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Global Existence
of Nonlinear Elastic Waves

RENTARO AGEMI *)

SUMMARY. - We prove the global existence of the solutions to the
Cauchy problem for a nonlinear hyperbolic system describing the
motion for the displacement of an isotropic, homogeneous, hy-
perelastic material. The result is obtained under a null condition
which is the complement of genuine nonlinearity condition given

by John [4].

1. Introduction

The motion for the displacement of an isotropic, homogeneous, hy-
perelastic material satisfies a quasilinear hyperbolic system described
in Section 2. Sideris [8] has proved under some restricted null condi-
tion that this system has a smooth global solution with small initial
data. We derive the null condition reflected the special features of
the system from the John-Shatah observation ([6]) on the Klainer-
man’s null condition. We will also prove that the null condition is
precisely the complement of genuine nonlinearity condition given by
John [4] and guarantees global existence of smooth solution to the
system with small initial data.

The plane of this paper is as follows. We introduce the null
condition in Section 3 and characterize the nonlinear terms by the
null condition in Section 4 and state the main results in Section 5.
The rest of the paper is devoted to the outline of proof of results,
based on energy and weighted L>® — L? estimates.

) Author’s Address: Department of Mathematics, Hokkaido University, Sap-
poro 060, Japan
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2. The equations of motion for the displacement

Let o(t,z),z € R?, be a smooth deformation of the material evolving
with time. The unknown of the problem is the displacement u(t,z) =
(t, z) — = from reference configuration. The displacement gradient
is then the matrix G = Vu with components G;. = 9yu’, where the
spatial gradient will be denoted by V or grad. For the materials
under consideration, the potential energy density is characterized by
a stored energy function o = ()1, J2, J3), where j1, J2, J3 are principal
invariants of the strain matrix C = G +!G + G'G. Thus the motion
for the displacement is governed by the nonlinear system

oo

Ofu—div—— =0 1

t lvaG bl ( )
that is,

3
0 Jdo
t“_zameane (i=1,2,3)

(see [2]).

Since we will consider only small displacement, it is enough to
truncate (1) at third order in w. Then the relevant terms in the
Taylor expansion of o about 5, = 0 are

L+
Zo
6 11171

We make use of the following formula for principal invariants:

1 2
01171 t 0120192 +

o =00+ 011 +02)2 +03)3 + 5

pn=trC
1 = %{(tr C)? — tr C2)
1 3 2 3
93 = 6{(tr C)? = 3(tr O)(tr C?) 4 2tr C°}.
Putting C = G + 'G + G'G and using the relation
do 8]k
BG Z 8jk 4G’

we obtain
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g—g —901 (I + G) + 4(011 + 0) (6 G)T — 20(G + @)
+ 4(o111 + 3012 + 03)(tr G)?T
+2(011 — 012 + 02— 03){2(tr Q)G + tr (G'G)T} (g
—2(012 + 03){2(tr G)'G + (tr G*)I}
—2(09 — 03)(G? + G'G +'GG) + 205'G'G

4o,

For details see [8].

We impose the condition o1 = 0, which implies the reference
configuration is a stress-free state. The Lamé constants A = 4(oq1 +
09) and u = —209 are assumed to be positive. Then it follows
from (1) and (2) that the linear part of (1) becomes the following
hyperbolic linear operator

Lu = &?u — 2 Au — (¢} — 3)grad div u, (3)

where ¢; = (A 4 2u)"/? and ¢; = p'/? correspond to the speeds
of spherical and rotational waves, respectively. Thus the truncated
equations of (1) are formulated by

Lu = div H = F(Vu, Vu), (4)
where H stands for the quadratic term in (2) and the last equality
is definition of F.

We will show that the nonlinear term has the energy symmetry.
To this end, we rewrite i-th component of nonlinear term
3

Fi(Vu, Vu) = > Ci"(Vu)0dpmu? (5)
jfm=1
where
3
Cif" (Vu) = ) Cionut, (6)
k,n=1

Then we have the following proposition which has proved in [8].
PROPOSITION 2.1.
CM(Vu) = CHM(Vu) = C (V).
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3. The null condition

In this section we apply John-Shatah’s observations ([6]) on Klain-
erman null condition to nonlinear elastic waves (3)-(5).

We introduce new unknowns v(t,z) = (Gyu(t, z), Vu(t,z)). The
vector v € R!? satisfies the quasilinear system of first order which is
hyperbolic near v = 0:

3
ag(v)0 + > a;(v)dv = 0. (7)

i=1
We next consider the plane wave solution w of (7) in the form
v(t,x) :w(tas)a s=(-m, (8)

where ( - z stands for inner product of (,z € R®. Then we find
from (7) and (8) that w satisfies the following system in one space
dimension

3
ag(w)dpw + Y (iai(w)dsw = 0. (9)
=1

Making use of the methods in [6] we can prove the following

PROPOSITION 3.1. The quasilinear system (9) is not genuinely non-
linear for any ¢ # 0 if and only if

3
Y O XXX XXX, =0 for X €R’ (N)y

ijk
ijkfmn=1
and
3
ijkfmn=1
- fmn (N)2
- ) XX G XX Xn =0
i1#j,klmn=1

for ¢, X € R® satisfying ¢ - X =0,

where constants ijrg” are defined in (6).
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We call the condition, (N); and (N)2, on the nonlinear term F
the null condition for nonlinear elastic waves. We will list typical
nonlinear terms in F satisfying the condition (N); or (N)s.

LEMMA 3.2. (3) Qpm(0pu?,u*) = 0,007 0ppuf — 0,,0,u7 Opu® in F?
satisfy the null condition. More precisely, Qem(Onu?,uF) satisfy

Z Cf;ﬁ"XngXn =0 for anyi,j,k. (10)

Imn

(ii) The components of Oyu? Oy, rot u and OpOmu’ rot u in F? satisfy
the condition (N)1, where rot u =V Aw. (ii1) Opu? Op, div u, OpOpu?
div u in F* and F = 0pu’ grad (0,,u®) satisfy the condition (N)s.

REMARK 3.3. In [8] Sideris has called (10) the null condition.

4. The characterization of nonlinear term by the null
condition

We first rewrite the coefficients of o9 and o3 in F' the sum of null
forms of type (i) in Lemma 3.2

LEMMA 4.1. The i-th component, Qi (u,Vu) of nonlinear term in-
volving o9 and o3 can be expressed by

202 Y (2Q;r(dju’, u) + Qur (ke u') + Qi (9juF, uF))
jik
+ 203{2(2Qij(8kuk,uj) + Qji(Opu? , ub)) — (coefficients of 203)}.
jik
We find from (2) and Lemma 4.1 that

F'(Vu, V*u) = 4(0111 + 3012)0i (div u)?

+ 2(011 — 0192) (2(div u Au® + Vdiv u - Va') + 35| Vul?)

— 2012 (0;(div u)? + 2 Z Oy, div u du + Z 9;(0juk dpu?)) (11)

k jk
+ Q4 (u,Vu) (i=1,2,3)

Sideris has imposed in [8] the conditions o017 — 012 = 0 and
2(20111 + 6019 — 3012) = 0, having the coefficients of 4(o111 + 3012)
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and —2019 the same nonlinearity condition. Thus Sideris’ null con-
dition is
o111 — 012 = 0 and 20111 + 3012 =0.
Next we rewrite the nonlinear term F' the form involving div u

and rot u. To this end we make use of the following fundamental
identities of vector fields.

Au = grad div u — rot rot u,

|Vu)|? = |rot u|? + Za ub O

ik
9 (div u)? —i-QZQ]k au ,ul) Zaukakuj
ik
Z@k div u d;uf = div u 9;(div ) —i—Zszu dju?).

j-k
Thus we get from them and (11) that

F(0u, 8*u) =2(20111 + 3011)grad(div u)?

+ 2(011 — o12)(grad|rot u|? — 2 rot(div u rot u))
+Q(u, Vu)
(12)

where Q = Q1 + Q2 and

Qb (u, 0u) = 4011 — 2012) > _(Qir(u*, 0ju7) + Qi (9l ).

Jjk
Now we ready to state the characterization of nonlinear term by

the null condition.

PROPOSITION 4.2. The nonlinear term F' satisfies the null condition
if and only if

20111 + 3011 = 0. (13)

Proof. We find from (12) and Lemma 3.2 that nonlinear terms except
for grad(div u)? satisfy the null condition. Since the coefficient of
Oiu'd?u’ in F* corresponds one to one to the one of X¢ in (N)q, it
follows from the condition (N); that 20111 + 3011 = 0. O
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REMARK 4.3. John has proved in [4] that if 20111 + 3011 # 0 then
radial solutions to (3) blow up.

REMARK 4.4. The nonlinear term grad (divu)? has the energy sym-
metry.

5. Statement of the main result

Assume that the nonlinear term F' satisfies the null condition. Then,
from (3), (12) and (13), we can formulate the initial value problem
for nonlinear elastic waves as follows:

Otu — 3 Au — (3 — c3)grad div u

= 2(011 — o12)(grad|rot u|? — 2rot(div u rot u))
+Q(u,Vu) t>0,z€R?,

u=cf(z), du=cg(z) t=0,z€R>,

(14)

where f-g € C°(R?) and ¢ is a small positive parameter. The main
aim of this paper is to prove the following

THEOREM b.1. There exists a positive constant €y such that the ini-
tial value problem (5.1) has a unique global in time C*- solution u
for any (0 < € < gg).

6. Notation

The space-time gradient will be denoted by
0 = (9o, 01, 02,03) = (0, V),

where 5 5
a0 6t ot 3 62 6551 (/L s Ly 3)

The angular momentum operators are the vector fields
Q= (Ql,QQ,Qg) =z AV.

Then the spatial derivatives can be decomposed into radial and an-
gular components

VZEO,«—%/\Q, where r = |z, GTZE-V. (15)
T T T
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We also use the vector fields

Q=QI+U
where
0 0 0 00 —1 0 10
vt=(0o o 1], 0%2=(00 o], U=[-1 00
0 -1 0 10 0 0 0 0

The seven vector fields will be written as

)7
I = (To,---,Tg) = (0I,9).

The linear hyperbolic operator L in (3) commutes with any I'. The
following commutation relations play a crucial role for handling the
nonlinear term grad |rotu|?.

Q grad f = grad Qf, div Qu = Q div u. (16)

In order to obtain weighted L™ — L? estimates we adopt the following
weight functions.

We also use the following norms.

=3 sup sup{2|w e T Dau(s, o)

<k 0SsStaeR® TG
+ le( |z[)T* div u(s, )| + [wa(s, [[)T* rot u(s, z)[},

[10u(s IIk—ZZIIF“ (s, )| L2 (m3)

|a[<k =0

|0ullky = sup [|Ou(s)][k.
0<s<t
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7. L>® — L>® estimates

In order to obtain the weighted L*-estimates for solutions u of (14),
we make use of concrete expressions of solution to the honogeneous
linear problem

Lv = 8?0 — 2 Av — (¢ — ¢3) grad div v = 0,

17
v(0,z) =0, 0w(0,z) = g(z). (a7)
The solution of (17) is expressed in two manners:
: t :
' (t,x) = —/ g'(z + cotw)dS,
4T J|wj=1
1 k
¥ E v ﬁ‘”;‘"’“g o+ et (18)
t Clt 3
- T_ldT/ 2(51k — 3wiwk)gk(:v + Tw)dSw
4m cat lwl=1 =
and
t
v(t,z) = / g(z + c1tw)dS,
47I' |w| 1
(19)

t

1 [y =%y A (vot g)(z +y)dy.
T Jeat<ly|<est

The expression (18) is standard (for instant see [5]). The new ex-
pression (19) will be used to get a good decay of the nonlinear term
grad |rot u|?. To describe the weighted L>-estimates, we introduce
some notations:

200 (5,0) = (1 + |ejs — AN (L+ s+ A)”

c=0,7=0,12

MY (F) =3 sup sup |yl (s, ly) T F (s, ).
la|<k 0<s<t ycR3

Making use of the standard expression (18) and Duhamel’s principle,
we can prove the following
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PROPOSITION 7.1. Let u be the solution to the problem
Lu(t,x) = F(t,x),
u(0,z) = dyu(0,z) = 0.
Then there exist a positive constant C such that
fu(t, )] < O+t + [a]) ™ (log(2 + 0)* M7 o (F)
and
[Bu(t, z)| < Cuw(t, |z])~" (log(2 + 1)) M | (F)
Dult,2)] < Cu(t,]a))™ MY, (F)
foru>1and 5 =0,1,2.
Next, applying div and rot to (14), we get
O} div u — 2 Adiv u

= 2(011 — o12)Alrot u|? + div Q(u, Vu),

9% rot u — c2Arot u

= —4(011 — 012)(rot)?(div u rot u) + rot Q(u, Vu).

(20)

(21)

(22)
(23)

(24)

(25)

To obtain the weighted L*°-estimates for div u and rot u, we will

use the results in [9].

PROPOSITION 7.2. Let vi(i = 1,2) be

t
vi(t,x) = % /0 (t— s)ds/ ‘:1 F(s,z + ¢i(t — s)w)dS,,.

Then there exists a positive constant C such that
[90i(t, 2)] < Cuwi(t,]a)) ™ log(2 +1) MU, (F),

0vi(t, z)| < C(L+ |z) Y1 + |est — |2|) M)

uv,1 (F)

for py>1, v>0, j#1,
and

|0v;(t, 2)| < Cw(t, |$|)_1MIEJ’Z’1(F) for u > 1.

(29)
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8. Weighted L — [? estimates

PROPOSITION 8.1. Let u be the solution to the initial value problem
(14). Then

[u]ng < COn (e + |[Vully47), (30)
provided ¢ <1 and [Vu]jny5)/24 < 1.
Proof. Let ug be the solution of the homogeneous equation

Lug = d}ug — c3Aug — (3 — ¢2)grad div ug = 0,

(31)
UO(OV/E) = &?f(ZE), atUO(Oam) = 6g(ZE)
Applying div and rot to (31), we have
A} div ug — IA div ug =0 (32)
div ug(0,z) = e div f(x), 9 div ug(0,z) = e div g(x).
and
9? rot ug — A rot ug = 0
t 0= 0 (33)

rot ug(0,z) =€ rot f(x), 0 rot ug(0,x) = € rot g(x).
Since L commutes with T' and 87 — ¢?A(i = 1,2) commute with T,
we find that

IT%uq(t, 2)| < Cnewl(t, |z|) L,
T div ug(t, )| < Cnew (t,|z]) 7", (34)
IT% rot ug(t, z)| < Cnews(t, |z]) ™!

for |a] < N.
Set

and apply I'% to (14). Then, T'%u; satisfy the equation in the form

LT =Y Cul'F
b<a (36)
IMup(0,2) = 0 *uq1(0,z) = 0.
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Here we denote again by F = F(Vu,V?u) the nonlinear term in
(14). We define the weight function z(s, A) by

2
2507 =Y 2 (s (37)
j=0
Then it follows from (36), (37) and Proposition 7.1 that

D% (¢, )| < Cn(1+t+ |z]) T (log(2 + t))> My (F),

, (38)
|00 i (¢, 2)| < Onw(t, |2]) (log(2 + )" My 41 (F),

for |a| < N where

M(F) = sup sup |y|z(s, [y))[T* F(Vu, VZu)(s,y)|-
o< 0SSt yeR?

Making use of Sobolev inequality

yl |fy)l <C (Z 19 f |l 2@s) + D a?“QafLZ(R?’))

la|<2 la|<1
and the fact that z(s,|y|) < Cw(s,|y|) we have
lylz(s, ly))[VTu' (s, 9)| [VTu" (3,))|
< [Vl [Vullkro,
for [b] + |¢| < k,0 < s < t, which implies
M(F) < Cp[Vuliri1)/21 [[Vullkts,- (39)
Thus, it follows from (34), (35), (38) and (39) that, for |a] < N,

ITu(t, )|

< Cn(1+t+]z)) " (log(2 + 1) (e + [V vi1)/2.4 ] Vul v4s,e) 5
(40)

|OT % u(t, )|

1 9 (41)
< Cyw(t |a]) ™" (log(2 +1))* (e + [Vulyv12)27,6l [VulIv4a)
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Similarly, apply div and rot to (36), we find from (27) in Proposition
7.2 that

T div u(t, z)|

1 (42)
< Cyw(t,xz)” log(2 + 1) (6 + [VU][(N+2)/2},t||VU||N+4,t) ,

T rot u(t, z)|

g (13)
< Onwy(t, ) 'og(2 4+ 1) (e + [Vulni2) 2.4

Vu||]\7+4,t) )

In order to remove log terms from the inequalities above, it is nec-
essary to further analyze the nonlinear terms. The following point-
wise estimates follows from (15).

|Qem (O’ uP)| < Cr=H(|VQu'| [Vl | + [V2ul (b)) (44)

Hence, it follows from (40), (41), (44) and Lemma 2.1 in [7] that, for
leit — |z|| < ¢it/2,

T°Q(u, Vu)|
<On(l+t+]z))? 1{1}%(1 + legt — |z[]) L (log(2 + t))* x (45)

x (e + [Vulivya)/2.4 [ Vul[iy5.)
In the case where |c;t — |z|| > ¢;t/2, the estimate (41) yields
TQ(u, V)|
< COn(1+2)) 721+t + |2)) "% (log(2 + t))* x (46)
x (e + [VU][(N+3)/2},t||VU||%V+5¢)
Furthermore, the estimates (42) and (43) yield

|T* rot(div u rot u)|
< Cwn (8, o)t Jal) ™ (log(2 + 1))? X (47)
X (& + [Vulyvss)2, I Vull R is,)
Therefore, it follows from (45)-(47) that

IT“Q(u, Vu)| + |I' rot(div u rot u)]

< On{(1L+ £+ Jo) ™ (0 8 fol) + 22 (8 ) +

(U a0 )} (= + [V vyl IVl )

for |Ja| < N and for some p > 1.

(48)
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Since (48) gives the estimate of nonlinear terms in (25), it follows
from (29) that

T rot |
. ) (49)
< Cnwa(t, [z]) ™" (e + [V ray/2,0 [ VUl v g6,) »
which implies
T grad|rot ul|?|
< On{(+ fa) U208 Jal) + (Lt ) TR B} x

X (e+ [VU][(N+4)/2],t||VU||31V+6,t)
for [a| <N and p> 1.

Since (48) and (50) give the estimates of nonlinear term in (24), we
also find from (27), (28) and (34) that, for |a|] < N,

T div ul
. A (51)
< Cnwi(t, [2)) 7" (e + [Vulinys) 2, [Vullvir,)
The commutation relation (16) yields
LT% = 2(01; — 012)(grad T?rot u|? — 20 rot(div u rot u)) (52)

+T°Q(u, Vu).

Making use of the expression (19) for the first term of right hand
side in (52), we find finally from (23), (28), (34), (48) and (50) that,
for |a| < N,

|0 u(t, z)|
. 4 (53)
< Onw(t, |=]) " (e + [Vulynv1s)/2,6l Vullvgr,)
The estimate (30) follows from (49), (51) and (53). O

9. Energy estimates

Let u be the solution to the initial value problem (14). The nonlinear
term in (14) satisfies the energy symmetric condition, because of
Proposition 2.1 and Remark 4.4 in Section 4. Therefore, we can
prove the following energy estimate (see [5]).
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LEMMA 9.1. There exist positive numbers A and cy such that
10ul%; < One?(1 + t) OO+ (54)
provided |Oulo; < A.

Next we will prove the following proposition which guarantees
together with Proposition 8.1 the global existence of solutions with
small data.

PROPOSITION 9.2. Let u be the solution of (14). Then there exist
positive constants Ay < 1 and Cy such that

|0ul|ns < Cne (55)
provided
[Oul((v+9) /21,6 < An- (56)
Proof. Applying T'® to (14), we get
LT% = T°Q(Vu, u) +
+ 2(011 — 012){T® grad|rot u|? + T rot(div urot u)}.

Integrating the inner product of 3,'%u and this equation, we find

E(0T%)(t) = E(dT%u)(0) + 2/0t ds /R3 TQ(Vu,u) - T dx

t
+2(o11 — 012)/ ds/ (T'* grad|rot u|2
0 R3

+ T rot(div urot u) - &;I'%u dx
(57)

where
E(0u)(s) = /R (0l + IVl + (¢ = Bldiv ul’) (s, 2)dz,
The commutation relation (16) and integration by parts yield
/R3 I gradfrot u|?9, % dx

= (—1)lal / Trot u|? - ;,T%div u dx
R3
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Therefore, making use of (48), (49), (51) and (53), we find from
(57) and (58) that the integrands in the right hand side of (57) are
estimated by

2
On(Ls) "] 21+ s — Jall) 1" x
§=0

x (€% + [Vul(v16)/2,5 VUl 1s.5)

for k > 0. Using (54) in Lemma 9.1, we know that the integrals over
R3 in (57) are also estimated by

One® (1 + [0u) v y6)/21,6) (1 + 8) 7OV Pliveosane - (59)

Note that E(du)(t) is equivalent to ||0u(t)||2. Consequently, taking
AN as

AN < min(1, A, 271c]_\,1/<;),

we conclude from (57) and (59) that (55) holds. O
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