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Quaternionic Kahler Structures on
the Tangent Bundle of a Complex
Space Form

M. TAHARA, S. MARCHIAFAVA AND Y. WATANABE (*)

SUMMARY. - We construct a class of quaternionic Kahler structures
on the tangent bundle of a complex space form of dimension
2n(n > 2), giving a generalization of the result in [13].

1. Introduction

The purpose of the present paper is to construct a class of quater-
nionic Kahler structures on the tangent bundle of a complex space
form when its real dimension is more than six. If the holomorphic
sectional curvature is a positive constant, then this class includes a
one-parameter family of hyperkéhler structures constructed in [13]
and further other quaternionic Kahler structures, which are hyper-
hermitian but not hyperkahlerian.

An interesting feature of the almost hypercomplex or quater-
nionic Hermitian metrics which was considered on the tangent bun-
dle of a complex space form is that they are of cohomogeneity one
with respect to a semi-simple Lie group (equal to U(n+1) or U(1,n)
according as the scalar curvature is positive or negative).
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In Section 2, we recall some structures discussed here and review
some preliminaries concerning tangent bundles. Then, in Section
3, we introduce almost hyperhermitian structures on the tangent
bundle of an almost Hermitian manifold, constructed in [13]. In
Section 4, we construct a class of quaternionic Kahler structures on
the tangent bundle of a complex space form. The last section is
devoted to give some examples.

Our main purpose is to present these examples in a concise but
wide way. For that reason we delete most of the tedious but rather
straightforward computations.

2. Preliminaries

First, we recall some basic facts concerning the Riemann geometry
and some structures. Let (M, g) be an n-dimensional connected Rie-
mannian manifold with Levi Civita connection V. The Riemannian
curvature tensor R is given by

R(X,Y) =[Vx,Vy| = V[xy]

for all vector fields X,Y € X, the Lie algebra of smooth vector fields
on M. We denote by T, M the tangent space of M at p € M, by
T M the tangent bundle of M and by 7 the natural projection of T'M
onto M.

An almost Hermitian structure on a manifold M is, by definition,
a pair (J, g) formed by a tensor field J of type (1,1) and a Riemannian
metric g, satisfying

JA(X)=-X, ¢g(JX,JY)=g(X,Y)

for all vector fields X, Y € X. J (resp. g) is called an almost complex
structure (resp. an almost Hermitian metric). We denote by F
the Kahler form, given by F(X,Y) = g(JX,Y) for all vector fields
X,Y € X. The almost Hermitian structure (., g) is said to be almost
Kahlerian if F' is closed, that is, dF'=0.

Furthermore, if J is an almost complex structure on M and p €
M, let Tp+(M ,J) denote the eigenspace of J,, corresponding to the
eigenvalue v/—1 and x*(M,.J) the set of complex tangent vector
fields of type (1,0) on M. We note that J is a complex structure
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if and only if [x*(M,J), xT(M,J)] C x*(M,J) (cf. [7, Chap.IX,
Theorems 2.5 and 2.8]). Such an almost complex structure is called
integrable. If an almost complex structure is integrable, then the
almost Hermitian structure (.J, g) is said to be Hermitian. Moreover,
if the Kéhler form of such a structure is closed, it is called a Kahler
structure. It is well known that an almost Hermitian structure (.J, g)
is a Kahler structure if and only if J is parallel with respect to V,
that is, V.J = 0. Furthermore, a connected Kahler manifold (M, J, g)
is called a complex space form of constant holomorphic sectional
curvature 4c if the curvature tensor R satisfies

R(X,Y)Z =c{g(Y, Z2)X — g(X,Z)Y (1)
—g(Y,JZ)IX + g(X,JZ)JY + 29(X,JY)JZ}

for all vector fields X,Y,Z € X. It is a manifold which is locally
isometric to the complex projective n-space CP(n) (if ¢ > 0), the
complex hyperbolic n-space CH(n) (if ¢ < 0) or the Euclidean n-
space C" (if ¢ = 0).

Following Alekseevsky-Marchiafava [1] and Besse [2], we recall
the definitions of almost hypercomplex, hypercomplex, almost quater-
nionic Hermitian and quaternionic Kahler structures. An almost
hypercomplex structure on a manifold M of dimension 4n is, by
definition, a triple H = (J))x=1,2,3 of almost complex structures,
satisfying

Iy =Jy

where (A, p,v) is a circular permutation of (1,2,3). It generates
a subbundle @ = (H) of the bundle End(T'M) of endomorphisms
where the fiber @, = RJi|, + RJ2|, + RJ3|, in a point p € M is
isomorphic to the Lie algebra sp;. Such a subbundle is called an
almost quaternionic structure generated by H. When each J) is a
complex structure, H is said to be a hypercomplex structure on M.
More generally, an almost quaternionic structure on a manifold M
is defined as a subbundle Q@ C End(T'M) of the bundle of endo-
morphisms which is locally generated by an almost hypercomplex
structure H. We shall refer to such H as an almost hypercomplex
structure compatible with Q. Let H = (J))x=1,2,3 (resp. Q) be an
almost hypercomplex (resp. almost quaternionic) structure on M.
Then M can be equipped with a H-Hermitian (resp. @-Hermitian)
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metric g, that is the endomorphisms Jy, A = 1,2,3, (resp. all en-
domorphisms from @) are skew-symmetric with respect to g. Note
that an H-Hermitian metric is a (Q-Hermitian one with respect to
Q= (H).

An almost hyperhermitian (resp. almost quaternionic Hermitian)
structure on a manifold M of dimension 4n is, by definition, a pair
(H,g) (resp. (@, g)) formed by an almost hypercomplex structure H
(resp. almost quaternionic structure Q) and a H-Hermitian (resp.
@-Hermitian) metric g. When each Jy is a complex structure, an
almost hyperhermitian manifold (M, H, g) is said to be a hyperher-
mitian manifold. A hyperhermitian manifold (M, H,g) is called a
hyperkahler manifold if the complex structures Jy, A = 1,2,3, are
parallel (that is g is a kihler metric for each one).

An almost quaternionic Hermitian manifold (M, @, g) of dimen-
sion 4n is called a quaternionic Kahler manifold if the Levi Civita
connection V of g preserves (). In an almost quaternionic Hermitian
manifold (M, @, g), we define the non-degenerate 4-form by

Q:ZF)\/\F)\,
A

where the 2-forms F are defined by
F,\(X,Y):g(J)\X,Y), >\:152a3

for all vector fields X,Y € X. This 4-form € is globally defined on
M. 1t is well known that M is quaternionic Kahler if and only if
VQ = 0. Furthermore if M is quaternionic Kahler, then dQ2 = 0 (cf.
[1]). Conversely, we introduce the following Swann’s result (cf. [1],
[11]), which plays an essential role in the present paper.

THEOREM 2.1. Let (M, Q,g) be an almost quaternionic Hermitian
manifold of dimension 4n(n > 2). If dQ = 0, then M is a quater-
nionic Kdahler manifold.

Next we review some preliminaries concerning tangent bundles.
Let (M, g) be an n-dimensional connected Riemannian manifold and
K: TTM
— T'M the connection map corresponding to V [6]. For each u €
T,M, p € M, we denote by TTM (resp. T, TM) the kernel of



QUATERNIONIC KAHLER STRUCTURES etc. 167

K|p 7y (vesp.  dr|p pp). This is an n-dimensional subspace of
T,TM called the horizontal subspace (resp. the vertical subspace)
of T, TM. We then have a direct sum decomposition

T,TM = THETM @ T) TM.

The elements of T'TM (resp. TYTM) are said to be horizontal
vectors (resp. vertical vectors) at u. For each u, X € T,M, X
(resp. X)) denotes the horizontal lift (resp. the vertical lift) of X
to Ty, T M. These lifts are determined by

K(XxXI)y =0, dr(XH) =X, K(X)) =X, dn(XV)=0. (2)

The canonical almost complex structure Jy on the tangent bundle
TM of a Riemannian manifold (M, g) is defined by

Jo(XH)y =XV, Jh(X))=-XI.

Jo is integrable if and only if M is locally flat [6]. Furthermore,
Sasaki [10] introduced the well known canonical metric Gy on the
tangent bundle of a Riemannian manifold (M, g), given by

Go(X",Y") = Go(XV, YY) =g(X,Y)om Go(X", YY) =0

for all vector fields X,Y € X.

Tachibana and Okumura [12] pointed out that the almost Her-
mitian structure (Jy, Gp) is an almost Kahler structure which is not
Kahlerian unless the base manifold M is locally flat. Musso and
Tricerri [8] showed that (T'M,Gj) has constant scalar curvature if
and only if (M, g) is locally Euclidean and also remarked that the
metric induced on the fiber is the Euclidean metric. But recently, by
a deformation of the canonical structure (Jy, Gg), many new struc-
tures are constructed on the tangent bundles of some Riemannian
manifolds (c¢f. [14], [9]).

Lastly for the calculation in this paper it will be useful to take
account of the following formulas for the brackets of vertical and
horizontal lifts (see [6]): For each u € T, M, p € M and for all vector
fields X,Y € X, we have

(i) (X7, YH] = [X, V] — o{R(X,Y)u},



168 M. TAHARA, S. MARCHIAFAVA and Y. WATANABE

(ii) (X7, ¥V] = (VxY)",

(iii) [XV,YV] =0,

where v{R(X,Y )u} is the vertical lift of R(X,Y )u.

3. Almost Hyperhermitian structures on 7'M

Let (M, g) be a connected Riemannian manifold and T'M the tangent
bundle of M. When F is a function on some interval, we define a
function F on TM, given by F := F(g,(u,u)) for each z € M,u €
T, M. In what follows, we may simply write F = F(t) instead of F,
where t = ||ul/%.

Let (M, J,g) be a connected almost Hermitian manifold of real
dimension 2n and T'M the tangent bundle of M.  Let us consider
functions f = f(t),h = h(t) and k = k(t) on [0,00), satisfying the
conditions:

f,h and k are positive and smooth,

he g Q
the functions and are differentiable at ¢ = 0.

k-7
t

h—f
Tt

and =L are smoothly extendible on the

Then the functions 7

whole of T M.

We now define the three kinds of almost complex structures
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Iy, A=1,2,3 on TM as follows (see [13], [14]):

( (XM =XV + htf (X, w)u —i—ug(X Ju)(Ju)Y

J(X))= —fXH+ﬁ—i¢XuﬁL+5—ingmxﬁn

f tfh tfk

L g =L (X, up”

0T TR0 )y -T2 E g0 g,

(S =—(1X)"

([ (X =fIX) +

\ Ja (X, )=

{ J3(X1Y):(JX)V+%9(X,U)(Ju)V+%g(X, Ju)yuV

(4)
for all vectors X € Ty () M.

Next, for the same functions f,h and k in the above, we define
a Riemannian metric G on the tangent bundle TM of an almost
Hermitian manifold (M, J, g), compatible with these Jy,\ = 1,2, 3,
given by

( G(XHayH) = ag(X,Y) + ﬂ{g(Xa u)g(Y, u)+
9(X, Ju)g(Y, Ju)},

o« (f2 — h®)a+tf%p
tf2h2

(f* = k)a+tf*p
AT

9(X,u)g(Y, u)

9(X, Ju)g(Y, Ju),

| GXH,YV)=0

(5)
for all vectors X,Y € Ty, M, where the smooth functions o and S
on [0, 00) satisfy the conditions of positive definiteness of G

a>0, a+t8>0. (6)
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Then by a direct computation we can show the following.

PROPOSITION 3.1. (Jy, G)x=1,2,3 mentioned above is an almost hy-
perhermitian structure on TM.

In particular, we also have the following (see [13]).

PROPOSITION 3.2. Suppose that (M, J,g) is a complex space form
of holomorphic sectional curvature 4c. The functions f,h and k sat-
1sfy

P _at+ f?

Cfe2 T f
if and only if (Jx, G)a=1,2,3 is a hyperhermitian structure constructed
on the tangent bundle T M.

4. Quaternionic Kahler structures on T M

Now, suppose that (M, J, g) is a complex space form of the holomor-
phic sectional curvature 4¢ and that dimension of M is 2n(n > 2).
Then we construct a quaternionic Kahler structure on TM.

THEOREM 4.1. Let (M?",J,g), n > 2, be a complex space form
of the holomorphic sectional curvature 4c. Then the almost hyper-
hermitian structure (H,G) on TM in Proposition 3.1, where H =
(Jx)r=1,2,3 and G are defied by (4), (5) respectively, is a quaternionic
Kahler structure if and only if the functions f,h, k,a and B given by
the conditions (3), (6) satisfy the following:

. _f2—ct o _ct—i—f2
i n=IS ) k=T .
(i19) o = fiha’ (v) a+tpf= ?a.

Proof. We compute the exterior derivative df2 of the 4-form =
> F\ A F)\, given by (H,G) on TM. These tedious computations,
which we delete here and which are performed by using Theorem 2.1
and Dombrowsky’s formulas for brackets in Section 2, show that the
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condition df2 = 0 is equivalent to the following:

(4) ctz%—m%—aJrA:o,

) 2——g+ctg—é:0,
k J;l 2 f

(’LZ’L) a' ;Ch— == 0,

(1v) 2<?

A
12 hk ’
Afa A A a ’t A«
@ 3(5-7)- ) -5
a A A A

where we set A = o+t and the prime (') means the differentiation
with respect to t.

Furthermore, by a long computation, we can see that (8) implies
the equations (7). Conversely, (7) implies all equations in (8). O

REMARK 4.2. (a) The conditions (i) and (i) in (7) show that (Jy,
G)r=1,2,3 is a hyperhermitian structure, as mentioned in Proposition
3.2.

c
(b) From the condition (iii) in (7), we see that o = pexp /f—hdt
where p is a positive constant.

Let f = f(t) be a smooth positive function defined on [0, c0).
Denote H(f) = (JA(f))a=1,2,3 and G(f) the almost hypercomplex
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structure and the Hermitian metric defined on TM by (4) and (5)
respectively, and moreover by using the functions h = h(t), k =
k(t), a = a(t) and 8 = B(t) given in (7). Then by Theorem 2.1 we
obtain the following.

THEOREM 4.3. Let TM be the tangent bundle of a complex space
form (M, J,g) of holomorphic sectional curvature 4c and dimension
2n(n > 2). If f is a positive function on [0,00), satisfying the con-
ditions f2 > |c|t and f > 2tf', then (H(f),G(f)) is a quaternionic
Kahler structure on TM.

5. Examples

Let (M, J,g) be a complex space form of holomorphic sectional cur-
vature 4c and T'M the tangent bundle of M. Suppose that dimension
of M is 2n(n > 2). It seems to us that Theorem 4.3 gives many ex-
amples on TM. In fact, we first review an example, given in [13].

EXAMPLE 5.1. For positive constants c,a and u, we set

1
f:—(a+ 4ct+a2), h=k=/4ct + a2,

2
a:u(a—i- 4ct+a2), 5:%<—a+ 4ct+a2),

where we put ((0) = % Then it s easily seen that these func-
tions satisfy all conditions of (7). Furthermore (H(f),G(f)) is a
one-parameter family of hyperkahler structures on T M, since these
functions satisfy the following conditions (see [13, (5.6) and (5.7)]):

t t
a=nf (n=positive constant), % = a—; p = a—]: 5,
(9)

(f*+ct)f' = cf.

Note that the last equation of (9) is exactly the case where h =k (see

(5.8) of [13] for general solution). It is well known that the complex

projective space CP(n) with the canonical Kahler metric is the com-

plex space from of positive holomorphic sectional curvature 4c. We
1

can see that the case of a =1 and p = 5 in the above coincides with
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Calabi’s example [3, p.299] constructed on the holomorphic cotan-
gent bundle T*CP(n), naturally identified with the tangent bundle
TCP(n).

Next, we give two examples, which are quaternionic Kahlerian,
but not hyperkahlerian.

EXAMPLE 5.2. For positive constants a and p, we set

o, Ald=at+a)}/lct+a (| +c)t+a
f_ |C|t+a7h_ a ,k— |C|t+a s

pa(|c|t + a) pca

a=——>= f=—"

(le] =)t +a (le] —e)t+a
Then f,h and k satisfy the conditions (3), and «, 8 do the condition
(6). Then it is easily seen that these functions satisfy all conditions
of (7). Therefore (H(f),G(f)) is a quaternionic Kahler structure,

but not a hyperkdhler structure on T M, since they do not satisfy (9).

EXAMPLE 5.3. For positive constants a and p, we set

PY=pr h:{e_t+(|c|—c)t}\/e*t+|c|t

e t(1+1) ’

e+ (|d + o)t o ple b+ |clt) 5= e

fe b+t et + (|¢] — o)t’ et + (|| — o)t
Then f,h and k satisfy the conditions (3), and o and (3 do the con-
ditions (6). Then it is easily seen that these functions satisfy all
conditions of (7). Therefore (H(f),G(f)) is a quaternionic Kdhler
strucure, but not a hyperkahler structure on TM, since they do not

satisfy (9).

REMARK 5.4. Let (M, J,g) be an almost Hermitian mainifold and
& = Aut(M) the group of automorphisms of M, that is ¢*g = g
and pyJ = J, for each ¢ € &. There is a natural left action on
TM defined by ®(z,u) = (¢(x), p«(u)) for x € M, u € T,M (cf.
Musso and Tricerri [8]). For the structures Jy (A = 1,2,3) and G
constructed in (4) and (5), it is easily seen that ®,J\ = J P, (A =
1,2,3) and ®*G =G.

k=
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Let CP(n) be the complex projective n—space with the canoincal
Kahler structure. We also regrad CP(n) as a homogeneous space
Un+1)/U(n) xU(1)(n > 2) and U(n + 1) acts transitively on the
tangent bundle TCP(n) (it is well known that CP(n) is a 2-point
homogeneous space). Therefore the example stated above are all ir-
reducible quaternionic Kahler manifolds of cohomogeneity one with
respect to the compact semi-simple Lie group U(n+1). When ¢ < 0,
we can discuss similarly. We refer the readers to [4] about a classi-
fication of hyperkahler metrics of cohomogeneity one with respect to
a compact simple Lie group.
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