On Second Order Weakly Hyperbolic Equations and the Gevrey Classes

FERRUCCIO COLOMBINI AND TATSUO NISHITANI (*)

SUMMARY. - We study the Cauchy problem for a second order weakly hyperbolic operator with coefficients depending only on time. We consider the case of coefficients of the principal part belonging to an intermediate class between C^{∞} and the real analytic class and we specify the function spaces in which the Cauchy problem is well posed. Moreover we show by a counter example that this results are in some sense optimal.

1. Introduction

In this note we are concerned with the following Cauchy problem

$$\begin{cases}
Pu = \partial_t^2 u - \sum_{i,j=1}^n a_{ij}(t) \partial_{x_i} \partial_{x_j} u + b(t) u = 0 \\
u(0,x) = u_0(x), \quad \partial_t u(0,x) = u_1(x)
\end{cases}$$
(1)

where we assume

$$\sum_{i,j=1}^{n} a_{ij}(t)\xi_i\xi_j \ge 0, \quad \forall t \in [0,T], \quad \forall \xi \in \mathbf{R}^n.$$

As for the Cauchy problem (1), if $a_{ij}(t) \in C^{\omega}([0,T])$ then (1) is C^{∞} well posed for any $b(t) \in C^{0}([0,T])$ and if $a_{ij}(t) \in C^{k}([0,T])$ then (1) is $\gamma^{(1+k/2)}$ well posed for any $b(t) \in C^{0}([0,T])$ (see [2]), where $\gamma^{(s)}$ stands for the Gevrey class of order s. On the other hand there

^(*) Authors' address: F. Colombini, Dipartimento di Matematica, Università di Pisa, Via F.Buonarroti 2, 56127, Italy, e-mail: colombini@dm.unipi.it

T. Nishitani, Department of Mathematics, Osaka University, Machikaneyama 1-

^{16,} Toyonaka Osaka, Japan, e-mail: tatsuo@math.wani.osaka-u.ac.jp

is a $a(t) \in C^{\infty}([0,T])$ which is positive apart from t=0 such that the Cauchy problem (1) for

$$P = \partial_t^2 - a(t)\partial_x^2 \quad \text{in} \quad \mathbf{R}^2$$

is not C^{∞} well posed ([4]). Thus the general picture would be stated as: the smoother coefficients the wider class of well posedness. Our main concern is to study this picture when the coefficients belong to an intermediate class between C^{∞} and the real analytic class and to specify function spaces in which the Cauchy problem is well posed.

To study this question we first introduce some function spaces between C^{∞} and the real analytic class. Let $M(x) \in C^1([0,\infty))$ such that $M(x) \geq 1$ and

$$M(x)^{1/x} \ge cx \tag{2}$$

with some c > 0.

DEFINITION 1.1. We say that $a(t) \in \Gamma(M)([0,T])$, if we have

$$|a^{(n)}(t)| \le CA^n M(n), \quad n = 0, 1, 2, ..., \quad t \in [0, T]$$

with some C > 0 and $A \ge 1$.

If we take $M(n)=n^{sn}, \ s>1$ then $\Gamma(M)([0,T])$ coincides with the usual Gevrey class $\gamma^{(s)}([0,T])$. From (2) it is easy to see that for any closed interval $I\subset (0,\infty)$ there are c>0 and N such that

$$nM(n)^{1/n}\delta^{-1/n} \ge cn, \quad \delta \in I, \quad n \ge N.$$
 (3)

Then the minimum of the set $\{nM(n)^{1/n}\delta^{-1/n}\mid n=1,2,\ldots\}$ is attained. Let us set

$$\phi(M)(\delta) = \min_{n=1,2,\dots} \{ nM(n)^{1/n} \delta^{-1/n} \}.$$
 (4)

Then we see that $\phi(M)(\delta)$ is continuous in $\delta > 0$. From (2) again we have

$$nM(n)^{1/n}\delta^{-1/n} \ge c(\log \delta)^2 \tag{5}$$

with some c>0 for any n=1,2,... and hence $\phi(\delta)\uparrow\infty$ if $\delta\downarrow0$. Then we define $\Phi(\xi)$ by

$$\Phi(\xi) = \min_{\delta > 0} \max \{ \phi(M)(\delta), \sqrt{\delta} |\xi| \}.$$
 (6)

Since $\phi(M)(\delta)$ is strictly decreasing there is a unique $\delta = \delta(\xi) > 0$ so that $\Phi(\xi) = \phi(M)(\delta(\xi)) = \sqrt{\delta(\xi)}|\xi|$. It is clear that $\delta(\xi) \downarrow 0$ as $|\xi| \to \infty$ and $\Phi(\xi) \ge 1$ for large $|\xi|$.

DEFINITION 1.2. Let $\Phi(\xi)$ be a non negative function on \mathbb{R}^n . Then we say that $u(x) \in \mathcal{S}'(\mathbb{R}^n)$, a tempered distribution, belongs to $\hat{\Gamma}(\Phi)$ if for any C > 0 there is $C_1 > 0$ such that

$$|\hat{u}(\xi)| \le C_1 e^{-C\Phi(\xi)}$$

for large ξ where $\hat{u}(\xi)$ stands for the Fourier transform of u(x).

REMARK 1.3. Let $\Phi(\xi)$ and $\Phi_A(\xi)$ be given by (6) with M(n) and $\tilde{M}(n) = A^n M(n)$ ($A \ge 1$) respectively. Then it is easy to see that

$$\Phi(\xi) \le \Phi_A(\xi) \le A\Phi(\xi)$$

and this shows that the class $\hat{\Gamma}(\Phi)$ is well defined by the class $\Gamma(M)$. It is also easy to check that

$$C\Phi(\xi) \ge (\log |\xi|)^2$$

with some C > 0. Hence $u \in C^{\infty}(\mathbf{R}^n)$ if $u \in \mathcal{S}' \cap \hat{\Gamma}(\Phi)$.

In this note we prove

THEOREM 1.4. Assume that $a_{ij}(t) \in \Gamma(M)([0,T])$ and let $\Phi(\xi)$ be defined in (6). Then the Cauchy problem (1) has a unique solution $u \in C^2([0,T];\hat{\Gamma}(\Phi))$ for any $u_i(x)$ with $u_i(x) \in \hat{\Gamma}(\Phi) \cap \mathcal{E}'(\mathbf{R}^n)$, i = 0,1.

On the other hand one can not improve this result much more. In fact we show

THEOREM 1.5. Let M(n) verify (2) and let $\Phi(\xi)$ be defined by (6). Then there exists a function $a(t) \in \Gamma(M(n)n^{2n}(\log{(n+2)})^{2n})([0,T])$ such that the Cauchy problem (1.1) is not well posed in $\hat{\Gamma}(\Phi/(\log{\Phi})^2)$. More precisely there exist $u_i \in \hat{\Gamma}(\Phi/(\log{\Phi})^2)$, i = 0, 1 for which the Cauchy problem (1) has no solution u in $C^2([0,T],\mathcal{D}')$.

If we take
$$M(n) = n^{sn}$$
 we get

COROLLARY 1.6. Assume that $a_{ij}(t) \in \gamma^{(s)}([0,T])$. Then the Cauchy problem (1) has a unique solution $u \in C^2([0,T]; \hat{\Gamma}((\log |\xi|)^{s+1}))$ for any $u_0(x)$, $u_1(x) \in \hat{\Gamma}((\log |\xi|)^{s+1}) \cap \mathcal{E}'(\mathbf{R}^n)$. Conversely for s > 2 there exists a function $a(t) \in \bigcap_{r \geq s} \gamma^{(r)}([0,T])$ such that the Cauchy problem (1) is not well posed in $\hat{\Gamma}((\log |\xi|)^{s-1}/(\log \log |\xi|)^2)$.

Proof. Let $M(n) = n^{sn}$ and take

$$\tilde{\delta}(\xi) = |\xi|^{-2} (\log |\xi|)^{2(s+1)}.$$

Since $nM(n)^{1/n}\tilde{\delta}(\xi)^{-1/n} \leq C(\log|\xi|)^{s+1}$ with $n = [\log|\xi|]$ this shows

$$\phi(M)(\tilde{\delta}(\xi)) \le C(\log|\xi|)^{s+1}.$$

Noticing $\sqrt{\tilde{\delta}(\xi)}|\xi|=(\log|\xi|)^{s+1}$ one can apply Theorem 1.4 to get the assertion.

The second author would like to express his sincere gratitude to Kaoru Yamano for her kind supports during the work.

2. Energy inequality

To prove Theorem 1.4 we derive an energy estimate for u satisfying (1). After Fourier transform of (1) with respect to x we get

$$\begin{cases} \partial_t^2 \hat{u}(t,\xi) - \sum_{i,j=1}^n a(t,\xi) |\xi|^2 \hat{u}(t,\xi) + b(t) \hat{u}(t,\xi) = 0\\ \hat{u}(0,\xi) = \hat{u}_0(\xi), \quad \partial_t \hat{u}(0,\xi) = \hat{u}_1(\xi) \end{cases}$$
(7)

where

$$a(t,\xi) = \sum_{i,j=1}^{n} a_{ij}(t)\xi_i\xi_j/|\xi|^2 \ge 0, \quad t \in [0,T], \quad \xi \in \mathbf{R}^n.$$

To simplify notations we put $v(t,\xi) = \hat{u}(t,\xi)$ and $\partial_t v = v'$. Let us set

$$a_{\delta}(t,\xi) = a(t,\xi) + \delta$$

where $\delta > 0$ will be determined later. We define the energy density $E_{\delta}(t,\xi)$

$$E_{\delta}(t,\xi) = F_{\delta}(t,\xi)e^{\Lambda_{\delta}(t,\xi)}$$

where

$$F_{\delta}(t,\xi) = |v'(t,\xi)|^{2} + a_{\delta}(t,\xi)|\xi|^{2}|v(t,\xi)|^{2} + \gamma|v(t,\xi)|^{2},$$

$$\Lambda_{\delta}(t,\xi) = -\int_{0}^{t} \left(\frac{|a'(t,\xi)|}{a_{\delta}(t,\xi)} + \sqrt{\delta}|\xi| + \gamma\right) dt + \beta(\xi).$$

Here $\beta(\xi) > 0$ and $\gamma > 0$ will be determined later. Note that

$$E'_{\delta}(t,\xi) = (F'_{\delta}(t,\xi) + \Lambda'_{\delta}(t,\xi)F_{\delta}(t,\xi))e^{\Lambda_{\delta}(t,\xi)}$$

where

$$F'_{\delta} = \delta |\xi|^2 (v''\bar{v}' + v'\bar{v}'') + a_{\delta} |\xi|^2 (v'\bar{v} + v\bar{v}') + a' |\xi|^2 |v|^2 + \gamma (v\bar{v}' + v'\bar{v}).$$
 (8)

Since $v'' = -a|\xi|^2 v - bv$ from (7) we plug this into (8) to get

$$F'_{\delta} = \delta |\xi|^2 (v\bar{v}' + v'\bar{v}) - (bv\bar{v}' + \bar{b}v'\bar{v}) + a'|\xi|^2 |v|^2 + \gamma(v\bar{v}' + v'\bar{v})$$

$$\leq 2\delta |\xi|^2 |v||v'| + 2|b||v||v'| + 2\gamma |v||v'| + \frac{|a'|}{a_{\delta}} a_{\delta} |\xi|^2 |v|^2.$$

On the other hand plugging

$$\Lambda_\delta' = -\left(rac{|a'|}{a_\delta} + \sqrt{\delta}|\xi| + \gamma
ight)$$

into the above inequality we get

$$\begin{split} F_\delta' + \Lambda_\delta' F_\delta &\leq 2\delta |\xi|^2 |v| |v'| - \sqrt{\delta} |\xi| F_\delta + 2|b| |v| |v'| \\ + 2\gamma |v| |v'| - \gamma F_\delta + \frac{|a'|}{a_\delta} a_\delta |\xi|^2 |v|^2 - \frac{|a'|}{a_\delta} F_\delta. \end{split}$$

Noticing $\delta |\xi|/\sqrt{a_\delta} \le \sqrt{\delta} |\xi|$ one has

$$2\delta|\xi|^2|v||v'| - \sqrt{\delta}|\xi|F_\delta \le \frac{\delta|\xi|}{\sqrt{a_\delta}}(a_\delta|\xi|^2|v|^2 + |v'|^2) - \sqrt{\delta}|\xi|F_\delta \le 0.$$

Since it is clear with some c > 0 that

$$2\gamma |v||v'| - \gamma F_{\delta} \le -c\gamma (|v'|^2 + \gamma |v|^2)$$

we get

$$F_{\delta}' + \Lambda_{\delta}' F_{\delta} \le 2|b||v||v'| - c\gamma(|v'|^2 + \gamma|v|^2).$$

Taking γ so that

$$\gamma^{-3/2} \sup_{t \in [0,T]} |b(t)| \le c$$

we obtain

$$E'_{\delta}(t,\xi) \leq 0.$$

We summarize above observations.

PROPOSITION 2.1. Let $\Phi(\xi)$, $\delta(\xi)$ be non negative and assume that

$$C_1\Phi(\xi) \le \Lambda_{\delta(\xi)}(t,\xi) \le C_2\Phi(\xi), \quad 0 \le t \le T$$

with some $C_i > 0$. Then we have

$$\left(|\partial_t \hat{u}(t,\xi)|^2 + \gamma |\hat{u}(t,\xi)|^2 \right) e^{C_1 \Phi(\xi)}$$

$$\leq C' \left(|\hat{u}_1(\xi)|^2 + (\gamma + |\xi|^2) |\hat{u}_0(\xi)|^2 \right) e^{C_2 \Phi(\xi)}$$

for $0 \le t \le T$.

3. A lemma and proof of theorem

In this section we prove a key lemma, which generalizes Lemma 1 in [2] (see also [3], [5]), to establish an energy inequality and complete the proof of Theorem 1.4.

LEMMA 3.1. Assume that $a_{ij}(t) \in \Gamma(M)([0,T])$. Then for any $n \in \mathbb{N}$ we have

$$\int_0^T \frac{|a'(t,\xi)|}{a(t,\xi)+\delta} dt \le C' n \max\left(TM(n)^{1/n} \delta^{-1/n}, \log \delta^{-1}\right)$$

for every $0 < \delta < 1/2$ with C' independent of n and δ .

COROLLARY 3.2. Assume that $a_{ij}(t) \in \Gamma(M)([0,T])$. Then we have

$$\int_0^t \frac{|a'(t,\xi)|}{a(t,\xi)+\delta} \le CnM(n)^{1/n}\delta^{-1/n}, \quad 0 \le t \le T$$

for every $0 < \delta < 1/2$ and $n \in \mathbf{N}$.

Proof. Since we have

$$M(n)^{1/n}\delta^{-1/n} \ge ce\log\delta^{-1}$$

the result follows from Lemma 3.1 choosing C so that $C > (ce)^{-1}C'$, C'T.

To prove this lemma we prepare several lemmas. Let $I = (s, t) (\subset (0, T))$ be an open interval. Set

$$F(I;\xi) = \max\left(\frac{a(t,\xi) + \delta}{a(s,\xi) + \delta}, \frac{a(s,\xi) + \delta}{a(t,\xi) + \delta}\right)$$

and note that $F(I;\xi) \ge 1$ by definition. We also note that if $a'(t,\xi) \ne 0$ in I=(s,t) then

$$\int_{s}^{t} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt = \log F(I;\xi). \tag{9}$$

The next lemma is found in [3]. We repeat the proof because, in the following, we need the proof rather than the result itself.

Lemma 3.3. We have

$$\int_0^T \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt = \sup_{\Delta} \sum_{I_i \in \Delta} \log F(I_i;\xi)$$

where the supremum is taken over all finite partitions $\triangle = \{I_i\}$ of [0,T].

Proof. Denote

$$E_1(\xi) = \{ t \in [0, T] \mid a'(t, \xi) = 0 \}.$$

Since $(0,T) \setminus E_1(\xi)$ is open and hence a union of countable disjoint open intervals $I_p = (s_p, t_p)$:

$$(0,T) \setminus E_1(\xi) = \bigcup_{p=1}^{\infty} I_p.$$
 (10)

Let $\epsilon > 0$ be given. We take m so that

$$\sum_{p=m+1}^{\infty} |I_p| < \epsilon, \quad |I_p| = t_p - s_p.$$

Let Δ_m be the partition of [0,T] defined by the partition points

$$s_1, t_1, s_2, t_2, ..., s_m, t_m.$$

Note that

$$\int_{0}^{T} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt = \sum_{p=1}^{\infty} \int_{I_{p}} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt$$

$$= \sum_{p=1}^{m} \int_{I_{p}} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt + \sum_{p=m+1}^{\infty} \int_{I_{p}} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt. \tag{11}$$

From (9) the first term of the right-hand side of (11) is

$$\sum_{i=1}^{m} \log F(I_i; \xi)$$

which is bounded by $\sum_{I_i \in \Delta_m} \log F(I_i; \xi)$ since $F(I; \xi) \geq 1$ for any I. The second term of the right-hand side of (11) is estimated by

$$\epsilon \left(\sup_{t \in [0,T], \ \xi} |a'(t,\xi)| \right) \delta^{-1}.$$

Since $\epsilon > 0$ is arbitrary this proves that

$$\int_0^T \frac{|a'(t,\xi)|}{a(t,\xi)+\delta} dt \le \sup_{\Delta} \sum_{I_i \in \Delta} \log F(I_i;\xi).$$

Therefore to prove Lemma 3.3 it suffices to show

$$\sum_{I_i \in \triangle} \log F(I_i; \xi) \le \int_0^T \frac{|a'(t, \xi)|}{a(t, \xi) + \delta} dt$$

for any partition $\triangle = \{I_i\}$. Thus it is enough to show the inequality

$$\log F(J;\xi) \le \int_{J} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt \tag{12}$$

for any interval $J \subset [0,T]$. Let J = (s,t) be an open interval. Denote

$$J \setminus E_1(\xi) = \bigcup_{p=1}^{\infty} J_p, \quad J_p = (s_p, t_p)$$

where $\{J_p\}$ are countable disjoint open intervals. Assume that $\epsilon > 0$ is given as before. Choose m so that

$$\sum_{p=m+1}^{\infty} |J_p| < \epsilon.$$

Take complementary disjoint open intervals $\{K_q\}_{q=1}^r$ such that $\{J_p\}_{p=1}^m$, $\{K_q\}_{q=1}^r$ make a partition of the interval J.

Here we apply the following remark: Let $\triangle = \{I_i\}$ be a partition of I. Then we have

$$\log F(I;\xi) \le \sum_{I_i \in \triangle} \log F(I_i;\xi).$$

To see this let $I = (\alpha, \beta)$ and $I_i = [t_{i-1}, t_i], i = 1, ..., l$ where $t_0 = \alpha$, $t_l = \beta$. Then with $a_{\delta}(t) = a(t, \xi) + \delta$ we have

$$\frac{a_{\delta}(\beta)}{a_{\delta}(\alpha)} = \frac{a_{\delta}(t_1)}{a_{\delta}(\alpha)} \cdot \frac{a_{\delta}(t_2)}{a_{\delta}(t_1)} \cdots \frac{a_{\delta}(\beta)}{a_{\delta}(t_{l-1})} \le \prod_{i=1}^{l} F(I_i; \xi)$$

because

$$\frac{a_{\delta}(t_i)}{a_{\delta}(t_{i-1})} \le F(I_i; \xi), \quad i = 1, ..., l.$$

The same arguments give

$$\frac{a_{\delta}(\alpha)}{a_{\delta}(\beta)} \le \prod_{i=1}^{l} F(I_i; \xi)$$

and hence the assertion. Thus we get

$$\log F(J;\xi) \le \sum_{p=1}^{m} \log F(J_p;\xi) + \sum_{q=1}^{r} \log F(K_q;\xi). \tag{13}$$

Since $a'(t,\xi) \neq 0$ in J_p , from (9) the first term of the right-hand side of (13) is bounded by

$$\sum_{n=1}^{m} \int_{J_p} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt \le \int_{J} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt.$$

It remains to estimate the second term of the right-hand side of (13). Put

$$\phi(t,\xi) = \delta^{-1}a(t,\xi). \tag{14}$$

It is clear that

$$\phi(t,\xi) \le \phi(s,\xi) + Cm(K_q;\xi)\delta^{-1}, \quad s,t \in K_q$$

where

$$C = \sup_{t \in [0,T], \ \xi} |a'(t,\xi)|, \ m(K_q;\xi) = |K_q \setminus E_1(\xi)|.$$

Here |F| denotes the Lebesgue measure of F. From this inequality it follows that

$$(\phi(t,\xi)+1) \le (\phi(s,\xi)+1)(1+Cm(K_q;\xi)\delta^{-1})$$

and hence we obtain

$$a(t,\xi) + \delta \le (a(s,\xi) + \delta)(1 + Cm(K_q;\xi)\delta^{-1}).$$

Thus we have

$$F(K_q;\xi) \le (1 + Cm(K_q;\xi)\delta^{-1})$$

and hence

$$\sum_{q=1}^{r} \log F(K_q; \xi) \le C_1 C \delta^{-1} \sum_{q=1}^{r} m(K_q; \xi)$$

because $\log (1+x) \leq C_1 x$ for $x \geq 1$. The right-hand side is estimated by

$$C_1 C \delta^{-1} \sum_{p=m+1}^{\infty} |J_p| \le \epsilon C_1 C \delta^{-1}.$$

Since $\epsilon > 0$ is arbitrary one obtains (12).

The next lemma is a key to the proof of Lemma 3.1.

LEMMA 3.4. Let $\Delta = \{I_i\}$, $I_i = [t_{i-1}, t_i]$, i = 1, ..., N be a partition of [0, T] given by zeros of $a'(t, \xi)$, that is $a'(t_i, \xi) = 0$, i = 1, ..., N-1. Assume $N \geq 2n-2$. Then we have

$$F(I_k;\xi) \le (1 + CA^n M(n)(n!)^{-1} |\tilde{I}_k|^n \delta^{-1})$$

with C independent of the partition, where

$$|\tilde{I}_k| = |I_{k_*+1}| + \dots + |I_k| + \dots + |I_{k^*}|$$

with $k_* = \max(k - n - 1, 1), k^* = \min(k + n - 2, N).$

Proof. By the assumption $N \geq 2n-2$ we have either k+n-2 < N or k-n-1>0. We first study the case k+n-2 < N. Since $\phi'(t,\xi)$ has at least n-1 zeros in $[t_k,t_{k^*}]$ then $\phi^{(2)}(t,\xi)$ has at least n-2 zeros in the same interval. Take a zero α_2 of $\phi^{(2)}(t,\xi)$ so that in $[\alpha_2,t_{k^*}],\,\phi^{(2)}(t,\xi)$ has at least n-2 zeros. Then $\phi^{(3)}(t,\xi)$ has at least n-3 zeros in $[\alpha_2,t_{k^*}]$. Choose $\alpha_3\in [\alpha_2,t_{k^*}]$ so that $\phi^{(3)}(\alpha_3,\xi)=0$ and $\phi^{(3)}(t,\xi)$ has at least n-3 zeros in $[\alpha_3,t_{k^*}]$. Repeating this arguments we can take α_i so that

$$\phi^{(i)}(\alpha_i, \xi) = 0, \quad \alpha_1 = t_k \le \alpha_2 \le \alpha_3 \le \dots \le \alpha_{n-1} (\le t_{k^*}).$$

Write

$$\phi^{(i)}(t,\xi) = -\int_{t}^{\alpha_{i}} \phi^{(i+1)}(s,\xi)ds, \quad 1 \le i \le n-1$$

and assume that

$$|\phi^{(n-i)}(t,\xi)| \le CA^n M(n)\delta^{-1} \frac{(\alpha_{n-1}-t)^i}{i!}, \quad t_{k-1} \le t \le \alpha_{n-i}.$$
 (15)

When i = 0, (15) follows from

$$\sup_{t \in [0,T],\xi} |a^{(n)}(t,\xi)| \le CA^n M(n)\delta^{-1}, \quad n = 1, 2, \dots$$

which results from the assumption $a_{ij}(t) \in \Gamma(M)([0,T])$. Since

$$|\phi^{(n-i-1)}(t,\xi)| \le \int_t^{\alpha_{n-i-1}} |\phi^{(n-i)}(s,\xi)| ds, \quad t_{k-1} \le t \le \alpha_{n-i-1}$$

and $\alpha_{n-i-1} \leq \alpha_{n-i} \leq \alpha_{n-1}$, applying (15) the right-hand side is estimated by

$$\int_{t}^{\alpha_{n-i-1}} CA^{n} M(n) \delta^{-1} \frac{(\alpha_{n-1} - s)^{i}}{i!} ds \le CA^{n} M(n) \delta^{-1} \frac{(\alpha_{n-1} - t)^{i+1}}{(i+1)!}$$

for $t_{k-1} \leq t \leq \alpha_{n-i-1}$. By induction we get (15) for every $1 \leq i \leq n-1$. This shows that

$$\phi(t_k,\xi) \le \phi(t_{k-1},\xi) + CA^n M(n) \delta^{-1} \frac{|\alpha_{n-1} - t_{k-1}|^n}{n!}$$

and hence

$$\phi(t_k,\xi) + 1 \le (\phi(t_{k-1},\xi) + 1)(1 + CA^n M(n)(n!)^{-1}\delta^{-1}|t_{k^*} - t_{k-1}|^n).$$

This gives that

$$a(t_k,\xi) + \delta \le (a(t_{k-1},\xi) + \delta)(1 + CA^n M(n)(n!)^{-1} \delta^{-1} |t_{k^*} - t_{k-1}|^n).$$
(16)

Similarly one gets

$$a(t_{k-1},\xi) + \delta \le (a(t_k,\xi) + \delta)(1 + CA^n M(n)(n!)^{-1}\delta^{-1}|t_{k^*} - t_{k-1}|^n).$$
(17)

From (16) and (17) we have

$$F(I_k;\xi) \le (1 + CA^n M(n)(n!)^{-1} \delta^{-1} |\tilde{I}_k|^n)$$
(18)

because $|t_{k^*} - t_{k-1}| \le |\tilde{I}_k|$.

When k-n-1>0, choosing β_i so that $(t_{k_*} \leq)\beta_{n-1} \leq \beta_{n-2} \leq \cdots \leq \beta_2 \leq \beta_1 = t_{k-1}, \ \phi^{(i)}(\beta_i, \xi) = 0$, we get the desired assertion by the same arguments.

Proof of Lemma 3.1. We first assume that the number of zeros of $a'(t,\xi)$ is less than 2n-2 and let

$$0 \le t_1 < \dots < t_{p-1} \le T$$

be zeros of $a'(t,\xi)$. From (9) we see that

$$\int_{0}^{T} \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt = \sum_{i=1}^{p} \log F(I_{i};\xi)$$
(19)

where $I_i = [t_{i-1}, t_i], i = 1, ..., p, t_0 = 0, t_p = T$. Since

$$\frac{a(s,\xi)+\delta}{a(t,\xi)+\delta} \le (\sup_{\tau \in [0,T], \xi} a(\tau,\xi) + 1)\delta^{-1}$$

it is clear that $F(I_k;\xi) \leq C\delta^{-1}$ with C independent of δ and the partition. Thus one has

$$\sum_{i=1}^{p} \log F(I_i; \xi) \le C \sum_{i=1}^{p} \log \delta^{-1} \le C' n \log \delta^{-1}$$
 (20)

for $0 < \delta < 1/2$ which proves the assertion. We turn to the case when $a'(t,\xi)$ has more than 2n-2 zeros in [0,T]. As we have seen in the proof of Lemma 3.3, there is a sequence of partitions $\Delta_k = \{I_j^{(k)}\}_{j=1}^{m_k}$ of [0,T] of which partition points consist of zeros of $a'(t,\xi)$ such that

$$\int_0^T \frac{|a'(t,\xi)|}{a(t,\xi) + \delta} dt = \lim_{k \to \infty} \sum_{j=1}^{m_k} \log F(I_j^{(k)};\xi).$$
 (21)

Note that $\log (1 + x^n) \le nx$ for $x \ge 0$ and $[(n!)^{-1}]^{1/n} \le cn^{-1}$ with some c > 0 independent of $n \in \mathbb{N}$ by the Stirling's formula. Then applying Lemma 3.4 we get

$$\log F(I_j^{(k)};\xi) \le \log (1 + CA^n M(n)(n!)^{-1} \delta^{-1} |\tilde{I}_j^{(k)}|^n) \le C'AM(n)^{1/n} |\tilde{I}_j^{(k)}| \delta^{-1/n}$$

with C' independent of n. Taking the sum over $j = 1, ..., m_k$ we get

$$\sum_{j=1}^{m_k} \log F(I_j^{(k)}; \xi) \le CAM(n)^{1/n} \delta^{-1/n} \sum_{j=1}^{m_k} |\tilde{I}_j^{(k)}| \le CAM(n)^{1/n} \delta^{-1/n} (2nT).$$
(22)

Then (20) and (22) prove the assertion.

Proof of Theorem 1.4. Let $u_i(x) \in \hat{\Gamma}(\Phi) \cap \mathcal{E}'(\mathbf{R}^n)$, i = 0, 1 verify

$$|\xi||\hat{u}_0(\xi)|, \quad |\hat{u}_1(\xi)| \le B_K e^{-K\Phi(\xi)}$$

for any K > 0. Let $\hat{u}(t, \xi)$ be a solution to the ordinary differential equation (2.1) with the parameter ξ . Let $\delta(\xi) > 0$ be such that $\Phi(\xi) = \phi(M)(\delta(\xi)) = \sqrt{\delta(\xi)}|\xi|$. From Corollary 3.2 it follows that

$$\int_0^t \frac{|a'(s,\xi)|}{a(s,\xi) + \delta(\xi)} ds \le C'\phi(M)(\delta(\xi)), \quad 0 \le t \le T$$
 (23)

with some C' > 0. From (23) it follows that

$$\beta(\xi) - C\Phi(\xi) \le \Lambda_{\delta(\xi)}(t,\xi) \le \beta(\xi), \quad 0 \le t \le T.$$

Taking $\beta(\xi) = \lambda \Phi(\xi)$ we have

$$(\lambda - C)\Phi(\xi) \le \Lambda_{\delta(\xi)}(t,\xi) \le \lambda\Phi(\xi), \quad 0 \le t \le T.$$

Now Proposition 2.1 proves that

$$|\hat{u}(t,\xi)|^2 e^{(\lambda - C)\Phi(\xi)} \le C' \left(|\hat{u}_1(\xi)|^2 + (\gamma + |\xi|^2) |\hat{u}_0(\xi)|^2 \right) e^{\lambda \Phi(\xi)} \le C'$$

for any
$$\lambda > 0$$
, $0 \le t \le T$ and hence $u(t, \cdot) \in \hat{\Gamma}(\Phi)$.

4. Counter example

Our construction of counter examples in Theorem 1.5 is inspired by the example in [4] for a second order hyperbolic Cauchy problem which is not well posed in C^{∞} . We shall consider the following Cauchy problem

$$\begin{cases} \partial_t^2 u - a(t)\partial_x^2 u = 0\\ u(0, x) = u_0(x), \quad \partial_t(0, x) = u_1(x) \end{cases}$$
 (24)

Before defining a(t) we need a definition.

DEFINITION 4.1. Let \mathcal{B} be the set of all $f(t) \in C^{\infty}(\mathbf{R})$ such that for any compact $K \subset \mathbf{R}$ there is a C_K such that

$$|f^{(n)}(t)| \le C_K^{n+1} n^n (\log (n+2))^{2n}, \quad \forall n \in \mathbf{N}, \ \forall t \in K.$$

We recall that \mathcal{B} is stable under multiplication and under differentiation; moreover, due to Denjoi-Carleman theorem, \mathcal{B} is a non quasianalytic class, i.e. there exists a non trivial $f \in \mathcal{B}$ with compact support.

Proof of Theorem 1.5. Let $\rho(\tau)$ be a function in \mathcal{B} , 2π periodic, non negative such that $\rho(\tau) \equiv 0$ for $|\tau| \leq \pi/3$, and

$$\int_{0}^{2\pi} \rho(s) \cos^2 s \, ds = \pi. \tag{25}$$

Les us define (cf. [4])

$$\alpha(\tau) = 1 + 4\epsilon\rho(\tau)\sin 2\tau - 2\epsilon\rho'(\tau)\cos^2\tau - 4\epsilon^2\rho^2(\tau)\cos^4\tau \tag{26}$$

and fix ϵ so that

$$1/2 \le \alpha(\tau) \le 3/2. \tag{27}$$

Let us put

$$L = \max |\alpha'(\tau)|. \tag{28}$$

Obviously $\alpha \in \mathcal{B}$. Let now W be the solution to the Cauchy problem

$$\begin{cases} W'' + \alpha W = 0 \\ W(0) = 1 \\ W'(0) = 0. \end{cases}$$
 (29)

By a simple computation we see that

$$W(\tau) = \cos \tau \exp \left[2\epsilon \int_0^{\tau} \rho(s) \cos^2 s ds \right].$$

In particular, we have for $\nu = 1, 2, ...$

$$\begin{cases}
W(\pm 2\pi\nu) = e^{\pm 2\epsilon\pi\nu} \\
W'(\pm 2\pi\nu) = 0
\end{cases}$$
(30)

Let $\beta(\tau)$ be a non increasing function belonging to \mathcal{B} such that $\beta(\tau) = 1$ for $\tau \leq 0$, $\beta(\tau) = 0$ for $\tau \geq 1$. Finally we introduce 3 sequences; for k = 1, 2, ...

$$\rho_k = k^{-3/2} \tag{31}$$

$$\nu_k = \mu^k \tag{32}$$

$$\nu_k = \mu^k \tag{32}$$

$$\delta_k = \phi^{-1}(M)(\frac{\nu_k}{\rho_k}) \tag{33}$$

for some integer $\mu \geq 2$ to be chosen later, where $\phi^{-1}(M)$ is the inverse of $\phi(M)$ defined by (4).

Now we can define the coefficient a(t) in $[0, +\infty)$, by setting

$$a(t) = \delta_k \alpha \left(4\pi \nu_k \frac{t - t_k}{\rho_k} \right) \tag{34}$$

on I_k and

$$a(t) = \delta_{k+1} + (\delta_k - \delta_{k+1})\beta \left(\frac{t - t_k''}{t_{k+1}' - t_k''}\right)$$
(35)

on J_k and a(t) = 0 for $t \ge T$ where

$$t'_1 = 0, \quad t'_k = 2\sum_{j=1}^{k-1} \rho_j \quad (k = 2, 3, ...)$$

$$t_k = t'_k + \rho_k/2, \quad t''_k = t'_k + \rho_k, \quad T = 2\sum_{j=1}^{\infty} \rho_j$$

$$I_k = [t'_k, t''_k], \quad J_k = [t''_k, t'_{k+1}].$$

It is immediate that $a(t) \in C^{\infty}([0,T))$; moreover a(t) tends to zero as $t \uparrow T$ since $\delta_k \to 0$. Now we want a(t) to be C^{∞} near t = T; it will be sufficient to show that all derivatives of a(t) go to zero as $t \uparrow T$. On I_k we have

$$|a^{(n)}(t)| \le \delta_k \left(\frac{4\pi\nu_k}{\rho_k}\right)^n A^{n+1} n^n \left(\log(2+n)\right)^{2n}$$
 (36)

and on J_k

$$|a^{(n)}(t)| \le \delta_k \left(\frac{1}{\rho_k}\right)^n A^{n+1} n^n \left(\log\left(2+n\right)\right)^{2n}$$
 (37)

if

$$|\alpha^{(n)}(\tau)|, |\beta^{(n)}(\tau)| \le A^{n+1}n^n (\log (n+2))^{2n}.$$

By (33) and (4) we have

$$\delta_k \left(4\pi \frac{\nu_k}{\rho_k} \right)^n \le (4\pi)^n M(n) n^n \tag{38}$$

for all k and n. In particular the right-hand side of (36) and (37) goes to zero as $k \to \infty$ for all n because

$$\delta_k \left(\frac{\nu_k}{\rho_k}\right)^n \le M(n+1)(n+1)^{n+1} \frac{\rho_k}{\nu_k}$$

This shows that $a(t) \in C^{\infty}([0, +\infty))$. Moreover from (38) one can check that

$$|a^{(n)}(t)| \le C^{n+1} M(n) n^{2n} (\log (n+2))^{2n}$$

that is $a \in \Gamma(M(n)n^{2n}(\log{(n+2)})^{2n})$.

We now find a Cauchy data in $\hat{\Gamma}(\Phi/\log^2\Phi)$ such that the Cauchy problem (24) has no solution in \mathcal{D}' for t > T. More precisely we construct a particular solution u to the equation $\partial_t^2 u - a(t) \partial_x^2 u = 0$ on $[0,T) \times \mathbf{R}_x$ such that

$$u \in C^{\infty}([0, T); \hat{\Gamma}(\Phi/\log^2 \Phi)) \tag{39}$$

but

$$u(t,\cdot)$$
 is not bounded in \mathcal{D}' for $t \uparrow T$. (40)

This solution will have the form

$$u(t,x) = \sum_{k=1}^{\infty} u_k(t) \sin h_k x \tag{41}$$

with an increasing sequence h_k to be chosen later. We have then

$$u_k''(t) + h_k^2 a(t) u_k(t) = 0. (42)$$

In particular for $t \in I_k$, (42) becomes

$$u_k''(t) + \delta_k h_k^2 \alpha \left(4\pi \nu_k \frac{t - t_k}{\rho_k} \right) u_k(t) = 0.$$

If we choose $h_k = 4\pi\nu_k/\sqrt{\delta_k}\rho_k$ and we impose

$$\begin{cases} u_k(t_k) = 1\\ u'_k(t_k) = 0 \end{cases} \tag{43}$$

this shows that for $t \in I_k$

$$u_k(t) = W\left(4\pi\nu_k \frac{t - t_k}{\rho_k}\right)$$

where W is the solution to (4.6). In particular we get

$$\begin{cases} u_k(t'_k) = W(-2\pi\nu_k) = e^{-2\pi\epsilon\nu_k} \\ u'_k(t'_k) = W'(-2\pi\nu_k) = 0 \end{cases}$$
(44)

and

$$\begin{cases} u_k(t_k'') = W(2\pi\nu_k) = e^{2\pi\epsilon\nu_k} \\ u_k'(t_k'') = W'(2\pi\nu_k) = 0 \end{cases}$$
 (45)

We now prove that the Fourier series in (41) are converging in $C([0,T), \hat{\Gamma}(\Phi/\log^2\Phi))$.

Since $t'_k \to T$ as $k \to \infty$, it will be sufficient to prove that for all \bar{k} and all C there exists C_1 such that for any $t \in [0, t'_k]$ and for any $k \geq \bar{k}$ we have

$$|u_k(t)| + |u'_k(t)| \le C_1 \exp(-C\Phi(h_k)/\log^2\Phi(h_k)).$$

This inequality and $a(t) \in C^{\infty}([0, \infty))$ prove (39).

Let us consider an energy

$$E_k(t) = |u_k'(t)|^2 + h_k^2 a(t) |u_k(t)|^2$$
(46)

which verifies, from (44) and (45), that

$$E_k(t_k') = h_k^2 \delta_k e^{-4\pi\epsilon\nu_k} \tag{47}$$

$$E_k(t_k'') = h_k^2 \delta_k e^{4\pi\epsilon\nu_k} \tag{48}$$

By differentiating (46) and using (42) we get, for $t \leq t'_k$

$$E_k(t) \le E_k(t_k') \exp\left(\int_0^{t_k'} \frac{|a'(s)|}{a(s)} ds\right). \tag{49}$$

But from (27), (28) and (34) we have

$$\int_{I_j} \frac{|a'(s)|}{a(s)} ds \le 8\pi \nu_j L$$

while, from (35) one gets

$$\int_{J_j} \frac{|a'(s)|}{a(s)} ds = \log \frac{1}{\delta_{j+1}} - \log \frac{1}{\delta_j}.$$

Thus from (47) and (49) we get

$$\sup_{0 \le t \le t'_k} E_k(t) \le \exp[-4\pi\epsilon\nu_k + 2\log\frac{\nu_k}{\rho_k} + 8\pi L \sum_{j=1}^{k-1} \nu_j + \log\frac{1}{\delta_k} - \log\frac{1}{\delta_1}].$$

Now we choose an integer μ in (32) so large that, for all k,

$$\nu_k > 8 \frac{L}{\epsilon} \sum_{j=1}^{k-1} \nu_j$$

and

$$\nu_k > \frac{2}{\epsilon \pi} \log \frac{\nu_k}{\rho_k}.$$

Moreover from (5) we have $c(\log \delta_k)^2 \le \nu_k/\rho_k$ with some c>0 and hence

$$u_k > \left(\frac{\nu_k}{\rho_k}\right)^{2/3} > c' \left(\log \frac{1}{\delta_k} \ right)^{1/3} \log \frac{1}{\delta_k}\right)$$

and finally

$$\nu_k > \frac{1}{\pi \epsilon} \log \frac{1}{\delta_k}$$

for large k. We have then

$$\sup_{0 \le t \le t_k'} E_k'(t) \exp\left[C\Phi(h_k)/\log^2\Phi(h_k)\right] \le C_1 \exp\left[-\pi\epsilon\nu_k + C\Phi(h_k)/\log^2\Phi(h_k)\right].$$

But from (6) and (33) we obtain

$$\Phi(h_k) = \frac{\nu_k}{\rho_k}$$

and hence we conclude

$$\lim_{k \to \infty} \frac{\nu_k \log^2 \Phi(h_k)}{\Phi(h_k)} = \infty \tag{50}$$

and then (39). On the other hand, from (48) we see

$$E_k(t_k'')e^{-\Phi(h_k)/\log^2\Phi(h_k)} \ge e^{4\pi\epsilon\nu_k - \Phi(h_k)/\log^2\Phi(h_k)}$$

and by (50), noticing $C\Phi(\xi) \ge \log^2 |\xi|$ as remarked in section 1, we conclude the assertion (40).

REFERENCES

- [1] F. COLOMBINI, E. DE GIORGI, AND S. SPAGNOLO, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa 6 (1979), 511–559.
- [2] F. COLOMBINI, E. JANNELLI, AND S. SPAGNOLO, Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equations with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa 10 (1983), 291–312.
- [3] F. COLOMBINI AND T. NISHITANI, Two by two strongly hyperbolic systems and Gevrey classes, Ann. Univ. Ferrara Sc. Mat. Suppl. Vol. XLV (1999), 79–108.
- [4] F. COLOMBINI AND S. SPAGNOLO, An example of a weakly hyperbolic Cauchy problem not well posed in C^{∞} , Acta Math. 148 (1982), 243–253.
- [5] S. TARAMA, On the lemma of Colombini, Jannelli and Spagnolo, (March, 1999), preprint.

Received June 25, 2000.