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Regularity Aspects of Fractional
Evolution Equations

PHILIPPE CLEMENT AND STIG-OLOF LONDEN (*)

SUMMARY. - A brief review of results on evolution equation with
fractional derivatives is presented. We emphasize regularity re-
sults and consider both linear and non linear equations.

1. Introduction

In this survey we review some recent progress concerning regular-
ity results on solutions of equations with fractional derivatives. We
consider both fractional differential equations in Banach spaces and
also certain partial differential equations with fractional derivatives.
Linear, as well as nonlinear results are considered.

Let u: [0,7] — X, where X is a Banach space. Assume (at least)
that u is continuous and satisfies u(0) = 0. We define the fractional
derivative of u of order a € (0,1) by

(Dfu)(t) = %/0 g1—a(t —s)u(s)ds, t>0,

and
h

1
(D)) =tim s [ g1-alh = us) ds,

where !
g5(t) = mt‘”, t>0, Be(0,1).

() Authors’ address: Ph. Clément, Faculty of Thecnical Mathematics and In-
formatics, Tu Delft, P.O. Box 5031, 2600 GA Delft, The Nederlands, e-mail:
clement@twi,tudelft.nl

S-O. Londen, Institute of Mathematics, Helsinki University of Technology, P.O.
Box 1000, FIN-02015 HUT, Finland, e-mail: stig-olof.londen®@hut.fi



20 PH. CLEMENT and S-O. LONDEN

For a € (1,2), the fractional derivative of u is given by
Diu = Dto‘flut,

where wu; is the usual first order derivative.

Our work on the regularity of fractional evolution equations has
partially been motivated by problems connected with the fractional
conservation law

Dif(u—wup) +o(u)s=f, 0<a<l, (1)

where u = u(t,z); t > 0, z € R; u(0,z) = uo(x), and where the
nonlinear function o is sufficiently smooth. Equations of type (1)
can be used to approach nonlinear conservation laws. In fact, if u,
is the entropy solution of (1), then (under certain assumptions on o
and ug), Uq — Ue, as a T 1, where u, is the entropy solution of

uto(u)e = f, w0, z) = ug(z). (2)

(A more precise statement will be given below).
Another challenging motivation can be formulated as follows.
Consider the equation

D (u —ur) = 0 (uz)s + f, (3)

with 0 < o < 1; uw = u(t,z), t > 0, z € (0,1); u(0,z) = ug(z),
w(0,2) = up(z); uw(t,0) = u(t,1) = 0, ¢ > 0, and with o smooth,
satisfying

0<m<o(y) <M<oo, o(0)=0, (4)

for some constants m, M.

Obviously, (3) is (under assumption (4)) an equation intermedi-
ate to the nonlinear heat equation and the nonlinear wave equation.
While the behavior of (3) in the linear case o(y) = y is reason-
ably well understood (it is, in fact, essentially parabolic - see [12]),
only very partial results exist for the nonlinear case. Thus it is
known, see [5], that if « € (0, 3], then a solution u of (3) with ug, €
L?((0,T); L?(0,1)) exists. For larger a-values however, only results
on weak solutions are available, i.e., only u € L°°((0,T); H}(0,1)) or
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ug € LS ((0,7T); L*(0,1)), depending on whether (4) is assumed or
certain convexity assumptions are made on o, see [6], [9].

Formally, (3) can obviously be written

D (us — u1) = a(t, 2)ugs + f, (5)
with a(t,z) = o'(u,(t,z)). This may be viewed as a version of
Dta(ut_ul)_umm:fa (6)

with non-constant coefficients. Thus there is a definite motivation for
a maximal regularity analysis of (5) and (6); the ultimate goal being
to arrive at regularity results on (3) via these maximal regularity
statements.

2. Linear problems

We first review some results on the linear abstract fractional evolu-
tion equation

D (u —ug) + Bu = f. (7)

Here u takes values in a complex Banach space X; B is a positive
operator mapping D(B) C X into X, ug € X, and f € C([0,T]; X),
for some T' > 0. A function uw: [0,7] — X is said to be a strict
solution of (7) on [0,T] if u € C([0,T);D(B)); gi-a * (u —ug) €
C'([0,T]; X) and (7) holds for all ¢ € [0, T].

Let v € (0,1]. We write

DB('%OO) = (XaD(B))’y,oo DB('Y) = (Xap(B))’Y ;

where the right sides denote the usual real interpolation spaces, see,
e.g., [10]. One then has, [1],

THEOREM 2.1. Suppose a € (0,1) and let B be a positive operator
in X with spectral angle ¢p < II(1 — §). Take ug € D(B) and
feC(0,T; X). Then

(a) For v € (0,a] and f € CV([0,T); X) there exists a unique
strict solution w of (7) such that Bu(t) € C7([0,T]; X) iff Buo —
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f(0) € Dg(L,00). Moreover, in this case there exists a constant M ;
depending on vy, o, B, T; such that
| Bu(t) = f(0)llcvo.:x) <
M (1Buo = F0)Ip(2 o0y + 176 = FO) ooy ) (8)

(b) Let y € (0,1) and f € B([0,T]; Dg(y,00)). Then there exists
a unique strict solution u of (7) such that

Bu(t) € C([0,T]; X) N B([0,T]; Dp(7, 20))

iff Bug — f(0) € Dp(y,00). Moreover, an estimate analogous to (8)
holds.

This Theorem is proved by writing u = v +w + B~ f(0), where
v, w satisfy, respectively,

DE(w—vo)(®) + Bu(t) = 0;  0(0) = vg = ug — B~ £(0);

Diw(t) + Bw(t) = f(t) = f(0);  w(0) =0,

and applying resolvent techniques to the wv-equation, and the Da
Prato-Grisvard Method of Sums to the w-equation. For details and
further results, see [1].

The statements above can be applied to yield maximal regular-
ity results on, e.g., the partial differential equation with fractional
derivatives:

D¢ (u—hy) 4+ D2 (u— hy) = f. (9)

Here u = u(t,z), (t,7) € R* x R*; a, 3 € (0,1); u(0,z) = hi(x);
u(t,0) = ha(t); h1(0) = he(0) = f(0,0) = 0. In particular, one has
that if f is Holder-continuous in both variables, i.e., f € C*¥ ([0, T] x
[0,1]), with p € (0,), v € (0,3), then

D&u—hy), DP(u—hy) e CH,

and the appropriate Schauder-estimates hold.
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By analogous techniques one can prove results for the higher
order equation

Di (ug —ur)(t) + Bu(t) = f(t), u(0) =uo, ¢=0, (10)
with ug,uq, f given. Then one has, [3],

THEOREM 2.2. Suppose a € (0,1) and let B be a positive operator
i a complexr Banach space X with spectral angle ¢p < H(% - 93).
Assume ug € D(B), with uy € Dp(755) and take f continuous on
[0,T] with values in X. Then

(a) With v € (0,1) and f € C7([0,T]; X) there ezists a unique
strict solution of (10) such that Bu(t) € C7([0,T]; X) provided

Buo—f(O)EDB< oo) : uleDB(aJr7 oo) (11)

g
1+a’ 1+a’
hold. Moreover, an apriori estimate for [|[Bu(t) — f(0)|lcv(jom;x) 0
terms of the norms of the quantities in (11) and || f|cv holds.

(b) Let v € (1,1 + a] and f € CV([0,T]; X). Assume the first
part of (11) and, in addition, that

. +7
— BT f(0) € Dpe (5~ 00).
U1 f()e B? 2(1+Oé)’oo
Then there exists a unique strict solution u of (10) satisfying Bu(t) €
C7([0,T); X). Moreover, there is an M depending on v, o, B, T such
that

14+’

[Bu(t) = £(0) = £ (0)llev (o,y;x) < M(HBUO —F Oy (2 00) +

[lur — B_lf'(O)llsz(an)m) +IIf (@) — £(0) = Zf'(O)IIcv([o,T};x)) :
For details and additional results, see [3]. Clearly this Theorem
2.2 may be applied to partial differential equations with fractional
derivatives.
Instead of making this application explicit, we consider - in view
of the application below to fractional conservation laws - an extension



24 PH. CLEMENT and S-O. LONDEN

of (9), namely an extension to the nonconstant coefficient case with
G = 1. Thus, consider

Dta(u - uO)(tam) + C(t,.’L‘)um(t,.’L‘) = f(t,ib), (12)
0<t<T, 0<z<I,

with initial and boundary conditions u (0, x) = wug(x), u(t,0) = uy(t).
For brevity, below we only look at Holder-continuity in ¢.

THEOREM 2.3. Assume that o € (0,1), p € (0,a), c(t,z) > 0 on
[0,T] x [0,1], and that

c € C([0,1]; C*(]0,T7)),

f e CH(0,71:C(0,1]),  £(0,0) =0,
up € C'([0,1]),  uo(0) = u(0) = 0,

o0, 2)up(z) — f(0,2) € C=([0,1]),
up € C([O,T]), Dful € C#([O,T]),

with u1(0) = (Dfup)(0) = 0.
Then there exists a unique continuous solution u of (12) such
that u, € C*([0,T]; C([0,1])).

By (12), and by the conclusion on wu,, one may easily obtain
regularity statements on u. For Theorem 2.3, and for further results
in the same vein, in particular for Hélder-continuity in z, see [2].

3. Results on nonlinear problems

As was indicated earlier, in the nonlinear case we are at present quite
restricted as to the order of the equation.

Let A be a nonlinear (possibly multivalued) operator mapping
D(A) C X into X. We recall that A is said to be m-accretive if
(I +XA)~!is nonexpansive and R(I +\A) = X, both for any A > 0.
The Yosida-approximations Ay are defined by Ay = A~1(I — Jy),
where Jy = (I + AA) L.

The following result by Gripenberg [7] is fundamental.
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THEOREM 3.1. Let X be a real Banach space. Assume that

k € L},.(R"; R) is positive and nonincreasing,
limy o k(t) = oo, and log (k(t)) is convex,

A is an m-accretive operator on X,

y € D(A), i.e., y € X and supy- ol Ary|x < oo,

f € C(R";X) is such that fUT wyr(s)|K (s)|ds < oo, for each

T >0, where wyr(s) = supy, y, i, —to]<sf (81) — f(t2) [ x-

Then there is a unique strong solution u of

% E(t — s)[u(s) —ylds + A(u(t)) > f(t), t>0, u(0)=uy,
0

(13)
such that v € C(R'; X); u(0) = y, and there is a function w €
C((0,00); X) such that for each T > 0, supo<i<r|w(t)||lx < oo,
w(t) € A(u(t)) fort >0, and

d t
pr k(t — s)[u(s) —y]ds +w(t) = f(t), t>0.
0

The key result here is, of course, the continuity and (local) bound-
edness of w(t).

Our next goal is to apply Theorem 3.1 to the fractional conserva-
tion law (1). In particular, we wish to analyze the Riemann-problem
connected with (1), i.e.,

D (u — X(—o0,0(2))(t,2) + 0(u)z(t,2) =0, t>0; x€R; (14)

with u(0,7) = X(—c0,0)(®)-
First, observe that if one takes

u(t,z) =1, t>0; z<0;

then this function solves (14) (in the second quadrant). Thus, there
remains

(Dffu)(t,z) + o(u)z(t,z) =0; ¢t>0, x>0,

with u(¢,0) = 1 for ¢ > 0 and u(0,z) = 0 for z > 0.
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Next, note that if one takes

D(A) = {u € LY(R"; R)|o(u) € AC(RT; R);
u(0) =1, o(u) € L'(R™;R) },

and defines Au = o(u)’ for u € D(A), then A is closed and m-
accretive in L'(R*; R).

Combining these observations with Theorem 4 one can show the
following concerning (14). (For the proof, see [8, Theorem 5|, and
[7, Theorem 2]). Observe that k(t) = c4t™® obviously satisfies the
assumption on £ made in Theorem 3.1.

THEOREM 3.2. Assume that
o € CY(R;R) is strictly increasing on (0,1) and there are con-
stants C and v > 1 such that

%r” <o(r)<Cr?, rel0,1].

Then there is a solution u of the Riemann problem (14) which is
continuous for (t,z) € R x R\{0,0} and is such that for each t > 0
the function © — u(t,z) is absolutely continuous and nonincreasing,
for x € R the function t — u(t,z) is nondecreasing, and (14) holds
a.e. on R™ x R. Moreover,

B 1 Lo'(r)
u(t,z) =0, x> %/0 " dr, t>0, (15)

and the function ¢(t) = inf{z > Olu(t,z) = 0} is continuous and
strictly increasing.

Note the somewhat surprising outcome (15) of the nonlinear
problem: the z-support of the solution is compact. In the linear
case o(u) = ku, this does not hold. See [11].

Additional regularity results on solutions of

Di(u —uo) +0o(u)s = f (16)

can be obtained in the case where o'(u) > 0 (o not merely strictly
increasing). See [7] for details. These results are obtained by us-
ing both Theorem 2.3 (together with the corresponding result on
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z-regularity) and Theorem 3.1, and also observing that (16) can for-
mally be written

Dy (u = ug) + b(t, z)uz = f,

with b(t,z) = o' (u(t, z)). (Cf. (5),(6) above).

Let us finally look at the possible convergence of u, as a 1T 1;
where u, solves (16). One does of course hope that the functions u,
do converge to the unique entropy solution of

ug+o(u)y = f, u(0,z)=uy(x).

This is indeed the case, under some technical assumptions, stated
below.
We consider the somewhat more general equation

u + div g(u) = f; u(0,7) = uo(x), (17)

together with the corresponding fractional conservation law

0
a(k* [u—up]) + div g(u) = f. (18)
Here (t,z) € RT x R". Observe that we do not require k to equal
Ji—a-
We need the concept of a weak solution and that of an entropy
solution of (18), see [4].
A weak solution of (18) is a function u € L] (R x R") such
that g(u(t,z)) € L} _(RT x R"; R") and

loc

/ / (¢t(t,m)/ k(t — s)[u(s, x) — ug(x)] ds +
R+ n 0
bo(t, ) - g(u(t,z)) + ¢(t,2)f(t,2)) dudt =0

for all ¢ € C*° having compact support in R x R".

To define an entropy solution of (18) we require the kernel & to
be nonnegative and nonincreasing, and to satisfy k(0+) = oo.

A function u € L}, .(RT x R") such that g(u(t,z)) € L}, (RT x
R"™; R™) is an entropy solution of (18) if it is a weak solution of (18)
and if for every ¢ € R and for all nonnegative and nonincreasing
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functions k1, ko such that k(t) = k1(t) + ko(t) and k2 (04) < oo, the
inequality

0

5 (= 9)(uts.0) = d = fua(a) i) ds

+ sign(u(t, z) — ¢) (ko (0+)[u(t, z) — uo(z)]
+ /(o,t} (u(t —s,z) — uU(m))k'Z(ds))

+ div (sign(u(t, z) —c)(g(u(t,z)) — g(c))
< sign(u(t,z) —c) f(t,x)

holds in the sense of distributions.
We then have
THEOREM 3.3. Let ¢ € CY(R;R"), f € L} (RY;L'(R")) and ess

loc

sup zer|f(t,x)| € L} (RT). Take ug € L'(R™) N L>®(R"). Then

loc
there is an entropy solution u of (18) satisfying ess supyepr|u(t, z)| €

L}, (RT). If f € C(R";L"(R™)), then u € C(R"; L"(R")). This

entropy solution is unique among all entropy solutions that satisfy

12\{{;”“(@ ) = uo ()l L1y = 0.

As to convergence there follows (see [4] for more generality):

THEOREM 3.4. Take f = 0. Let supyl||g’(u)|| < oo and assume that
ug € LY(R™) N BV (R"). Let u, be the entropy solution of (17) and
let un be the entropy solution of (18), satisfying (19), with k = kn;
each kn monnegative and nonincreasing. Assume fot kn(s)ds — 1
for each t >0 as N — oo. Then |lue — un||z1(rry — 0 as N — oo,
uniformly on compact subsets of R™.

4. Concluding Remarks

As we have indicated above, significant results on fractional equa-
tions of type
D (u —ug) + Au = f,
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with a € (0,1) and A m-accretive (exemplified by Au =div g(u)) are
available.

It is equally true that results on nonlinear equations with a €

(1,2) are very scarce. One key reason is the lack of a result analo-
gous to Theorem 3.1 above. Thus, in general, only the existence of
weak solutions can be proved. Mostly this is done through energy
estimates. However, the regularity of these weak solutions remains
an open problem.

The authors wish to thank the organizers for a very stimulating

symposium.
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