. As an application we
derive weighted L1 estimates for the solution of the homogeneous
wave equation. For the inhomogeneous wave equation we general-
ize the weighted Strichartz estimate established in [5] and estab-
lish global existence result for the supercritical semilinear wave
equation with non compact small initial data in these weighted
Sobolev spaces.
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1. Introduction

In this work we study the decay properties of the wave equation

Ou = 8,52u—Au:0, (1)
u(0,2) = ug(z), Ou(0,z) = ui(x). (2)

Among the most important a priori estimates for this classical equa-
tion we mention the standard energy estimate, the estimate of von
Wabhl [18], and the Strichartz type estimates [15].

The energy estimate gives a control of derivatives of L?-norms of
the solution:

[Viaut, )l2@ny < C([[Vauollpz@ny + [t llp2@ny)-
The estimate of von Wahl controls the L norm of the solution:
n—1
(T+ 2+ |z[) = |ult, z)| < C(lluollyyinsa+1a + lutllypomsz.n ).

Strichartz estimates give an estimate of the LI(R}™) norm of the
solution in terms of the LP? norm of the data, for suitable values of
P4

Our goal is to obtain unified decay estimates of the solution in
terms of the norm of the data in suitable weighted Sobolev spaces.
These spaces are natural extensions of the weighted Sobolev spaces
studied by Y. Choquet-Bruhat and D. Christodoulou [2]. They de-
fined, for any integer s > 0 and real ¢,

lall s = Y @)1 Dgull 2y

la|<s

(where (z) = (1 4 |z[>)'/?). Here we extend their definition to the
LP case and more generally to any real order s. This is essential to
handle initial data of minimal regularity for Problem (1), (2). To this
end, we consider a dyadic partition of unity in R™, i.e., a sequence
of functions ¢; € C°(R™) such that ¢; >0, >~ ¢; =1, and

supp ¢o C {|z| < 2}, suppp; C {2771 < |z] < 27F'} j > 1.
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Moreover, we define the pseudodifferential operators A; as
A% has symbol (2/€)* = (1+2%|¢[?)*/2. (3)
Then the norm of the space H;"S is defined as follows:

el =D IIA (@) gl ~ D 2 PIA (u)l[7,-

Jj=0 Jjz0

Notice that the dyadic decomposition used is in the z-variables and
not in the dual &-variables as usual. When p = 2, we write simply
H*9 instead of Hy"’

We develop a fairly complete theory of the spaces H;’é, with
special attention to interpolation, duality and embedding properties.
A brief account of these results is given in the next section. Then
we prove the following estimates:

THEOREM 1.1. Let n > 2. Ford € [0,(n—1)/2], the solution u(t,x)
of (1),(2) satisfies for t > 0 the estimate

(Lt V2 (L[ = |2]) ) ut, 2)| < C(lluollgroo.so It o1 )
(4)

provided

n 1 n 1
— 1) ——+d ——1 1) —+d
80>2, 0> 2+, 81>2 , 1>2+,

with a constant C'=C(d, dg, 01, S0, $1,n) >0 independent of t, x, ug, u1 .

THEOREM 1.2. Let n > 3. For any real a < —1/2, b €] —1/2,0] the
solution u(t,z) of (1),(2) satisfies the estimate

10+ £ Je D1+ [t = fol )l o o 5

< Cllluoll g=vo + llunll g-s-1.041)

with a constant C = C(a,b,n) > 0 independent of ug, u;.
The estimate is also true for n = 2, provided b < 0 strictly.
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Theorems 1.1, 1.2 are proved by a combination of techniques,
using two different representations of the solution to the wave opera-
tor, namely the Fourier representation and the fundamental solution
expression.

Moreover, interpolating between Theorems 1.1 and 1.2 we prove
the following
THEOREM 1.3. Let n > 3, q € [2,00]. For any
n—1 n n—1 n-—1
) 0 S o S

2 q 2 q
the solution u(t,z) of (1),(2) satisfies the estimate

p <

N+ £+ a1+ 12 = L)l gy S C ol o + et grer.n)
(6)

provided
non 1 1 n n 1 1
s)>=———, o>——=-+4+0, s$1>-———-1, 6>-+-+o0,
2 q qg 2 2 q q 2

with a constant C' = C(o, p, dg, 1, S0, S1,n) > 0 independent of ug, u; .
Moreover, (6) is also true for any p < (n—1)/2 —n/q, —1/q <
o < 0 provided s > n/2 —n/qg—o0, 6g > 1/q—1/2 + 0, s1 >
n/2—nj/qg—o—1,0 >1/q+1/2+ 0.
The above estimates hold also for n = 2, provided o < (n—1)/2—
(n —1)/q strictly.

Notice in particular that choosing p = ¢ we obtain the estimate

1 2 1a)” (L [t~ Ll ullgonesy < Cllull oo+ lonler )
(7)
which is valid for:

2 n—1 n
24+ ——=<¢q<o00, 0<o<—F——~—
n—1 2 q

1 n 1 1
so>———, p>-——=+0, $1>————1, & >-4+=+o0.
q q 2
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Finally, the above estimates are applied to the initial value prob-
lem with small data for the semilinear wave equations of the form

Ou = F(u) in R (8)
u(0,z) = ug(z), Ow(0,z) = ui(x) for z € R, 9)

where n > 2. We shall assume that F € C'(R) satisifes
F(0)=0, [|F'(w)|<Clu*, (10)

where C > 0 and A > 1. Typical examples are F = |u|* and F =
|u| A,

Equation (8) has a long history. In 1979 Fritz John [8] proved
that (8), (9) has global solution for n = 3, provided the initial data
are smooth and small enough, and A > 1 + v/2; he also proved that
for A below this value in general solutions blow up in a finite time
even with small data. This agreed with Walter Strauss’ conjecture
[14] that for n > 2 and A greater than the positive root Ag(n) of the
equation

)\(n—l)\_n+1>:1 (11)
2 2

Problem (8), (9) has a global solution. The conjecture was proved
true for n = 2 by Robert Glassey [6], who also proved the blow
up below A\g(2) [7]. The critical case A = Xy was considered by
Jack Schaeffer [12] who proved blow up for n = 2,3. Sideris [13]
completely solved the subcritical case, showing that one has always
blow up in general for A < Ag(n), n > 2. On the other hand, the
supercritical case has been treated by many authors (see, e.g., [3],
[16], [1], [19], [9], [10] and the references cited therein). The gobal
existence result is established in [5] for any A > Ag(n) (see also [4]
and [17]).

Our aim is to extend the result of [5], in two directions: on one
hand, we relax the regularity assumptions on the initial data; on
the other hand, we remove the assumption that the initial data are
compactly supported. This result is obtained combining estimate
(7) with a suitable extension of the weighted Strichartz type estimate
established in [5] and [17]. The extension is contained in the following
Lemma:
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LEMMA 1.4. Assume that

nTlo<lean il (12
2(n+1) — q — 2 P q
-1 1
a<” —E, b> —, 0> 0. (13)
2 q q
Then for any F € LP(R) we have
I+ {2 =[] [)* (L + ¢ + |2))*S(F)] e (14)

<C(6,a,b,p,n)l|(1+ [t — |2 (1 + ¢ + |z]) F | -
Combining estimates (14) and (7) we obtain

THEOREM 1.5. Assume n > 2, F(u) € CY(R) satisfies (10) with

n+3
n—1

Ao(n) <A < (15)

and that the initial data (9) satisfy ug € H*0% uy € H*1 with

A=l n J1 1 JA-lm o1
0T T NTy Ty Fr2 o TNy
(16)

Then there exists € > 0 such that, for all data with ||uol| gse.00 +
llwil grs1.60 < €, Problem (8), (9) has a unique weak global solution

u(t,z) € IAMTHRYE. (17)

Actually, we have (1+ |t —|z]|)* (1 + ¢+ |2])%u € LAY (RE) for any
a<(n—-1)/2—-n/(A+1).

By weak solution we mean as usual a solution of the integral
equation corresponding to (8), (9). For instance, in n = 4 space
dimensions, and for A close to the critical value Ag(4) = 2, Theorem
1.5 implies global existence for any small initial data ug € H', u; €
L? such that (z)Vug and (z)u; are in L?; actually the regularity can
be even lower, indeed (16) give for A = 2

1
> -, > ——,
S0 3 S1 3

The complete results and the proofs will appear in [11].



WEIGHTED STRICHARTZ ESTIMATE etc. o7

2. The spaces H3*

We list in the following statements several properties of the spaces
H;;j’(s and H*?; for more complete results and proofs see [11].

LEMMA 2.1. Let p,po,p1 €]1,00][, a, s, sg, 81,9, 00,01 € R.

1. The following duality relation holds:
1 1
HSY = H 579, —+-=1 18
() = H 0 ()

Moreover, the complex interpolation property holds:
(Hpp ™, Hy ™o = Hy, (19)
where

0<h<l,
d=(1—-0)d + 061,
s=(1—0)sg+0sy,
1 1—-6 6
I + —.

p bo n

2. The following Sobolev type embeddings hold: for any 1 < p <
00, d ER, s> n/p,

(@) P lu(a)| < Cllull s (20)

with C = C(p,s,d,n) independent of u € H;"s; and for any
1<p§q<00, 6€R7 SZn/p—n/Q;

)"+ /P 0 < Cluall g0 (21)

with C = C(p,q, s,0,n) independent of u € H]}f’(s. Moreover, if
50 > s1 and dg > 41,

50,00 51,01
Hp - Hp
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3. Multiplication by a function ¢ € C°(R") is a bounded operator
on H;"s. More generally, let 1 € C°(R"™) be a smooth function
such that

|DYY| < Cq  for || < N.

Then multiplication by 1 s a bounded operator on H,f’é pro-
vided |s| < N:

Il s < Clu] (22)
with C depending only on s,d,p and on C, for |a| < N.

4. The multiplication operator by (x)® is an isometry of HS"S onto
H;"s*a; moreover, for any multiindex a,

g H3O — H3~lel Do {50 — fmlelotlel o (93)
are bounded operators. Thus in particular
() D, z°D* : H3® — H5~ 1ol (24)
are bounded.

LEMMA 2.2. Let 5,6 € R, R > 1. If u € H* vanishes on the ball
B(0,R), then for all a > 0 we have

[z “ul| gs.s < CR™[|ul| gs.s (25)
and
R|ullgs.s < Cllull gs.s+a (26)
with C = C(s,0,a) independent of R and u.

Of special interest are the spaces H® ™% whose norm on power 2
is equivalent to

lallfpe e ~ Y 2722 A($50) 72
320

Notice in particular that, as it follows from the next Lemma, the
space H* ™% coincides with the homogeneous Sobolev space H?® pro-
vided s is in the range 0 < s < n/2.
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LEMMA 2.3. The spaces H*~* have the following properties.
1. For any s > 0, we have the equivalence on H®~*
all s ~ 114z~ *ull 2 + €]l 12 (27)
If in addition 0 < s < n/2, we have the equivalence

Jll e—s ~ NlIEP @l 2 (28)

2. For any A >0, 0 < s <n/2, we have
C™ Ml gams < X275 Syull groms < Cllul|gro.-s (29)
with C = C(s,n) independent of X\ and u € H*~%.
3. For any s > 0 we have
[ull -5 < Cli(z) ul|r2 (30)
with C = C(s,n) independent of u € H %%,
4. For any s > —n /2 we have
(1€ ull 2 < Cllullgrs.— (31)
with C = C(s,n) independent of u € H* 5.

The following property can be regarded as an extension of the
classical Hardy inequality:

THEOREM 2.4. Let s € [0,1/2[, A > 0. Then

with C = C(s,n) independent of u € H% %, \.

u

sl < Cllullgs-s (32)
[l = Al® o

L2
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