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Everywhere Regularity for a Class of
Elliptic Systems with p, ¢ Growth
Conditions

ANNA PAOLA MIGLIORINI ()

SUMMARY. - We shall prove everywhere reqularity for weak solu-
tions of elliptic systems of the form

0 o
Z (9—$Z-a (z,|Dul) ug, =0

under general p, q growth conditions and in particular for mini-
mizers of a class of variational integrals, both degenerate and non
degenerate ones, whose models are

Iu) = /a(m) | Dul’® da,
Q

L) = /Qa(m) (1+1Duf) ™ d.

1. Introduction

In this paper we study everywhere regularity for weak solutions of
elliptic systems of the form

S48 (@, Du) =0 (1)
=1

a
ox;
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for a = 1,2,..., N and z € €, where {2 is an open bounded subset
of R" (n > 2) and Du is the gradient of a vector-valued function
u:Q— RY (N >1). We assume that the functions a$ (z, ¢) depend
only on the modulus of the gradient |Du| in the following way

af (2. Du) = a (x| Dul) uS,

for a positive function a (z, t) increasing with respect to ¢. Therefore
the vector field {a{'} is the gradient with respect to the {-variable of
a real function f = f (,&), (z,¢) € Q x RY™ and a weak solution
of the system (1) is a minimizer of the integral of the Calculus of
Variations

I(u)= /Qf (z, Du) dz, with f(z,Du) = g (z,|Dul) (2)

where, since

0§ (2,6) = feo (2,6) = %5

a(z,t) is related to g (x,t) by

gt (.’L‘, t) ]

a(z,t) = ;

We assume general p, q growth conditions, with 2 < p < ¢, for
the integrand f and we extend the classical regularity results known
for the so-called natural growth conditions when p = q (we refer to
the books of M. Giaquinta [6] and E. Giusti [8]).

In the context of vector-valued problems (N > 1), the only kind
of regularity we can expect in general is partial regularity, introduced
by Morrey [14] in the late 60’s. Nevertheless K. Uhlenbeck [16], in
a fundamental paper of 1977, proved everywhere C regularity for
local minimizers u € Wﬁ)’f (Q, RY ) of the integral

/ | Dul|? dz,
Q

where p > 2 and, in general, for local minimizers of the integral

/Q g(|Du]) da,
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where g (t) behaves like tP. This result has been generalized in dif-
ferent ways. Dependence of the integrand on (z,u) is allowed by
Giaquinta-Modica in [7], where the authors consider integrands of
the type

[ u,8) = g(z,u,[£]).

They proved everywhere regularity in the scalar case (N = 1) and
partial regularity in the vectorial one. These results have been ex-
tended to 1 < p < 2 by Acerbi-Fusco in [5]. In both works, only
natural growth conditions are allowed for the integrand.

Non standard growth conditions have been introduced in the
scalar case by Marcellini in [10], [11], [12], where everywhere reg-
ularity has been proved. Specific studies of regularity in the vector-
valued case can be found in the papers by Acerbi-Fusco [1], Choe
[3] and Lieberman [9]. General growth conditions have been con-
sidered in the vectorial case by Marcellini in [13], where everywhere
regularity has been proved in the case independent of (z,u).

Recently Chiadd Piat-Coscia in [15] obtained Holder continuity
of local minimizers of integral functionals with variable growth ex-

ponent, whose model is
/ | Du|*® dg
Q

and this result have been extended to the vectorial case by Coscia-
Mingione in [4].

In this paper, more generally, we obtain regularity of minimizers,
for example, of the model problem

b(z)
2
/ a(x) (u + |Du|2) dzx
Q

with a (z), b(z) € W (Q), a(z) = a9 >0, u=0o0r u =1 and
2 < p < b(z) < g with a bound on the ratio 1.

More precisely, we give some a priori estimates when p and q
satisfy

n
2SpsSq< 5P (3)
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(simply 2 < p < ¢ if n = 2), while we prove local Lipschitz continuity
if
n 4+ 2

2<p<g< p. (4)
We assume the following p, g growth conditions on the integrand
f:
2\ 2 i N2
m (et IP) A< DD Fragr (@ NN <M (1) TN
i7j7a7ﬂ
(5)
9 p+:11—2
[Fega, (.| < M (1+ 18 (6)

and we consider exponents p and g related by (3) or by (4). In order
to prove the a priori estimates we have to use different methods for
the case p =0or p = 1.

In order to state one of the main results of this paper, let us
denote by B, and Bpg balls compactly contained in € of radii p and
R respectively and with the same center. We prove the following
theorem.

THEOREM 1.1. Under the assumptions (3), (4), (5) and (6), every
weak solution u of the system (1) and every minimizer of the integral
(2) is of class Wli’coo (Q,RY) and, for every p, R, with 0 < p <
R < 1, there exists a constant ¢ = ¢(p, R,n,N,p,q,m, M) and an
exponent o = « (p, q,n) such that

1D, e < 1

[1+ f(z,|Dul)] dm}p .
Bpg

The exponent « can be estimated explicitly by

2p
(n+2)p—nq

if n > 2; otherwise, if n = 2 and % > 1, then

o =
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where 6 is any number such that % <6< ﬁ ; finally, if n = 2 and
p=gq, then a = 1.

We make use of the two methods introduced by Marcellini in
[11] and [13], combining them in order to handle the technical prob-
lems due to the z-dependence. We obtain an explicit estimate of the
L*-norm of the gradient Du in term of its L¢-norm and, by an inter-
polation technique, an estimate of the L°-norm of the gradient Du
in term of its LP-norm. Hence, by using these a priori estimates and
by an approximation of the original problem with regular integrals,
we prove the local boundedness of the gradient of minimizers.

2. Regularity

We consider the integral of the Calculus of Variation

I(u):/Qf(m,Du)dw, with [ (z,Du) = g (z,|Dul) (7)

where  is an open bounded subset of R™ (n > 2), Du is the gradient
of a vector-valued function v : Q@ — RN (N > 1) and f: Qx RV" —
R has the form f (z,€) = g (=, |¢]) for z € Q and £ € RV™ (¢ = (¢8),
i=1,2,...n, a=1,2,...,N). We assume that the function
g=g(z,t): Q x[0,4+00] — [0, +00]
is of class C?, with g; (z,t) = % positive and increasing with
respect to ¢ for a.e. x € Q.
In term of systems, we deal with

Z ai¥ (z, Du) = Va=1,2,..,N, (8)
— ox;

where

af (z,6) = feo (2,€) = %gﬁ Va=1,2,...N,Vi=1,2,..n.

We consider exponents p and ¢ such that

n
2SpsSq< 5P (9)
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(simply 2 < p < g < +o0, if n =2). About the function f (z,¢) and
its derivatives with respect to = and &, we assume that there are two
positive constants m and M such that for every A and ¢ € RM™ and
for a.e.z € (2 we have

p—2 q—2

m (b)) T A<D Fragr @O NN <M (1) TP
i,J,000
(10)
p+q=2
[Feew, @8] <M (u+1g?) (11)

foruy=0o0ru=1,Va=1,2,...,N, Vi, s =1,2,...,n.

A minimizer of the integral (7) is a function u € W2 (Q,RY)
such that f (z, Du) € L}, () with the property that I (u) < I (u+ )
for every ¢ € C} (€, RY). A weak solution of (8) is a function
uwe Whi (Q,RN) such that for every ' CC Q and for every test

loc

function ¢ € Wol’q (2, RY), u satisfies

/Zﬁ@mWMMMﬂLWZMWW.(m
Q=1

By assumption (10), every minimizer u of the integral (7) of class
w4 (Q, RV ) satisfies the Euler’s first variation

loc

/E:kM%wa%WMmzo,Va:Lszm
= (13)

Vo € W, (Q,RY)

and thus u is a weak solution of (8).

Let B, and Bp balls compactly contained in €2 of radii p and R
respectively and with the same center, and such that 0 < p < R < 1.
The main result of this section is the following a priori estimate.

THEOREM 2.1. Let (9) to (11) hold. Then every minimizer u of
the integral (7), of class Wﬁ)’q (Q,RN), s of class Wli’coo (Q,RN).

C
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Moreover there are positive numbers C, C', 3, 6 such that, for p =1
we have

: C 4
sup (1 + |Du|2) ’ < —— 5 (1 + |Du|2) .
2E€B, (R—p) L(Bg)
and for p =0

c’ 0
sup (1+|Du|) K ———= ||(1 + |Du .
s (14 1Dul) < oy 0+ 1D g
Let us start with some lemmas from linear algebra. They can be

proved using the Cauchy-Schwarz inequality (as in [11], lemmas 2.4
and 2.5).

LEMMA 2.2. Under the assumption (10), there is a constant c¢; such
that for every A, £, n € RN and for a.e.x € Q we have

1

2

q—2

Z fgg&]ﬂ (z,€) 771%\}8 <a Z qué]ﬁ (z,€) >‘za>‘f (/L + |§|2> ) Il -

i7j7a718 i7j7a718

LEMMA 2.3. Under the assumptions (10) and (11) there is a constant
co such that for every \, ¢ € RN™ and for a.e.x € Q we have

1
2
q
fo?:cs (513,5) )\za < C2 Z qug]ﬁ ($,§) >‘za>‘§3 (/L + |§|2> !
i,Q i7j’a7ﬂ
Vs=1,2,...,n.

By using (10), with the technique of the different quotient (see,
for example Theorem 1.1 of Chapter II of [6]; in this context, see
[11]), we obtain that u admits second derivatives, precisely that u €

I/Vlif (Q, RN ) and satisfies the second variation

/ Z f{f‘ms (m,Du) (pgi (‘/E) + Z fg;lg]@ (.’L‘,DU) (pgiugsmj dr =0
2 ia ij0,8
(14)
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Vs =1,2,...,n, Vo = (¢%) € Wol’q (Q,RN) .

Formally, we derive this equation from (13), taking as test func-
tion ¢ = 1, and integrating by parts (see [11] for details).

Fixed 1 < s < n, let n be a positive function of class Cg ()
and we choose ¢® = n?ul @ (|Du|) for every o = 1,2,..., N, where
® is a positive, increasmg, bounded, Lipschitz contlnuous function
defined in [0,400), (in particular ® and @’ are bounded, so that
Y E Wol’q (Q,RY)). Then

0%, = 2mz;ug, @ (| Dul) + n*ug @ (| Dul) + n*ug @ (|Dul) (| Dul),,

and from (14) we obtain

0 = /QU@ZfE?:vs (z, Du) Ny, uy, dx (15)
Q 1,0
/ 2<I>Zf§a (z, Du) ul_, dv (16)
+f PY Fin (e Du, (D), (1)
1,00
/217@ Z fgagﬂ z, Du) nmzumsui%dm (18)
Q 7]7 75
/ 2% Z fgagﬂ z, Du) ug_,. l,sm dx (19)
Q 7]7 7ﬂ
/ 2 fg%ﬁ , Du) ug uy o (|Dul),, dz. (20)
"77 ’/3

Let us start with the integral in (15). By the assumption (11),
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we have

/ 277(1)Zf§°‘ (2, Du) Ny, uy, de (21)

pt+q—2

< M/2n¢’ (u+lDu|2) b Ineud, | de
Q2 i,Q

ptaq

< co/2n|Dn|<I><,u+|Du|2) Y d.
Q

About the integral in (16), from lemma (2.3) and by using the
inequality |ab| < ea® + £b?, we obtain

/ Q@nga (z, Du) ul_, dx (22)

1
2

< a0 X fpg @Dl | (ur D) do
737 76

< 6260/77 () Z f§a§5 z, Du)u msm ﬁsm dz
7]7 7!8

q
_|__2/ 772(13 (M + |Du|2) Y dx
46(] 0

N
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Similarly, by lemma (2.2), from the integral (18) we have

/ 2nd Z féagﬁ z, Du) ng,ug, uﬂ dz (23)
15,058

N

< 01/52277(D Z f§a§5 z Du) Uy, xs gsmj
7]7 7ﬂ

M=

2 dz

-2
) (,u + |Du|2) ! Z ‘nmiug‘s

a,l

< 0361/’17 P g fgagﬂ z DU) ugsmjdm
Q
7]7 7ﬂ

q
+—3/ D2 @ (u+ |Du|2> ? d.
461 0

If we sum with respect to s from 1 to n these estimates, they
remain the same except for the constants. We continue to use cg, co
and c3 even if changed. Let us consider the integral (17) summed
with respect to s. By the assumption (11), we have

[0S fepe. (@ Dy s, (1Dul), do (24)
Q 1,00,
< [y S (et 10up) " g, (Dul,
zas
< M/ 20y u+|Du|2) " |(|Dul),,
zas
! '
. (M + |Du|2) : (u + |Du|2) dzx
1 p—2
2 2 2
< e [ 070 (e Duf?) (e IDuf?) * 32 |(Dul),
Q2 i

1 q
bt [ 0! (et Duf)” (it |Duf?) da.
462 0
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In order to estimate the integral in (20), summed with respect to
s, we remember f (z,£) = g (z,|{]) and we calculate

£
fp 0.6 = 2l
gtt( a|§|) gt (‘/Ea|£|) Bea gt (‘/Ea|§|)
faﬁ$7§ = < - §‘§‘+75aﬁ-
I3 5]_ ( ) |§|2 |£|3 g >t |§| &5 fj
Moreover we have
(1Dul),, = 55 I (25)
Since M is increasing with respect to ¢, it follows that
0< 9 gi(@,t)  gu(z, )t —gi(2,1)
ot ot =
and, using also the fact that g, (z,t) is positive, we can prove that
S v @ Duyus il (Dul, >0 (26)
’.7 S a’ﬂ
In fact

Z fgagﬂ z, Du) ug, uf o; (|Dul),,

7]78 a76

_ gu (= a|§|)_gt(37a|§|)) o, B .0 D
< |§|2 |§|3 i,J%uﬂumlum]umsl’] Ts (I u|)

AL S s e, (D,

©,8,Q

gu (@, [€]) — ge (2, [€) e " y
( €] €2 )Z 8. ([Dul), ug, (|Dul),,

,8,0

+g1 (z, |§|>Z ((IDul),.)?

gu (2. 1€]) g (2, €]) "
( - 5 ° (1Du]), )

z,s,a

+9¢ (@, ISI)Z((IDUI)) 20
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and thus(26).

From the second variation equation (14) and the previous esti-
mates (21), (22), (23), (24), (26), we obtain that

[ 70 3 fgg @ D0l do
2 ijas 7
ptaq

< 60/277|D77|<I>(M+IDUI2) ' da
Q

+C250/ 772@ Z fg_ag_ﬂ (:E,D’LL) ugsmiugsxjdm
2 ijas

q
+C_2/n2q> (u+ Du?)” da
4eo Ja

+0361/772q) Z fﬁ_ag@ (:E,D’LL) ugixsugsxjdm
2 ijas
C3 %
+4—/ |Dnl* @ (u+ IDUI2>‘ dz
€1 Jq
p=2

1
3 2
veaea [P0 (e 1Duf)” (u+ 1Duf) T Y [(DuD, [ do
o 4

)

(u + |Du|2) : dzx.

o

C4

+4€2

e’ (u + IDUIQ)
Q

Now we can choose ¢y, €1 both in the second and the fourth
integral in order to have the same integral as in the first member.
From now on we relabel the constants in a generic ¢, whose value



EVERYWHERE REGULARITY FOR A CLASS etc. 215

may change from line to line. Thus the inequality above reduces to

/Q 2% Z f§a§5 z, Du) ug_,. xsx dx (27)

1,50,
p+tq

/ 2n |Dn| @ (u + |Du|2>T dx
Q
q
+/ 7’ ® (,u + |Du|2) ? dx
Q
q
+/ Do @ (s + |Duf?) da
Q
! b2 ,
+C462/n2q>' (i 1Du?)* (ut10uP) = 3 |(Dul), [ deo
Q .

2

N

o

q
C 5
4L 772<I>'<u+|Du|2) <u+|Du|)
Q

462

From (25), by using the Cauchy-Schwartz inequality, we see that

2 2
LICHIES SN s EME T
1,8,Q
and therefore we infer from assumption (10) that
/Q 2% Z fgagﬁ z, Du)ug . ﬁsm dz (28)

7.77 76

p=2
> m/n2<I> u+|Du|2> ’ ‘D2u‘2dm
Q

> m [ 1P (et D) T D (Dul)
Q

Now we allow only test function ® satisfying

(1) (1 + )7 < cod (1) (29)

for a certain constant ¢y > 1 depending on the test function. From



216 A. P. MIGLIORINI

(27) and (28), we obtain

p—2
2

c [ @ (Dul) (u+1Duf) * 1D (Dl da
< /Q 2| Dn| @ (1Dul) (+ |Duf?) * da

+ [ (P +1DaR) 8 (Dul) (o + D) d

p—2
2

+escaea | @ (Dul) (e [Duf) * D (D) do
Q

q
+c—46¢/n2©(|Du|) (i + [Du?)* da.
deo Q

By choosing €2 in the second integral above, we can have the
same integral as in the first member. Hence

¢ [ @ Dul) (4 1DuP) 1D (DU A (30)
Q

ptq
< [ 2nlnlo (D) o+ D) T s
Q

q
2

T (ca)? /Q (? + 1D ) @ (1Duf) (i + | Duf?)” d.

If we consider a general function ® not bounded, with derivative
@' not bounded too, for which (29) is true, then we can approximate
® by a sequence of Lipschitz functions @, bounded with @) bounded,
in the following way:

®(t) fortel0,r]

(I)T(t):{ ®(r) forte (r,+00) reN.

Since

/ 3 ) @) (u+t? %éc ®(t) forte]0,r)
0 (- 17)7 = { (% < CQ))(I) (t) * for ¢ € (r,+00)

(while @, (r*) and @) (r~) are uniformly bounded), the condition
(29) holds for ®, with the same constant of ®. Thus (30) holds
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for ®,. By monotone convergence theorem, letting r tend to +o0,
we infer that (30) holds for every ® positive, increasing, Lipschitz
continuous function defined in [0, +00) which satisfies (29).

Now we choose

=1
2

d(t) = (n+1t*) with v > 1

and since
1 y-1
O () (n+17)2 < (v=1) (p+7) 2 <y (1)
the condition (29) is satisfied with ¢ = y. With this choice of ®,
(30) reduces to

1+p—3

¢ /Q 7 (u+1Dul?) D (1Dul) d (31)

y=1 4 p+q

2 4

< /277|Dn| <M+|DU|2) dz
Q

1t+g—1

+72/Q<n2+|Dn|2) (,u—l—|Du|2> > de.

Now we have to consider the two cases p = 0 and p = 1 separately.
Case pu = 1.

Since 2 < p < g and > 1, the inequality in (31) can be written in

the form

y+p—3

0/9772 (1+|Du|2> > D (|Du])|? do (32)

1+g—1

< 72/ (v +1D0P) (1+|Duf) * do.
0

Let us compute

y+p—1
‘D [77 (1 + |Du|2> ! ]

2

1t+p—1

< 20D (1+Duf) T+
+p—1 2 ytp-3
e e e I 21

ytg=1 y+p=3

+ 072772 (1 + |Du|2> ?

< 210gP (1+ Duf?) D (|Dul)P
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where, from now on we assume that ¢ depends also on p. Therefore
by (32) we infer that

y+p—1
/ ‘D [77 (1 + |Du|2) ! ]
Q
rtg—1

< 2/ (2 +1Dnl?) (1+1Duf?) * da
Q
W+gfl
+c74/ (772+|D77|2> <1+|Du|2> *
Q

ytg—1

< c'y4/ (172+ |D17|2) (1—!— |Du|2) * da.
Q

2
dz

By Sobolev’s inequality, (remember the Sobolev’s exponent 2* =
% if n > 3, while is 2* any fixed real number greater than 2 if
n = 2) we deduce

y4p=12*
{/ n* <1+ |Du|2) : dm}
Q
rtg—1
< 074/ (772 + |D77|2> <1+ |Du|2> * dx.
Q

Fixed 0 < p < R < 1, let us denote by B, and Bg balls compactly
contained in 2 of radii p and R respectively and with the same center.
Let 1) be a positive test function equal to 1 in B,, whose support is
contained in Bpg, such that |Dn| < Riip. Hence we obtain

)
*‘ o

2
=

{/B (1+|Duf?) L dx}2 (33)

ytg—1

4
Y / 2 2
< c——— 1+ |Du dz.
(R - :0)2 Bgr ( | | )

Since W%J*l z> 7+,21,1’ this inequality gives an higher integrability
of the gradient.
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Case u =0.
The inequality in (31) reduces to
e [ 10U D (D ds (34)
< [ 2nloalIDurH s
Q

492 [ (o8 + Do) 1Dl da
Q

Let us define the function G (t) for t € [0,+00) in the following
way

t
G((t)=1 +/ V sPt71=3ds;
0
since the function tP*773is increasing and p < ¢, we have

2
G (t)]2 < |1 —i—t\/m] <2 (1 _|_t7+p—1) <4 (1 +t7+q_1) ‘

Let us compute

D [nG (| Dul)]|*
21Dy (G (1Dul)]* + 207 [G" (|Du)] |D (|Dul)?

<
< 81Dy (14 [Du™ 1) + 202 |Du ™7 * |D (D)

Therefore by (34) we infer that

[ 101G (Du) s

Q

< 8/ | D2 (1+|Du|7+q*1) dz
Q

ptq
+5

+c/ 2n |Dy| | Du|"* dx
Q

ver [ (i + Dal?) |Du 7 da.
Q
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Finally, since
|Du|%1+]#, |DuT! < (1 4 |Du|7+q71)
and v > 1, we obtain
[ DG (Dul ds

< 072/ (n2 + |Dn|2) (1 + |Du|7+q71) dz.
Q

By Sobolev’s inequality, we deduce

{ [+ 600" as

< 072/ (n2 + |Dn|2) (1 + |Du|7+q71) dz.
Q

M
*|1V

Let us compute

t 2* N2
G = 1+/QVwﬂims _ (14 —2
0 y+p—1

1 2
= (p+'y—1+2t7+p1>
7+p—1
+p1
> (1 e )
g 7+p—1
> ( %’Y‘Hﬂ 1)

7+p—1
Thus from (35) we have

{/ n (1—|—|Du| (e 1)) dx}
Q
< = [ s onf) (1 o)

< 074/9 (772 + |D77|2> (1 + |Du|7+q_1> dz.

*‘ o

(35)

*
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Fixed 0 < p < R < 1, let us denote by B, and Bg, balls compactly
contained in €2 of radii p and R respectively and with the same center.
Let 1 be a positive test function equal to 1 in B, whose support is
contained in Bpg, such that |Dn| < 3=. Hence we obtain

{/B <1+|Du| (v+p— 1))dm}2_* (36)

4
2 / g1
c——— 1+ |Du dz.
(R - :0)2 Br ( | | )

In both cases u = 1 and p = 0, we define a sequence of exponents
v; in the following way

=1
2F )
v =5 (itp-1)—(¢-1), Vi=12.. (37)
Asin [11] (lemmas 2.11 and 2.12), we can prove the following lemmas.

LEMMA 2.4. Let vy; the sequence defined in (37). Then the following
representation formulas hold

2* 1—2 2* k
%Zl—i_(?p_q)Z(?) ; Viz2

k=0

Zp—ql|/2o\"" .
—1+2 — [<5> —1], Vi > 1.
2

In particular, since ~y; is a polynomial expression in % > 1,
lim; o0 s = +00.

LEMMA 2.5. Let 6 be defined by

_H’Yk"‘q_l

Vet p—1

then 6 is finite and it is given by

- -1
2* __q-
2 p

g
p
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Proof. Tt follows easily from the second formula in lemma (2.4) (see
[11] lemma 2.12). O

REMARK 2.6. Note that 6 > 1 and 6 = 1 if and only if I =1
Ezxplicitly we have

ifn>2 (39)

and if n =2 andp < q, then we can choose Z 50 large that 6 in (38)
is as close to 1  as we like.

LEMMA 2.7. The product

1 +q-1
Too |: 4k+1'y;§ :| Ve +p—1 II; 'A;i+;17—1
07
o L

Ry — po)®

is finite, and defining

[4k+1 4}
—Z and C—expOZi
%+— Ye+p—1
we have
+00 [C gh1qd ]%ﬁp_lﬂt iy
i1 L (Bo—po)
< C(Ro—po)
+oo

Proof. Since v, grows exponentially, the series Zk:lﬁ and
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+0oo lg[c4k+172]

k=1 p—1  converge. Therefore we have

' 1 +q-1 ' 1
v 4h+1,4 -1 IT, j,iJerl v 4h+1,4 =1
Ay RN
<
k=1 k=1

(Ro — po)’ (Ro — po)”

0

_ ’ 1 : %‘9
< (Ro — po) R H [c4k+1’)’1%] T

k=1
[ 1 0
< (Ro — ,00)729’6 explg [H [c4k+1713] Wle]
k=1
{ k+1.4
_ Ig [c4 1]
< (Ro — po) " exp
; Ye+p—1
lg [C4k+1'y,ﬂ
< (Ro—po) P exp
kz:l Yt+p—1
O
Case pu = 1.
Fixed 0 < pg < Rg < 1, let us define R; = pg + @ for ¢ > 1 and

insert in (33) R=R; , p= R;11 and vy = ;. Since R — p = R;;fo,

we obtain
Yig1te—1 2%
{/ (1+1Du?) dm} (40)
Br

i+1

4i+1'y4 Yitaml
< e— / (1+|Du|2) *odry.
(RU - ,00) BRi

For every i = 1,2, ... we define

vita—1 fyiﬁﬁ
Ai:{/ <1+|Du|2> : dx} (41)
Bg,

thus, from the definition (37), the inequality (40) can be written in
the form

1
4i+1f}/4 vi+p—1 rite—1
Apy < [67] AT (42)
T (R - o)’ '
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LEMMA 2.8. For the positive constant § and C previously defined,
we have

0
Ait1 <C [(RU —po) % Al] , Jori=1,2,...

Proof. By iterating (42), we obtain

1 H g1yt et T 3 AHi;OJ:::Ij’:
1+ \ 1
k=0 RU - 100)
i — I, 2 +q-1
_ [0_4’““ i ] et WS s
i L (Ro— po)?
Thus the result follows immediately from lemma (2.7) and from the
definition of C, # and 6. O

Recall the definition of A; in (41). Since py < R; < Ry for every
i=1,2,..., from lemma (2.8) we have

Yig1t+a—1 ﬁh—q—l
/ (1+1Duf) 7 da
B

Po

)
C q q
g / (1 + |Du|2) “dry .
(Ro — po) B,

Since lim ;11 + ¢ — 1 = 400, the left hand side converges to
1——+00
1
the essential supremum of (1 + |Du|2) * in By, and thus the theorem
(2.1) is proved in the case p = 1.
Case i = 0.
Fixed 0 < pg < Ry < 1, let us define R; = pg + 0 0L for ¢ > 1 and

insert in (36) R=R; , p = R;11 and v = 7;. Slnce R—p= RQO,-LPO,

we obtain
{/BRiJrl
4i+1 _
d— M / (1 + |Du|%+q*1) dz b .
(Ro — po)” |/ Br,

2

P
(1 + |Du|%‘+1+q—1) d:v} (43)

/
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For every i = 1,2, ... we define

SiFaT
Ai:/ (1+|Du|%+q—1)dx (44)
Br,

thus, from the definition (37), the inequality (43) can be written in
the form (42). Therefore lemma (2.8) holds also in this case. Since

lim ;41 + ¢ — 1 = 400, we have
1—+00

sup |Du| = lim /
TEB), t—+00 B,

From the definition of A; in (44), since pg < R; < Ry for every
1=1,2,..., we have

ST
A = / (1 +1Du[+471) da
Bpg,
1
vita—1
{/ (1+|Du|%+q1)dm}
By,
{|Bpo|+ /
By
1
> |Buf 44
B

From lemma (2.8), we deduce

By T+ { /
Bpg
/
< LW{/ (1+|Du|q)dm}
(Ro — po) B,

!
< LW/ (1 +|Dul)? dz
(Ro — po) Br,

IS
1 Yi+1+ta—1
|Du|%+1 +q— dz .

0

V

V

%;Jrqul
|Du|’n+q—1 dz

ST
| Du|" 0 dg .

Po

Yita—1
|Du|’n+q—1 dr

[
q

[
q
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For 1 — +o0c0, we obtain

(1 + |Du|)”L°°(B,J0) = sup (1+|Du|) =1+ sup |Dul|

z€By T€By,

1 ’Yi+1q—1
= lim < |By,|7ite T + / |Du| "t da
1—+00 By,
' 0
< ———57 |1+ [Dul)|
(Ro — po)*” £2(Bro)

and thus the theorem (2.1) is proved also in the case p = 0.

3. Interpolation

We recall the well-known interpolation inequality

D 1-2
vl e < llvllzs - [lvll e
(for the proof, see for example Brezis [2]) and let us consider it for
1
v = (1 + |Du|2) * when p = 1 and for vg = (1 + |Du|) when p = 0;
in both cases, by theorem (2.1) we have
0 .
”UiHLOO(BP) Sce ||Uz‘||Lq(BR) =0, L

Formally (up to the different radii R and p), we infer that

(%) (1-2)

P 0 0
il oo < cllvillza < ellvill pp™” - lluillg

and if 0 (1 - %) < 1, we obtain the inequality

—0(1-2 (2
||vi||Loo( 2 < CHUz‘Hqu)
which gives the local boundedness of the gradient Du in terms of its

LP norm.
From the explicit formula of  in (39), the condition 8 (1 — %) <

1 holds if and only if
+2
q < n

p n
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Therefore let us consider exponents p and ¢ related by

n+2

2<p<qg< P (45)

Fixed 0 < p < R < 1, let us denote again by B, and Bp balls
compactly contained in €2 of radii p and R respectively and with the
same center. Let a and 6 be defined by

2
a:p# and 0= 1

a1-0(1-1) —(m-2q 0

if n > 2; otherwise, if n = 2 and % > 1, then let § be any number
oB
such that £ < § < -L and let « = ——%—; finally, if n = 2 and
p q—p 1_9(1_3)
p =gq, then let a =60 = 1.

THEOREM 3.1. Under the assumptions (10), (11) and (45), and with
a and 0 defined in (46), there are positive numbers C, C' and [ such
that for =1 we have

1 1
1+ [Duf?)” <cl—1 i+ )’
()
L4(B,) (R —p) » L?(Br)
(47)
1 1 1 “
1+|Dul?)’ <C{ ———— (14 |Duf?)?
234
Lo(By) (R—p)"» L?(Bp)
(48)

and for =0 we have

1
1+ [Dub)ll o) < €

4—p

RESA
(R—P)%( B ) Lr(Br)

(49)

1 [0
|1+ 1Dul)] o5,y < C" {7( ol |Du|)|\Lp(BR)} (50)

for every minimizer u of class Wll’q (Q, RN) of the integral (7).

oc
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Case y=1.

Let us apply the interpolation inequality with v = (1 + |Du|2) and

N

use the estimate in theorem (2.1). We obtain

1 iz 112
H (1 + |Du|2) ’ < H (1 + |Du|2> ? . H (1 + |Du|2) ’
La(By) Lr(By) L (B,)
1 p
< e (1 + |Du|2) dik
Lr(B,)

1 ! o(1-7)
.<(R—p)25 H(H'Du' ) Lq(BR)> '

Now we define an increasing sequence of radii which converges
to R: fixed 0 < pg < Ry < 1, for every k > 1 let us define p, =
Ry — (Ro — po) 2% and insert p = py and R = pj; in the inequality
above; we have R — p = (Rg — pg) 2~ #*1). We also define

1
By, = H (1 + |Du|2> ? for k=0,1,...
La(By,,)
thus we have for £k =0,1,...
- o\ z 92B(k+1) 0(1-1)
By <c (1 + | Du| ) 72631”1 )
L»(Br,) \ (Fo — po)

We iterate this inequality and we obtain

Qg
el
M
-
—
B
S
—
|
ks
N—
—
=

o=

1-2
By < |[c «

(1+ 1Dul)

L?(Bry) (Ro — p0)260(1—%)
SRR 002

By the assumption (45), the series above are convergent and since
By, is bounded by

. Vk=1,2,..

1
By, < H (1 + |Du|2> ?
Lq(BRo)
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we can let k tend to infinity and we infer that (for some constant

Ch)

1
2 \iD

LP(BRO)

1 1
By < Cy £ H (1 + |Du|2> ?

280(1—2
(Ro — po) o

which proves (47). The second estimates (48) can be proved either
in the same way, or by combining (47) and theorem (2.1). In fact, if
o= #, from theorem (2.1) we have

[%
1 1 1
o] <e(tm|erme)] )

L>(B,) (r' = p) La(B,)
a [%

1 1 =K

< O - H1+¢Duﬁ
(o = p)* (R — pf)%(%)a ( ) L?(Bg)

and since p' — p = R—p/ and 1 + (q;fp) a = 15, we have the
conclusion (48).

Case = 0.
We use the same technique with v = (1 + |Dul) and

By = Il(1+1Dul) (s, for k=0,1,....

4. Approximation and passage to the limit

Let us consider for u € W7 (Q,RY), such that f (z,|Dul) € L}, (),
the integral

= / f (z,|Dul) dz (51)
Q

where the integrand f is a function of class C? of its arguments,
satisfying:

m (e le) T ngagﬁ 5 EDXN <M (p+1e?) T AP

’Ja
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ptg—2
4

[feoa. (2, 1ED] < M (s + 1¢) (53)

foruy=0o0rpu=1,Va=1,2,...,N, Vi, s =1,2,...,n.
If we add some assumptions on f (z,0) and fea (z,0) of the type
[f (2,0)] < «

D fea (£,0)€8] < e

it is easy to verify that f also satisfies the following growth condi-
tions:

ma l¢P —ma < f (. 1¢)) < My (1 + [¢P)

ok

a.e.x € Q, V¢ e RV
(54)

for some positive constants mq, my and M.

In order to apply the regularity results of the previous sections,
we have to consider an e-approximating regular problem with mini-
mizer in I/Vﬁ)’cq (Q,RY). To this aim, let us define for ¢ € (0,1] and
veWh (Q, RN) the function

fe (@,|Dv]) = f (z.|Dv|) + | Do|* (55)
and the integral
I. (v) = /QfE (z,|Dwvl|) dz. (56)

From (54) and the definition (55), we have

S

ma |Dof” = ms + € | Do’ < £ (z, |Dol) < (M +1) (u+|Dof?)
(57)

moreover, from (52) and (53), we deduce that there is a constant M’
independent of € such that

m(u+leP) T AP <Y (Fgngs (16D AN

i’j’a7ﬂ
q— ptq—2

<M (n+ |§|2>22 NP |(F)eza, (ol < M (e + 1€




EVERYWHERE REGULARITY FOR A CLASS etc. 231

These conditions imply that for every ¢, I, in (56) is convex, coer-
cive and lower semicontinuous in the weak topology of W14 (Q, RN );
thus, for every fixed function ug € W4 (Q, RN ), there exists a

unique minimizer u. in the class ug + WU1 “ (Q, RN ) and thus
L(u) <I.(v)  Yo€ug+ W, (Q,RY). (58)

The integrand (55) satisfies the assumptions of the theorems (2.1)
and (3.1) uniformly with respect to ¢ and the minimizers u. are in
W4 (Q,RY). Therefore the estimates (47) and (48) or (49) and (50)
hold for u. with constants ¢ independent of e: for every fixed 0 <
p < R <1, let us denote by B, and By balls compactly contained in
Q of radii p and R respectively and with the same center, by theorem
(3.1) we have, for p =1

1

2\ 2
Dl ey < | (1 1D

1
< ¢ ——7
{<R—p>2ﬂ%

(59)

L”(BR)}

1 o
m (1 + |Du€|)”LP(BR)} :

From the definition of I, in (56) and by using the condition (57),
we obtain

L>o(By)

1
(14 1DuP?)’

and for p =0

I1Duell o (3, revn) < c{

L (v) :/Qfg (:v,|Dv|)d:v2m1/Q|Dv|pd:c—m2|Q|
Vo € ug + Wy? (2, RY) .

In particular for the minimizers u., by choosing v = ug in (58)
and using (57), we finally get

1
HDulL, ) = / Du.l? de < — {L (u.) + ma |0}
Q my

1
< o {1 (uo) +ma |2},
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which gives an uniform bound of the LP—norms of Du.. Up to a
subsequence, we can suppose that {u.} converges to a function u
in the weak topology of WP (Q, RN). From the a priori estimates
(59), for every Bp ball compactly contained in € of radius R, there
exists a constant c such that

||D’LL5||LOO(BR’RNTL) < C.

As € — 0, we obtain that u is of class W™ (BR, RN) for every R.

Fixed ¢y € (0,1], from the lower semicontinuity of I., and by
(58), we have

[ fo@iDu)ds < tmint [ 1. (@]Du) do
0 e—0 0

< I, (v) Yo € ug + Wy 7 (2,RY).

As g9 — 0, by Lebesgue’s dominate convergence theorem, we infer
that

/ fa|Dul)de <I(v) Vo €ug+ Wi (RY) .
Q

Thus u is a minimizer of I (u) of class W1 (Bg, RY) for every Bg
compactly contained in €2 and the theorems (2.1) and (3.1) hold for



u. Moreover, from (59) when ;=1 we have
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1
(R—p)*%

LP(BR)}
1 o
< c{m [1 + |||DU5|HLP(BR)] }
1 a
1+ </ |Du5|pd:v> p] }
Br
1 1 1)
<eq———57 |1+ <—{ fg(zv,|Dug|)dm+m2|BR|})
(R—p)* M1 {JBg

gc{m 1+<mi1{ Bng(:v,|Du|)dm+m2|BR|}>; }

<dmRmJWn%mJ@{AJL+LWJDMWM}p

1
‘(1 +|Du.f)?

[ Dtel| o= (g, mrny < € {

and, as € — 0, we finally obtain

:
Dl ey < e R Nopeam M) { [ (045 . 1ul] |

The same passages hold in the case y = 0.
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