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On Second Order Weakly Hyperbolic
Equations and the Gevrey Classes

FERRUCCIO COLOMBINI AND TATSUO NISHITANI *)

SUMMARY. - We study the Cauchy problem for a second order weakly
hyperbolic operator with coefficients depending only on time. We
consider the case of coefficients of the principal part belonging
to an intermediate class between C° and the real analytic class
and we specify the function spaces in which the Cauchy problem
is well posed. Moreover we show by a counter example that this
results are in some sense optimal.

1. Introduction

In this note we are concerned with the following Cauchy problem

{ Pu = 0fu— Y71 aij(t)0y,0p;u + b(t)u = 0 (1)
U(O, .’L‘) = U(](.’L‘), atu(oa ZE) =u (.’L‘)
where we assume
n
D ai(t)&& >0, vEe[0,T), VEeR™
ij=1

As for the Cauchy problem (1), if a;;(t) € C¥([0,T]) then (1) is C*°
well posed for any b(t) € C°([0,T]) and if a;;(t) € C*([0,T]) then
(1) is y(1H5/2) well posed for any b(t) € C°([0,T]) (see [2]), where
v(%) stands for the Gevrey class of order s. On the other hand there
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is a a(t) € C*°([0,T]) which is positive apart from ¢ = 0 such that
the Cauchy problem (1) for

P =0} —a(t)9? in R?

is not C* well posed ([4]). Thus the general picture would be stated
as: the smoother coefficients the wider class of well posedness. Our
main concern is to study this picture when the coefficients belong to
an intermediate class between C'* and the real analytic class and to
specify function spaces in which the Cauchy problem is well posed.

To study this question we first introduce some function spaces
between C™ and the real analytic class. Let M(z) € C'([0,00))
such that M(z) > 1 and

M(z)'* > cx (2)

with some ¢ > 0.

DEFINITION 1.1. We say that a(t) € T'(M)([0,T)), if we have
0™ ()| < CA"M(n), n=0,1,2,...., t€[0,T]

with some C' >0 and A > 1.

If we take M(n) = n®*", s > 1 then I'(M)([0,T]) coincides with
the usual Gevrey class 4(*) ([0, T]). From (2) it is easy to see that for
any closed interval I C (0,00) there are ¢ > 0 and N such that

nM(n)'/m6~ " >en, §el, n>N. (3)

Then the minimum of the set {nM(n)/?5~ /" | n = 1,2,..} is
attained. Let us set

M) = min {nM(n)/"571/"). (4)

Then we see that ¢(M)(d) is continuous in & > 0. From (2) again
we have

nM(n)/m671 " > ¢(log 6)? (5)
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with some ¢ > 0 for any n = 1,2,... and hence ¢(§) 1 oc if § | 0.
Then we define ®(&) by

®(&) = min max {$(M)(9), Vo¢[}- (6)

Since ¢(M)(0) is strictly decreasing there is a unique § = §(¢) > 0

so that (&) = ¢(M)(0(&)) = /o(€)|¢]. Tt is clear that 6(¢) | 0 as
|€] — oo and ®(&) > 1 for large |€].

DEFINITION 1.2. Let (&) be a non negative function on R™. Then
we say that u(z) € S'(R™), a tempered distribution, belongs to T'(P)
if for any C > 0 there is C; > 0 such that

i(¢)] < Cre C*©

for large & where u(&) stands for the Fourier transform of u(z).

REMARK 1.3. Let ®(&) and ® (&) be given by (6) with M(n) and

M(n) = A"M(n) (A > 1) respectively. Then it is easy to see that

D(¢) < Pa(§) < AD(¢)

and this shows that the class I'(®) is well defined by the class T'(M).
It is also easy to check that

CP(¢) > (log [¢])?

with some C > 0. Hence u € C®°(R") if u € &' NT(d).

In this note we prove

THEOREM 1.4. Assume that a;j(t) € I'(M)([0,T]) and let ®(&) be
defined in (6). Then the Cauchy problem (1) has a unique solution
u € C%([0,T;1(®)) for any u;(z) with u;(z) € I'(®) NE'(RM), i =
0,1.

On the other hand one can not improve this result much more.
In fact we show
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THEOREM 1.5. Let M (n) verify (2) and let ®(&) be defined by (6).
Then there exists a function a(t) € T'(M(n)n*(log (n + 2))**)([0,T])
such that the Cauchy problem (1.1) is not well posed in I'(®/(log ®)?).
More precisely there exist u; € I'(®/(log ®)?), i = 0,1 for which the
Cauchy problem (1) has no solution u in CQ([O,T],’D’).

If we take M(n) = n*" we get

COROLLARY 1.6. Assume that a;;(t) € v ([0, T1). Then the Cauchy
problem (1) has a unique solution u € CQ([O T): T((log |€])*T1)) for
any uo(x), ui(z) € D((log|é)*th) N E(R™). Conversely for s > 2
there exists a function a(t) € ﬂT>5'y( )([0,T)) such that the Cauchy
problem (1) is not well posed in T'((log|£])*~1/(loglog [€])?).

Proof. Let M(n) = n®" and take

5(&) = 1€ (log [¢])**+1).
Since nM (n)'/7§(€)~Y/™ < C(log |€])**" with n = [log |¢|] this shows

$(M)(5(€)) < C(logl¢])**.

Noticing \/ )€l = (log|€])**! one can apply Theorem 1.4 to get
the assertion. O

The second author would like to express his sincere gratitude to
Kaoru Yamano for her kind supports during the work.

2. Energy inequality

To prove Theorem 1.4 we derive an energy estimate for u satisfying
(1). After Fourier transform of (1) with respect to z we get

{ agﬂ(t,f) - ?,j:l a(t,§)|§|2ﬂ(t,§) + b(t)ﬁ(t,f) =0 (7)
’LAL(O, 5) = ﬁO(f)a atﬂ(oa 6) = (5)
where

n

ij=1
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To simplify notations we put v(t,&) = 4(t,€) and v = v'. Let us
set
a5(t7 f) = a(ta f) +9
where 0 > 0 will be determined later. We define the energy density
Es(t,€)
Es(t,£) = Fy(t,&)ee 0

where
F5(t,8) = [V (1, €)1 + as(t, )€ [o(t, )7 + vlo(t, ),

As(t,€) = —/Ot <|Z;((tt?)| +V5l¢| +7> dt + B(€).

Here §(¢) > 0 and v > 0 will be determined later. Note that

Bj(t,6) = (Fj(t,€) + Ny(t, &) Fy(t,))es (B0

where

Ff = S|P "0 +0'0") + aslé* (v'v + vv)
+a|¢*|v]* + (00" +0'0). (8)
Since v" = —al|¢]?v — bv from (7) we plug this into (8) to get
Ff = 6)¢2 (v’ 4+ v'D) — (bvd' + b'D) + d'|€]v]? + y(vd + v'D)
!
a
< 281ePloll'| + 2bloll'| + 2rloll'| + LaglePlof.
On the other hand plugging
, |a/]
Ay =— (4 Ve +
as
into the above inequality we get
Fj + N5 Fy < 20[¢[*|o][o'| = VO[¢| Fs + 21[|o]|v'
!
B eof? -

a
#29foll!| ~7F + M,

Noticing 6|¢|//as < V/3|¢| one has
261¢[2[oll'| — VOlE|F5 < J§<|awﬁ+w|) ValEF5 < 0.
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Since it is clear with some ¢ > 0 that
2y|v|[v’| — yF5 < —cy(Jv')2 + y|v]?)

we get
Fj + AsFs < 2[blJo[[o"| = ey(|o']? + v[v]?).
Taking - so that

¥ 732 sup [b(t)| < ¢
t€[0,T]

we obtain
Ej(t,€) <0.

We summarize above observations.

PROPOSITION 2.1. Let ®(&), §(§) be non negative and assume that
C18(€) < Age)(1,€) < Cad(¢), 0<t<T
with some C; > 0. Then we have
(10vin(t, ) + Alia(t,€)[2) e *©
<O ([a(©F + (v + ) a0 (&) ) e*©

for 0 <t <T.

3. A lemma and proof of theorem

In this section we prove a key lemma, which generalizes Lemma 1 in
[2] (see also [3], [5]), to establish an energy inequality and complete
the proof of Theorem 1.4.

LEMMA 3.1. Assume that a;;(t) € I'(M)([0,T]). Then for any n €
N we have

r |a,(t7§)| ! 1/ns—1/n -1

for every 0 < § < 1/2 with C' independent of n and .
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COROLLARY 3.2. Assume that a;j(t) € T'(M)([0,T]). Then we have

! |al(t7§)| 1/ns—1/n
— < <t<
/ga(t,§)+5_ch(n) ) , 0<t<T

for every 0 <6 < 1/2 and n € N.

Proof. Since we have
M ()" > celog 6~

the result follows from Lemma 3.1 choosing C so that C' > (ce) (",
C'T. U

To prove this lemma we prepare several lemmas. Let I = (s,t)(C
(0,7)) be an open interval. Set

a(t,&) +4d a(s, &)+ 5)

F(I;¢) = max <a(s, E+0 alt, &) +46

and note that F(I;£) > 1 by definition. We also note that if a'(¢, &) #
0in I = (s,t) then

bld(,0 L, ,
/3 ai g 5t = o). 9)

The next lemma is found in [3]. We repeat the proof because, in the
following, we need the proof rather than the result itself.

LEMMA 3.3. We have

T WO, __
[ agerst=sw X o F ()

where the supremum is taken over all finite partitions AN = {I;} of
[0,7].
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Proof. Denote

Ey (&) ={t€[0,T] | d'(t,¢) = 0}.
Since (0,7) \ E1(§) is open and hence a union of countable disjoint
open intervals I), = (s, 1p):

(0,T)\ Ey (¢ U I, (10)

Let € > 0 be given. We take m so that

o0

Z [Ipl <€ || =1, —sp.

p=m-+1
Let A, be the partition of [0, 7] defined by the partition points
S1, tla 52, t27 <oy Sy tm

Note that

@(1.8) 1o'(.&)
/0 a(t, &) +6dt Z/] (t,€) +<5
la’ (t, &) a9
—Z/I o +5dt+p%:+l/ e (1)

From (9) the first term of the right-hand side of (11) is
m
> log F(I;€)
i=1

which is bounded by >-; -, log F'(I;; &) since F(I;¢) > 1 for any 1.
The second term of the right-hand side of (11) is estimated by

. ( sup |a'<t,s)|> 5!
tel0,T7], &

Since € > 0 is arbitrary this proves that

T 1d' @9l y
/0 mdt < SlAlpI;G:AIOgF(qu)-
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Therefore to prove Lemma 3.3 it suffices to show

. T la'(t,€)|
IZZE:AIOgF(I“g) S/U OGEY

for any partition A = {I;}. Thus it is enough to show the inequality

log F(i) < [ %dt (12)

for any interval .J C [0,7T]. Let J = (s,t) be an open interval. Denote
J\ B (¢ U Jps  Jp = (sp,tp)

where {J,} are countable disjoint open intervals. Assume that e > 0
is given as before. Choose m so that

oo

Z |Jp| < e.

p=m—+1

Take complementary disjoint open intervals {K,}q_; such that
{Jptptts {Kq}y—1 make a partition of the interval J.

Here we apply the following remark: Let A = {I;} be a partition
of I. Then we have

log F(I;€) < > log F(I;;€).
LeA

To see this let I = (o, §) and I; = [ti—1,t], i = 1, ..., where ¢ty = a,
t; = 8. Then with as(t) = a(t,&) + & we have

as(B) _ as(t1) as(t2) a5 ()

as(@)  ag(@) as(tt)  as(ti 1) : ZH1F 59
because )
ags(tg . s
m S F(Izaé)a 1= 1’ ’l

The same arguments give

l
a
ﬁ 121 (I; €)
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and hence the assertion. Thus we get

m
log F(J;¢) < Z log F(J,;€) —i—ZlogF K ). (13)

Since d'(t,€) # 0 in Jp, from (9) the first term of the right-hand side
of (13) is bounded by

a9 la' (¢, )|
Z/J (t,&)+6 </Ja(t,§)+5dt'

It remains to estimate the second term of the right-hand side of (13).
Put

$(t,€) = 6 a(t,£). (14)
It is clear that
B(t,€) < d(s,€) + Cm(Kg;:6)6 ", ste K,
where

C= sup |d'(t,&)], m(Ky:€) =Ky \ Ei()].
tel0,T], &

Here |F| denotes the Lebesgue measure of F. From this inequality
it follows that

(¢(£,€) +1) < (¢(s,6) + 1)(1 + Cm(Kg;6)6 1)
and hence we obtain
a(t,€) + 0 < (als,€) +6)(1 + Cm(K: )5 ).
Thus we have
F(Kg:€) < (1+Cm(Kg€)d 1)

and hence

S log F(Ky:€) < G106 1S m(Ky:€)

q=1 q=1
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because log (1 + z) < Cyz for z > 1. The right-hand side is esti-
mated by

o0
Ci1C5 1 Y || <ecrOs
p=m+1

Since € > 0 is arbitrary one obtains (12).

The next lemma is a key to the proof of Lemma 3.1.

LEMMA 3.4. Let A = {L;}, I; = [ti—1,t;], i = 1,..., N be a partition
of [0, T] given by zeros of a'(t,&), that is o’ (t;,§) =0,i=1,..., N—1.
Assume N > 2n — 2. Then we have

F(Ii;€) < (14 CA"M(n)(n) ' I|"6 )
with C' independent of the partition, where
el = 1Tl oo |+ o e

with k, = max (k —n —1,1), k* =min (k +n —2,N).

Proof. By the assumption N > 2n — 2 we have either k+n—-2 < N
or k—n—1> 0. We first study the case Kk +n — 2 < N. Since
¢ (t,€) has at least n — 1 zeros in [ty, t5+] then ¢ (¢, €) has at least
n—2 zeros in the same interval. Take a zero as of ¢(?)(t, ) so that in
[oo, tg], $P) (¢, €) has at least n—2 zeros. Then ¢(3) (¢, €) has at least
n — 3 zeros in [ag, ty-]. Choose a3 € [ag, ty+] so that ¢ (az,€&) =0
and ¢®)(t,€) has at least n — 3 zeros in [as,t;-]. Repeating this
arguments we can take «; so that

¢(i)(ai7§) =0, o=t <ar<az<-<ap1(< ).

Write o
$D(t,6) = / ¢ (s,6)ds, 1<i<n—1
t

and assume that

("0 (1,6)] < C’A"M(n)é_l(an_z+t), tho1 <t <an (15)
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When i = 0, (15) follows from

sup |a™(t, &) < CA"M(n)d~", n=12,..
tef0,77,¢

which results from the assumption a;;(t) € I'(M)([0,T]). Since

. Qp—i—1 .
0O [T s Olds e St i

and ap—i—1 < ap—i < ap_1, applying (15) the right-hand side is
estimated by

Qp—j— Y _ 4\l
/ 1 CA”M(n)(s*lMds < cAmM(p)s-t L1 = DT
¢ 0 (i +1)!

for tx 1 <t < ap_j—1. By induction we get (15) for every 1 < i <
n — 1. This shows that

¢(tka§) < qﬁ(tk_l,f) + CA"M(n)(g—lmn—I;—‘tkﬂn

and hence
P, &) +1 < (B(tr—1,&) + 1)(1 + CA"M(n)(n!) 16 g — tr_1]").
This gives that

a(ty, €) + 6 < (a(tp—1,€) +8)(1 + CA"M (n)(n!) 16 tg — ty[").
(16)
Similarly one gets

At 1) +0 < (altis€) +8) (1 + CA"M(m)(n) ™6~ e — 1|7,
(17)
From (16) and (17) we have

F(I;€) < (1+ CA™M(n)(n!) "6 Y T]") (18)

because |t — tp_1] < |fk|

When k£ —n — 1 > 0, choosing ; so that (tx, <)Bn—1 < Bn—2 <
o < By < B =ty_1, pD(B;,€) =0, we get the desired assertion by
the same arguments. O
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Proof of Lemma 3.1. We first assume that the number of zeros of
a'(t,€) is less than 2n — 2 and let

0<t <"'<tp_1§T
be zeros of a'(t,£). From (9) we see that

T (9] 3
VS g = S log F(I;: 19
/ A6 gt = S loe P (19)
where I; = [t; 1,t],i=1,...,p, to =0, t, = T. Since
a(s,§) +6

<( sup a(r,&)+1)7!
a(t, &) +6 (Te[o,T},g( §+1)

it is clear that F(I};¢) < C§ ! with C independent of § and the
partition. Thus one has

P P
Zlog F(I;;¢) < CZlog 51 <C'nlogs? (20)
i=1 i=1

for 0 < 6 < 1/2 which proves the assertion. We turn to the case when

a'(t,€) has more than 2n — 2 zeros in [0,T]. As we have seen in the

proof of Lemma 3.3, there is a sequence of partitions A, = {Ij(k)};":’“1

of [0, T] of which partition points consist of zeros of a'(t,£) such that

Tldtel *).
| alee st = dm Xvsrie. @

Note that log (14 z") < nz for z > 0 and [(n!)~']"/" < en™! with
some ¢ > 0 independent of n € N by the Stirling’s formula. Then
applying Lemma 3.4 we get

log F(IY;¢) < log (1 + CA" M (n)(nt)'6 | I¥)|m) <
C/AM(n)l/nﬁj(k)wfl/n
with C” independent of n. Taking the sum over j = 1,...,m; we get

my,
S log F(IM;¢) < CAM(n)V/ngtn s 1) <
j=1

CAM (n)'/m6-1/"(2nT). (22)
Then (20) and (22) prove the assertion. O
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Proof of Theorem 1.4. Let u;(z) € T'(®) NE'(R™), i = 0,1 verify
€llao(©)l, i (€)] < Be "

for any K > 0. Let u(t,£) be a solution to the ordinary differential
equation (2.1) with the parameter £. Let 6(£) > 0 be such that
D(&) = H(M)(0(&)) = /0(€)|£]. From Corollary 3.2 it follows that

b ld'(s,9)l ,
/(] md350¢(M)(5(§))a 0<t<T (23)

with some C’ > 0. From (23) it follows that

BE) — CB(E) < Ae)(1.6) <E). 0<t<T.
Taking (5(§) = A®(&) we have

(A= C)B(€) < Agge)(£,6) <AD(E), 0<t<T.
Now Proposition 2.1 proves that

|ﬁ(t’£)|2e()\70)¢(f) < C’ (|ﬁ1(§)|2 + (’Y+ |§|2)|ﬂ0(f)|2) e)\<I>(§) < C

A

for any A > 0, 0 <¢ < T and hence u(t,-) € I'(®). O

4. Counter example

Our construction of counter examples in Theorem 1.5 is inspired by
the example in [4] for a second order hyperbolic Cauchy problem
which is not well posed in C*°. We shall consider the following
Cauchy problem

{ O?u — a(t)0?u =0

w(0,2) = ug(z), 04(0,z) =uq(x) (24)

Before defining a(t) we need a definition.

DEFINITION 4.1. Let B be the set of all f(t) € C*°(R) such that for
any compact K C R there is a Ci such that

1F™ ()] < it in(log (n 4 2))*", VneN, Vie K.
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We recall that B is stable under multiplication and under differenti-
ation; moreover, due to Denjoi-Carleman theorem, B is a non quasi-
analytic class, i.e. there exists a non trivial f € B with compact
support.

Proof of Theorem 1.5. Let p(7) be a function in B, 27 periodic, non
negative such that p(7) = 0 for |7| < n/3, and
2m
p(s) cos? sds = . (25)
0

Les us define (cf. [4])
a(r) = 1+ 4ep(7) sin 27 — 2ep’ (1) cos® T — 4e2p* (1) cos* 7 (26)

and fix € so that

1/2 < a(r) < 3/2. (27)
Let us put
L = max|d/(1)]. (28)
Obviously a € B. Let now W be the solution to the Cauchy problem
W"+aW =0
W(0) =1 (29)
w'(0) = 0.

By a simple computation we see that

W (1) = cos T exp [26/ p(s) cos? sds}.
0

In particular, we have for v = 1,2, ...

{ W (£2nv) = et2em

W'(£27v) =0 (30)

Let (1) be a non increasing function belonging to B such that
B(r) =1 for 7 <0, B(r) = 0 for 7 > 1. Finally we introduce 3
sequences; for k£ = 1,2, ...

pr = k=5 (31)
v = p* (32)
ok = ¢ 1(M) (2K (33)

Pk
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for some integer ;1 > 2 to be chosen later, where ¢~ !'(M) is the
inverse of ¢(M) defined by (4).
Now we can define the coefficient a(t) in [0, +00), by setting

t—1t
a(t) = o« (47wk k) (34)
Pk
on I and
t _ t”
a(t) = Opt1 + (60 — Op1)B | 77— (35)
ey — L
on Ji and a(t) = 0 for ¢t > T where
k—1
=0, t,=2> pj (k=2,3,..)
j=1

)
Jj=1
Iy = [t;,t%], Jp = [t;clat;chl]'

It is immediate that a(t) € C*°([0,T")); moreover a(t) tends to zero
as t 1 T since §;, — 0. Now we want a(t) to be C° near ¢t = T'; it will
be sufficient to show that all derivatives of a(t) go to zero as t T T.
On I, we have

™ (8)] < & (‘”;—k’“) AT (log 2+ 0))(36)
and on J
™ (@) < 6 (pl—k) A7 (log (2 + )" (37)
if

™ (7)], B (7)] < A" (log (n +2))*".
By (33) and (4) we have

5 (sz-i) " < (4m)" M(n)n (38)
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for all & and n. In particular the right-hand side of (36) and (37)
goes to zero as k — oo for all n because
n
3 <ﬁ> < M(n+1)(n+ 1) 128
Pk Vg

This shows that a(t) € C*°(]0, +00)). Moreover from (38) one can
check that

1™ (8)] < C"PIM (n)n?"(log (n + 2))%"

that is a € T'(M (n)n?"(log (n + 2))?").

We now find a Cauchy data in I'(®/ log? ®) such that the Cauchy
problem (24) has no solution in D’ for ¢ > T. More precisely we
construct a particular solution u to the equation 0?u — a(t)0?u = 0
on [0,7) x R, such that

uwe C®([0,T):T(®/log? ®)) (39)

but
u(t,-) is not bounded in D’ for ¢ 1 7T. (40)

This solution will have the form
o0
u(t,z) = Z ug (t) sin hyx (41)
k=1

with an increasing sequence hj to be chosen later. We have then
up (t) + hia(t)uy(t) = 0. (42)
In particular for ¢ € Iy, (42) becomes

t—tg
Pk

u (t) + Sphic <47r1/k ) ug(t) = 0.

If we choose hy = 47vg/\/dpr and we impose

ug(ty) =1
Lttt =0 (3

this shows that for ¢ € I,

t—1
wp(t) = W (47% — ’f)
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where W is the solution to (4.6). In particular we get

{uk(tz) = W (—2my,) = e 27k (44)
ul(t,) = W'(=2my) =0
and
{uk(t%) = W (2muy,) = €27 (45)
up () = W'(2myy) =0

We now prove that the Fourier series in (41) are converging in C([0,7"),
I(®/log? ®)).

Since tj, = T as k — oo, it will be sufficient to prove that for all
k and all C there exists C; such that for any ¢ € [0,,] and for any
k > k we have

Jug (8)] + [uj, ()| < C1exp (~C®(hy)/log® @ (hy)).

This inequality and a(t) € C*°([0,00)) prove (39).
Let us consider an energy

Ep(t) = |uy () + hia(t) ug (t)]” (46)
which verifies, from (44) and (45), that

Ey(t}) = hidpe " (47)
By (1) = h}épe'mevs (48)

By differentiating (46) and using (42) we get, for ¢ < ¢},

Fy(t) < By(ty) exp ( /0 - '2'((5)”613). (49)

But from (27), (28) and (34) we have

!
/ Mds < 8my;L
I; a(s)

while, from (35) one gets

/
Mds = log 1 log l
9j

J; a(s) 41
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Thus from (47) and (49) we get

supg<i<p, Bi(t) <
exp|—4mevy, + 2log ;—: + 8L Zf;ll v; +log é — log %]

Now we choose an integer p in (32) so large that, for all k,
k—1
L
> 8— j
U} c ]2231 V]

and 9
v > —log k.
en Pk

Moreover from (5) we have c(log d;,)? < vg/py with some ¢ > 0 and

hence 23

1 1

v > <ﬁ> > <10g — right)'/?log —>
Pk Ok O

and finally
1 1
v > —log —
e Ok
for large k. We have then

sup B} (t) exp [C®(hy)/ log B(hy)] <

0<t<t)
Cy exp [—mevy + C®(hy)/log? ®(hy)].
But from (6) and (33) we obtain

Vi
o(hy) = 2
(h) p”

and hence we conclude

v log? ®(hy)
lim ———————= =
k—o0 (I)(hk)

and then (39). On the other hand, from (48) we see

o (t%)e_q)(hk)/ log? ®(hy) > edmevi—®(hi)/ log? ®(hy)

and by (50), noticing C®(¢) > log? |¢| as remarked in section 1, we
conclude the assertion (40). O
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