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On Topological Smallness
WasHEK F. PFEFFER )

SUMMARY. - We discuss a topological concepts of smallness and
show that the field of real numbers contains a small uncountable
subfield

Introduction

These notes concern topological concept of smallness introduced by
Karel Prikry ten years ago. All topics discussed here, and consid-
erably more, are contained in the principle reference [11]. However,
in contrast to [11] where we strived for the utmost generality, here
we shall concentrate on elucidating the main ideas in their simplest
form. Whenever a choice between generality and sanity is called for,
we specialize.

Throughout, an ordinal is identified with the set of all smaller
ordinals, and cardinals are initial ordinals. Thus if @ and § are
ordinals, then o < 8 and « < (3 are equivalent to o € 8 and o C S,
respectively. As common, w and w; denote the first infinite and first
uncountable cardinal, respectively. Finite and countably infinite sets
are called countable. The sets of all real and rational numbers with
their usual topology are denoted by R and Q, respectively.

By a space we always mean a Hausdorff topological space. The
family of all closed subsets of a space X is denoted by F(X); when
no confusion can arise, we write merely F instead of F(X).
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1. Small spaces

The intuitive reasoning leading to the concept of a small space X
proceeds as follows. We look at the closed subsets of X and try
to distinguish between those which are small and those which are
large. If no such distinction can be made, we conclude that either
all closed sets are small or all closed sets are large. It stands to
reason, however, the empty set cannot be large, and so all closed
sets, including X, must be small. The next definition formalizes our
intuition.

DEFINITION 1.1. A discrimination in a space X is a family D C F
that satisfies the following conditions.

1. Each disjoint family 7* C F — D is countable.
2. If a family D* C D is countable, then X —| J D* is uncountable.
A space X is called small when no discrimination in X exists.

We use the name discrimination to indicate that the family D
discriminates between “large” and “small” closed subsets of X. In-
deed, when “large” and “small” are interpreted relatively to the size
of X, condition 1 states the closed sets not in D are “large”, and
condition 2 states the closed sets in D are “small.” The absolute
notion of smallness emerges from these relative concepts. Obviously,
our intuition is not exact: the empty set, for instance, may belong
to D or F — D.

The idea of discrimination is related to that of o-saturated ideal
[5, Section 27], which motivates the following terminology: a family
S C F(X) is called saturated (or more precisely, saturated in X)
whenever it satisfies condition 1 of Definition 1.1. This terminol-
ogy will simplify the language, and thus enhance the clarity of our
exposition.

PROPOSITION 1.2. Let X and Y be spaces, and let f : X —Y be a
continuous injection.

1. If Y is small, then so is X. In particular, a subspace and a
homeomorphic image of a small space is small.
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2. If X and'Y are small, then so is X x Y.

3. If X is a countable union of closed small subspaces, then X
is small. In particular, each countable space is small.

Proof. 1. If Dx is a discrimination in X, then
Dy ={FeF(Y): f"'(F) € Dx or f~(F) =0}

is a discrimination in Y.

2. Let D be a discrimination in X X Y. Replacing D by the
family of all finite unions of elements of D, we may assume D is
closed with respect to finite unions. The families

Dy = {FeF(X):FxYeD},
Dy = {HeF(Y):X xH €D}

are saturated in X and Y, respectively. As neither Dx nor Dy is
a discrimination, there are sequences {F;} in Dx and {H;} in Dy
such that the sets X — 2, F; and Y — ;2| H; are countable. By
our assumption all sets (F; x Y') U (X x H;) belong to D. Since the
set

XxY — [j [(F;xY)U(X x Hj)] = (X—GF;) x|Y - GHj
j=1

ij=1 i=1
is countable, we have a contradiction.

3. Let X = Uzozl X, where each X, is a closed small subspace of
X, and suppose there is a discrimination D in X. As F(X,) C F(X),
the family D, = {F € F(X) : F C X, } is saturated in X,,. Since
X, is small, there is a sequence {F, 1, Fy2,...} in D, such that
Xn — Ui, Fn, is a countable set. Thus

o0 o0 o0
x-J Fi=U (Xn—UFn,i>
i=1

n,i=1 n=1

is a countable set, a contradiction. O
Theorem 3.9 below shows that the third claim of Proposition 1.2
is false for small subspaces of X that are not closed in X.
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In R, concepts of “smallness” different from ours were consid-
ered previously by many authors. For comparison, we mention three
examples.

e A set X C R has universal measure zero if for every finite
diffused Borel measure p in R there is a Borel set B C R with
X C B and u(B) = 0. Recall a Borel measure p in R is diffused
whenever p({z}) = 0 for each z € R.

e A set X C R is perfectly meager if X N P is meager in P for
every perfect set P C R. Recall a set P C R is perfect when-
ever P is nonempty, closed, and contains no isolated points;
a set M C P is meager in P whenever M can be covered by
countably many closed subsets of P whose relative interiors in
P are empty.

e A set X C R is a A-set if each countable subset of X is a
relative G5 set. Recall a G set is the countable intersection of
open sets, and an F, set is the countable union of closed sets.

While sets having universal measure zero and perfectly meager sets
are intuitively “small,” a priori this is not clear for \-sets. However,
the next proposition shows that A-sets are, in fact, “smaller” than
perfectly meager sets.

PROPOSITION 1.3. Each A-set X C R 1is perfectly meager.

Proof. As each subset of a A-set is again a A-set, it suffices to choose
a perfect set P C R containing a A-set X, and show X is meager
in P. Select a dense countable set D C X, and let H = P — D~
where D~ denotes the closure of D in P. By our assumption, there
is a relative Gy set G C P with D = X N G. Since GU H is a dense
relative G5 subset of P, the set P — (G U H) is meager in P. Now
X is the union of the sets

X-(GUH)CP-(GUH) and XN(GUH)=XNG=D
which are meager in P. O

PROPOSITION 1.4. Let X be a small subspace of R. Then X has
universal measure zero, and it is a A-set.
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Proof. Let B be the Borel g-algebra in R, and let i be a finite diffused
measure on B. For any set £ C R, let

p*(E) = inf{u(B) : B € Band E C B}.

If p*(X) > 0, the basic facts of measure theory [10, Exercises (12-6)]
imply D = {F € F(X) : p*(F) = 0} is a discrimination in X. Thus
p*(X) =0, and we conclude X has universal measure zero.

Select a countable set C' C X, and observe the family (S = {F €
F(X): FNC = (}) is saturated in X. As S is not a discrimination
in X, there is a relative F,; set H C X disjoint from C and such that
X — H is a countable set. Thus X — H is a relative G5 set containing
C, and C differs from X — H by a countable set N = (X — H) — C.
Since countable sets are F,, the set C = (X — H) — N is Gj. O

In Section 3 below we shall present some surprising connections
between small spaces and the spaces that have universal measure
zero, or are perfectly meager, or both.

Our main tool for deciding whether a space is small is a combi-
natorial gadget called Ulam matrix. An Ulam matriz [15] in a set
A is a collection {4, o : n € w, o € wy} of subsets of A that satisfy
the following conditions:

1. ApaNA,s=0for each n € w and each a, f € wy with a # f;

2. A-U Ap o is a countable set for each a € w;.

new

Thus each Ulam matrix in A is a transfinite matrix with w rows
and w; columns, whose entries are subsets of A. Moreover, each row
consists of disjoint sets, and the union of each column differs from A
by a countable set. The next lemma relates Ulam matrices to small
spaces.

LEMMA 1.5. A space X is small whenever there is an Ulam matriz
i X whose entries are closed sets.

Proof. Let {Fy, o} C F be an Ulam matrix in X, and suppose there
is a discrimination D in X. As D is saturated, F — D contains
only countably many elements of each row of {F,,}. Explicitly,
for each n € w, there is an «;,, € w; such that F, 5 € D whenever
ap < B < wp. Since o = supay, is in wy, we have F, , € D for all
n € w. Thus the set X —|J F, o is countable, a contradiction. [

new
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According to our convention, we shall interpret the number 2
as an ordinal, and identify it with the discrete space {0,1} of all
ordinals smaller than 2. For any set A, we denote by 24 the family
of all maps from A to {0,1} equipped with the product topology.
When A is countably infinite, the space 24 is homeomorphic to the
Cantor ternary set, thereafter referred to as the Cantor set.

A point separating family in a set A is a collection £ of subsets
of A such that given a pair of distinct points in A, there is a set
E € £ which contains precisely one of them. The expression “£ is a
point separating family in A,” is often abbreviated to “£ separates
points of A.” The following existence results is due to Ulam [15] and
Rothberger [13].

LEMMA 1.6. In w; there are an Ulam matriz {Cy, o} and a countable
point separating family & such that each C), o is the intersection of
some elements of £.

Proof. 1. (Ulam) Recall that an ordinal is identified with the set of
all smaller ordinals, and order each ¢ € w; into a sequence & = {&, :
n € w}. Forn € w and a € wy, let

Cho={lcw: & =al={{cw :{>aand§, =a}.

If¢ e CpanCpg, then a =&, = 3, and we see that each row of the
matrix {C), o} consists of disjoint sets. Moreover,

UCn,a:{wa1:§>a}.

new

Thus w; — U,,c, Cn,a = @ + 1 is countable, and {C}, } is an Ulam

nEw N,
matrix in wi.

2. (Rothberger) Since the cardinality of 2¢ is at least wq, we can
view w; as a subspace of 2¥, and denote by U/ the countable open
base in wy;. Forn € w and U € U, let

E,v ={{€w :& €U}.
IfUy ={U €U : « € U}, then U, = {a} and we have

N En,U:{gewl:gne N U}:{gengnza}zcn,a.

Ul Ueln
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As the family £ = {E, v : n € w, U € U} is countable, it suffices
to show it separates points of wy. If @ < # < wy, then a = (3, for
ann € w. As a, < a = (,, there is a U € U such that 5, € U and
oy, € U. This means E, ;7 contains 3 but not . O

COROLLARY 1.7. A discrete space X with | X| < wy is small.

Discrete spaces of appreciably larger cardinality than w; are still
small. Indeed, following the techniques of Ulam [5, Section 27|, one
can show that a discrete space X is small whenever the cardinality
of X is smaller than the first weakly inaccessible cardinal. However,
we shall not pursue these investigations: from the topological point
of view, discrete spaces are rather boring. Instead we employ the
full strength of Lemma 1.6, and show there is an uncountable small
subspace of the Cantor set.

PROPOSITION 1.8. The Cantor set contains a small subspace of car-
dinality wq.

Proof. In wy select an Ulam matrix {C), o} and a countable point
separating family £ as in Lemma 1.6. In view of Proposition 1.2,1,
it suffices to find a small subspace of 2¢ whose cardinality is w;;
for 2¢ and the Cantor set are homeomorphic. To this end, we use
Marczewski’s evaluation map e : w; — 2¢ introduced in [6]. A
transparent description of Marczewski’s map is obtained when each
set E € & is identified with its characteristic function ¢ — (FE,£).
For o € wy, define e(a) € 2¢ by the formula

1 ifa€FE,
<€(Oé),E> = <E,Ck> =
0 ifa€w —F.

Since &£ separates points of wi, the map e is injective. Thus X =
e(w1) has cardinality wy, and {e(Cyq)} is an Ulam matrix in X.
Furthermore, e(Cp o) = (\pey €(Ex) where Ej, Es,... are elements
of £. If E € £, then

e(E)={zeX:z(E)=1}

is a closed subset of X. It follows that each e(C}, o) is a closed subset
of X, and an application of Lemma 1.5 completes the argument. [
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COROLLARY 1.9. The Cantor set contains a set of cardinality w
that has universal measure zero and is a \-set.

Corollary 1.9 is a direct consequence of Propositions 1.8 and 1.4.
The reader should compare our relatively straightforward argument
with that of [7, Theorem 5].

REMARK 1.10. It is instructive to separate the four essential steps
which constitute the proof of Proposition 1.8.

1. We construct a particular Ulam matrix {C), o} in w;.

2. By injecting w; into 2, we obtain a countable point separating
family £ in w; so that each Cj , is the intersection of some
elements of £.

3. Using Marczewski’s evaluation map e, we map w; bijectively
onto an X C 2%, and note that the Ulam matrix {e(Cyp o)} in
X consists of closed subsets of X.

4. Observing that in no space an Ulam matrix consisting of closed
sets and a discrimination can exist simultaneously, we conclude
X is small.

2. Small fields

As the proof of Proposition 1.8 is nonconstructive, it tells us nothing
about the topological structure of a small uncountable subspace of
the Cantor set. To an extent, we shall remedy this situation by show-
ing there is an uncountable small algebraic subfield Q* of R. Indeed,
the algebraic structure of Q* mollifies some topological pathologies
exhibited by general small spaces. For instance, Q* is a homogeneous
subspace of R.

It turns out that with no additional effort, we can replace R by
any nondiscrete, separable, and completely metrizable field R. Below
we list a few examples of such fields.

e The fields R and C of all real and complex numbers, respec-
tively. In their usual topology, R and C are completely metriz-
able, and the countable fields Q and Q(\/—_l) are dense in R
and C, respectively.
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e The field Q, of all p-adic numbers [1, Chapter 1, Section 3].
Given a prime number p and an integer z, let

|||, = inf{27% : p* divides z} .

It is easy to verify that |- ||, is a norm in the ring Z of all inte-
gers, called the p-adic norm. The completion Zj, of the normed
space (Z,]|-|) is a compact ring with no zero divisors, and Q,
is the quotient field of Z,. The field Q, has characteristic zero,
is completely metrizable, and contains Q as a dense subfield.

o If f is a meromorphic function in a domain Q C C, let

= su Mz an z OO}
171 = P{H\f(z)\- € Qand f(2) # oo -

Clearly || - || is a norm on the field M(£2) of all meromorphic
functions in Q, and the completion () of (M(Q), || - ||) is
a completely metrizable field of zero characteristic. The field
of all rational functions in C with coefficients in Q(\/—_l) is
countable and dense in IM(2).

e Let £(K) be the field of all formal Laurent series x = Y oo axt"
where n is an integer, @y, an41,... belong to a countable field
K of any characteristic, and a,, # 0 [1, Chapter 1, Section 4,
Problems 6 and 7]. The norm p in £(K), given by p(z) = 27",
defines a complete metric on £(K). The countable field K (t)
of all rational functions in ¢ with coeflicients in K is dense in
£(K). Clearly, the characteristics of K and £(K) are the same.

As R is separable, it contains a countable dense subfield; for a sub-
field of R generated by a countable set is countable. We fix such a
subfield @ of R, and a complete metric d on R compatible with the
topology of R.

The following lemma is due to Mycielski (see [8], and also [17,
Theorem 6.5]). In the special case of R = R and @ = Q, von
Neumann [16] proved the lemma by a different method.

LEMMA 2.1. There is a set C' C R that is algebraically independent
over Q) and homeomorphic to the Cantor set.
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Proof. Since @ is countable, the family of all nonzero polynomials
over () in any number of indeterminates can be ordered to a sequence
P1,P2,--.. Suppose pi is a polynomial in s(k) indeterminates, and
observe that the set

Zy, = {(al, R ,as(k)) € Rs(k) :pk(al, R ,as(k)) = 0}

is a closed and contains no nonempty open subset of R3(K).

Throughout this proof, the symbols (i1 - - -i,) and (i1ig---) de-
note, respectively, finite and infinite sequences of zeros and ones.
The closure of a set A C R is denoted by A~.

Since R has no isolated points, for each nonempty open set U C
R, we can find two disjoint nonempty open sets V' and W with
arbitrarily small diameters and such that V- UW ™ C U. Using this
fact repeatedly, for all sequence (i1 ---14,) we construct inductively
nonempty open sets Uj,..;, of diameters less than 1/n so that the
following conditions are satisfied.

1. Uiy 10NUjy ey 11 = (¢ and Uz:---in_l(] UU{, 1 C Uiy 1

lp—1

2. f1<k<mnand (il---dl),..., (i‘i(k) e z'fl(k)) are distinct, then

n

[Uil...il X oo XU ) <s(k):| N Z, = 0.
Ll S0

Assuming the sets U;,...;, , have been already constructed, it is easy
to produce nonempty open sets Uj,..;, of diameters less than 1/n so
that condition 1 is satisfied. Let 1 < k <n, and let {(il ---4l),...,

n
(ii(k) e ifl(k))) be distinct (note this is possible only when s(k) <

2™). Since Zj contains no nonempty open subset of R*®) and since
(Ui%___i}z X «e0 X Uz-i(k)___z-fl(k)> is a nonempty open subset of R*®) | we

can find a point
(a1, ayp)) € [Uz}...i; X X Uﬁ(’“)...iz(’“)] — Z; -

Making the sets UZJIZ% smaller, we may assume that (Ui%___i}z X oo X
Uil(k)---ifl(k)> is a neighborhood of (a1, . .., ay)) which is disjoint from
the closed set Zi. As such adjustments of Uzjlzjn may be repeated
finitely many times, condition 2 can also be satisfied.
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Since (R, d) is complete, the set

n=1 n=1

=1 (i} i) (i1d2+)

is homeomorphic to the Cantor set by condition 1. Let aq,...,a, be
distinct points of C, and let p; be any polynomial with s(k) = r.
If n > k is an integer with 2" > r, then there are disjoint sets
UZ'}___Z"II’L, ..+, Ujr..ir containing, respectively, the points ai,...,a,. It
follows from condition 2 that pg(ai,...,a,) # 0. O
Lemma 2.1 and Proposition 1.8 suggest how to obtain an un-
countable small subfield of R containing ). We start a set C C R
which is algebraically independent over ) and homeomorphic to the
Cantor set, and find a small uncountable subspace X of C. Then we
show that the subfield [X] of R generated by Q U X is still small. To
carry out this program, we must understand the structure of [X].
As usual, we denote by Q(t1,...,t,) the field of all rational func-

tions in the indeterminates t1,...,t%, with coefficients in @), and we
let
n
Q(trs. - otn) = Qt1, -, tn) — | J Qb1+ - tict tigrs - tn) -
i=1
Thus Q'(t1,...,t,) is the collection of all rational functions from

Q(t1,...,t,) that depend an all indeterminates t1,. ..., %,.

Recall d is a complete a metric in R compatible with the topology
of R. Let C C R be a fixed algebraically independent set over () that
is homeomorphic to the Cantor set. The set C is compact, and the
natural order in the Cantor set defines an order < in C, which is
closed in C? when viewed as a relation on C. For X C C and
m,k = 1,2,..., denote by X, the set of all (z1,...,2,) € X™
such that z; < --- <z, and d(z;,z;) > 1/k for alli,j =1,...,m
with ¢ # j. Note that each X,  is a relatively closed subsets of X";
in particular, each Cy, j is compact.

Since C is algebraically independent, every r € Q' (t1,...,ty,) de-
fines a continuous map (a1, ..., an) = r(ai,...,an) from g2 | Crk
to R. This map and its various restrictions are still denoted by 7.
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LEMMA 2.2. For any X C C, we have

o

xXl=qQu U (X

mk=1 r€Q'(t1,....tm)

Proof. Denote by K the right side of the desired equality. Since
each map corresponding to an r € Q'(t1,...,ty) performs only
the field operations in R, we have K C [X]. On the other hand,
K is closed with respect to the field operations in R; for the set
Un—; Q'(t1, ..., ty) of all rational functions in any number of inde-
terminates with coefficients in Q is a field. If r € @'(#1) is given
by r(t1) = ti, then X = X, = r(X;y) for £k = 1,2,.... Thus
Q U X C K and the lemma is established. O

LEMMA 2.3. Let A = {ay,...,an} and B = {by,...,b,} be subsets
of R each consisting of distinct elements, and let AU B be alge-
braically independent over Q. If r(ay,...,am) = s(by,...,by) for
somer € Q' (t1,...,ty) and s € Q'(t1,...,t,), then A = B.

Proof. Assume m < n, and renumerate the elements of A and B so

that for a nonnegative integer £ < m we have a; =b; fori =1,...k,
while the sets {axi1,...,an} and {bgi1,...,b,} are disjoint. The
formula

h(tl,...,tn) = r(tl,... ,tk,ak+1,... ,am)

defines a rational function h in the indeterminates t1,...,%, with
coefficients in the transcendental extension Q(ag41,...,am) of Q. As
bi,...,b, are algebraically independent over Q(agt1,...,a,) and

h(bl,...,bn):r(al,...,am):s(bl,...,bn),

we see that h = s. Since s depends on the indeterminate ¢,,, we
conclude k = n and the lemma follows. U

LEMMA 2.4. Let X C C, let m and k be positive integers, and let r
belong to Q'(t1,...,tm). Then the map 7 : Xy, ) — [X] is a homeo-
morphism and the set r(X,, 1) is relatively closed in [ X].

Proof. 1t follows from Lemma, 2.3 that the continuous map r : Cy, , —
R is injective, and as Cp, j is compact it is a homeomorphism. Thus
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it suffices to show that 7(X,, ) is a relatively closed subset of [X].
To this end, let z be a point of the relative closure of 7(X,, ) in
[X]. As r(Cp, k) is a compact set containing 7(X,, ), we see that
z € r(Cpy ) N[X]. Hence z = r(x) for an = (a1,...,an) in Cp k.
Note z € @ because aq,...,a, are distinct points of C'. Conse-
quently, z = s(y) for an s € Q'(t1,...,t,) and y = (b1,...,by) in
Xpp. Since a; = --- = ay, and by <X --- = by, another application
of Lemma 2.3 shows x = y. In particular, m = n and z belongs to
Crk N Xinp C X k- We conclude z € r(X,, 1). O

THEOREM 2.5. There is a small subfield Q* of R which has cardi-
nality w1 and contains Q.

Proof. In view of Propositions 1.8 and 1.2,1, the set C contains a
small subspace X of cardinality wi. Lemma 2.4 together with Propo-
sition 1.2,1 and 2 implies that each 7 (X, ) is a closed small subspace
of [X]. From Lemma 2.2 we obtain

xX]={ U{=r|u U U &),
TEQ mk=1 r€Q’(t1,..stm)

and hence [X] is small by Proposition 1.2,3. A straight forward
calculation reveals the cardinality of [X] is w;. O

3. Set-theoretic remarks

It follows from Theorem 2.5 that, without any set-theoretic assump-
tions, there is an uncountable small subfield Q* of R. In view of
Propositions 1.4 and 1.3, the field Q* has universal measure zero
and is perfectly meager. All three concepts, small, universal mea-
sure zero, and perfectly meager, are based on similar ideas akin to
that of o-saturated ideal [5, Section 27]. Thus a natural question
arises: do small subspaces of R coincide with the sets that have uni-
versal measure zero, or are perfectly meager, or both? While we
are unable to answer this question within the usual axioms of set
theory, i.e., within the Zermelo-Fraenkel axioms together with the
axiom of choice (abbreviated as ZFC), we show the negative answer
is consistent with ZFC. This result has been obtained previously in

[4].
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We say a set X C R is concentrated on a set C C R whenever
X — @ is countable for each open set G C R containing C. A set
X C R concentrated on a countable set C C R is called concen-
trated. Intuitively, each concentrated set is close to a countable set,
and hence “small.” In view of this, the next lemma is somewhat
surprising.

LEMMA 3.1. Let X be an uncountable subset of R that is concen-
trated on a countable set C C X. Then X is not small.

Proof. The family D = {F € F(X): CNF =0} is saturated in X;
for C is countable. Let F' € D, and let H be a closed subset of R for
which XNH =F. As C C X and CNF = (), the set C is contained
in the open set R — H. Thus F = X — (R — H) is a countable set.
Since X is uncountable, D is a discrimination in X. O

LEMMA 3.2. Fach concentrated set X C R has universal measure
zero.

Proof. Let X be concentrated on a countable set C C R, and let p be
a diffused finite Borel measure in R. As p is regular [3, Corollary 6.8],
there is a G5 set G with C C G and u(G) = 0. Since D = X — G
is countable and p is diffused, u(D) = 0. Observing X C G U D
completes the argument. O

The continuum hypothesis (abbreviated as CH) asserts the car-
dinality of R is w;. Both CH and —CH (the negation of CH) are
consistent with ZFC. This means if ZFC is consistent, then so are
ZFC + CH and ZFC + —CH (see [5]). We say {z, : @ < Kk} is an
enumeration of a set X if k is an ordinal and « +— z, is a bijection
between x and X.

PROPOSITION 3.3. Assuming CH, there is an uncountable set L C R
that meets each meager subset of R in a countable set. In particular,
L is concentrated on each countable dense subset of R, and hence it
has universal measure zero.

Proof. In view of CH, we can enumerate all closed subsets of R whose
interior is empty as {F, : a < w;}. Select g € R — F, and pro-
ceeding by transfinite induction, for each ordinal @ < wy with o > 1,
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let
Ca:{$52,3<a}U UF/}
B<a

and select an ¢, € R — C,. This is possible by the Baire category
theorem [14, Chapter 7, Theorem 16], because C, is meager. The
set L = {z, : @ < w;} is uncountable, and L N F, is a subset of the
countable set {zg : < a}. As each meager subset of R is covered
by countably many sets F,, the first claim is established.

If G C R is open and dense, then R — G is a closed set whose
interior is empty. Thus L — G = L N (R — G) is countable by the
previous claim. O

The set L of Proposition 3.3 is called a Luzin set [7, Section 2].

COROLLARY 3.4. Assuming CH, there is a set X C R which has
universal measure zero but it is not small.

Proof. Use Proposition 3.3 to select a Luzin set L, and observe that
LUQ is still a Luzin set. The corollary follows from and Lemmas 3.1
and 3.2. ]

Rothberger [12] proved the next proposition. We omit its proof,
which is complicated and rather technical.

PROPOSITION 3.5. Assuming CH, there is an uncountable A-set X C
R concentrated on Q.

COROLLARY 3.6. Assuming CH, there is a set X C R which is per-
fectly meager but not small.

Proof. The proof is similar to that of Corollary 3.4. Use Proposi-
tion 3.5 to find a A-set X C R concentrated on QQ, and let Y = X UQ.
By Proposition 1.3, the set X is perfectly meager, and so is Y. An
application of Lemma 3.1 completes the argument. U

We turn our attention to the subsets of R that have universal
measure zero and are perfectly meager simultaneously. Our tool for
studying these sets will be so called Q)-sets, which are “smaller” than
A-sets. A set X C Ris called a J-set if every subset of X is a relative
G set, and hence also a relative Fj set.

PROPOSITION 3.7. Every Q-set X C R with | X| < wy is small.
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Proof. Let |X| = wi. In view of Lemma 1.6, there is an Ulam matrix
{Cha} in X. Since each C,, is a relative F, set, there are sets
Fy . € F(X) such that Cp o = U2, Fr, for each n € w and each
a € wi. Choose a bijection f : w X w — w, and denote F/f’a by
Hypp),a- Then {H; o} is another Ulam matrix in X, and X is
small by Lemma 1.5. U

Without proof we present the following consistency result estab-
lished by Fleissner and Miller [2].

PROPOSITION 3.8. It is consistent with ZFC that there is a Q-set
S C R of cardinality w1 which is concentrated on Q.

THEOREM 3.9. Let S be the set from Proposition 5.8.

1. S is small, hence it has universal measure zero and is perfectly
meager.

2. SUQ has universal measure zero, is perfectly meager, but it is
not small.

Proof. The first claim follows from Propositions 3.7, 1.3, and 1.4.
As Q is countable, the set X = S U Q still has universal measure
zero and is perfectly meager. However, X is not small according to
Lemma 3.1. U

Theorem 3.9 displays well the unintuitive property of small spa-
ces: a small subspace of R may cease to be small when a countable
subset of R is added to it. This unpleasantness disappears when
in the definition of discrimination we employ Borel sets instead of
closed sets.

We say a space X is Borel-small if there is no discrimination in
X consisting of Borel sets. It is easy to show Borel-small spaces
satisfy claims 1 and 2 of Proposition 1.2. Following the proof of
Proposition 1.2,3, we see that a space X which is the union of its
Borel-small subspaces Xy, Xo,... is Borel-small whenever each X,
is a Borel subset of X. Since each countable subset of any space is a
Borel set that is Borel-small, any Borel-small subspace of R remains
Borel-small when we add to it a countable subset of R.

PROPOSITION 3.10. Each small space is a Borel-small. It is consis-
tent with ZFC there is a Borel-small space X C R that is not a \-set;
in particular, X is not small.
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Proof. If B is a discrimination among the Borel subsets of a
space X, then D = BN F(X) is a discrimination among the closed
sets of X.

If S C R is the uncountable @)-set from Proposition 3.8, then
SUQ is a Borel-small space. Suppose SUQ is a A-set, and find a G
set G CRwithQ=(SUQ)NG. Tt follows Q C G and SNG C Q.
The set S — G is countable, since S is concentrated on Q. Thus
S =(S—G)U(SNQG) is countable, a contradiction. O

Our last proposition shows that Borel-small spaces, which may
be “larger” than small spaces, are still pretty “small.”

PROPOSITION 3.11. Let X be a Borel-small subspace of R. Then X
has universal measure zero and it is perfectly meager.

Proof. The argument employed in the prove of Proposition 1.4 re-
veals immediately X has universal measure zero.

As each subspace of a Borel-small space is Borel-small, we may
assume X is a subset of a perfect set P C R, and show X is meager
in P. Let C be the family of all Borel subsets of P which are meager
in P,and let D ={CNX :C € C}. Suppose {D, : @ < w1} is an
enumeration of a disjoint family of relative Borel subsets of X not
in D, and for each ordinal @ < wj, find a Borel set C, C P with
D, =C,NX. Thesets B, = Ca—Uﬂ@é (' are disjoint Borel subsets
of P. Since D, C B, for each @ < wy, no B, is meager in P. As
every Borel subset of P has the property of Baire [9, Theorem 4.3],
each B, contains a set G, — N, where G, is a nonempty relatively
open subset of P, and N, is meager in P. The set P is separable,
and so there are distinct sets G, and Gg with G, N Gg # 0. The
Baire category theorem [14, Chapter 7, Theorem 16] implies

BaﬂBgD(GaﬂGg)—(NaUNg)?éw,

a contradiction. Thus D is saturated in X. On the other hand, D
contains all singletons of X, and it is not a discrimination in X.
Hence X € D, and the proposition is proved. ]

The question whether Borel-small subspaces of R coincide with
those sets which have universal measure zero, or are perfectly meager,
or both, is completely open.
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