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An Example of Two Compact Spaces
with Different Topological Dimensions

JAVIER RODRIGO AND JUAN TARRES *)

SUMMARY. - In this paper we give two compact spaces X, Y with
dim(X) =dim(Y) =1, ind(X) = ind(Y) = Ind(X) = Ind(Y) =
3, where dim 1is the covering dimension, ind and Ind are the
small and large inductive dimensions respectively.

1. Introduction

Compact spaces with different topological dimensions have been stud-
ied. Filippov found a compact space T,,, with dim(T,,,) = 1,
ind(Tmpn) = my, Ind(Tyy,) = n for each m, n such that m < n <
2m — 1 (see [5]). In this paper we prove the existence of two non
homeomorphic compact spaces X, Y with dim(X) = dim(Y) = 1,
ind(X) =ind(Y) =3, Ind(X) = Ind(Y) = 3. In order to get these
spaces, we take into account the space T53. In order to evaluate the
covering dimension of X, Y, we use the local dimension locdim de-
fine in [1], and we give a slight modification of the Ind-dimension,
the Indc-dimension, to state the equalities Ind(X) = Ind(Y') = 3.
We ensure that the spaces X, Y are not homeomorphic by defin-
ing a topological dimension, named K, such that K(X) # K(Y).
Since X and Y are topologically distinct, at least one of them is not
homeomorphic to the space T33, another compact space 1-dimensional
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for the dim—dimension and three—dimensional for the dimensions
ind, Ind.

2. Basic concepts and notations

In this paper we consider only Hausdorff spaces.
We begin by defining an inductive dimension by means of separating
points:

DEFINITION 2.1. Let X be a topological space, n = 0,1,2,.... The
following conditions define inductively the dimension K :

1. KX)=-1aX=0.
2. If | X| =1, then K(X) = 0.

3. On the assumption that | X| > 1, K(X) < n if for every pair
x, y of distinct points of X there exist two open sets U, V C X
such that t e U, y e V, UNV =g, X =UUV UL with
K(L) < n where L is X—(UNV') (we said that L is a separation
of X between x, y).

4. K(X)=nif K(X) <n and the inequality K(X) < n does not
hold.

5. K(X)=ocif K(X) > n for every n (this dimension is similar
to the one defined in [6]).

As an immediate consequence of the definition K(X) = K(Y)
for homeomorphic spaces X, Y:

THEOREM 2.2. IfY is a subspace of a space X then K(Y) < K(X).
THEOREM 2.3. For every reqular space X, K(X) <ind(X).
We also define the Indc-dimension:

DEFINITION 2.4. Let X be a topological space n = 0,1,2,... the
following conditions define inductively the dimension Indc:

1. Inde(X)=-1X =0
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2. Indc(X) < n for every compact space C included in X, for
every open subset of X, V, there exists an open subset of X, U,
with C C U C V, Inde(Bd(U)) < n. (Bd(U) is the boundary

of U).

3. Indc(X) = n if Inde(X) < n and the inequality Indc(X) < n
does not hold.

4. Inde(X) = oo if Inde(X) > n for every n.
We have the following result:

PROPOSITION 2.5. Let V' be an open subset of X, then Indc(V') <
Indc(X).

Proof. We apply induction with respect to Indc(X), assuming that
Indc(X) < oo. If Indc(X) = —1, then X = V' = &, so Indc(V') =
—1.

Assume that the result is true for every space X with Indc(X) <
n, n > 0.

Let X be a space with Indc(X) = n, C' a compact included in V’,
V an open subset of V' such that C € V. As V is an open subset
of the normal space X, there exists an open subset of X, U with
C CcUCcCdU)CV, Inde(Bd(U)) < n, where cl(U) is the closure
of U in X.

Since cl(U) is included in V', Bdy+(U) = Bd(U), where Bdy(U)
is the boundary of U in V', and the Indc(Bdy:(U)) < n. This
implies that Indc(V') < n = Indc(X). O

Since the unitary sets are compact spaces, we have the next
proposition:

PROPOSITION 2.6. For every regular space X, ind(X) < Indc(X).

3. The spaces X, Y

In order to establish the spaces X, Y with the required properties,
we need some preliminary lemmas:

LEMMA 3.1. For a compact space X with K(X) < 1 we have that
ind(X) = K(X).
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Proof. For K(X) = 0, let  be a point of X and F' a closed subset
of X such that z ¢ F. We can find, for each point 4 in F, an open
subset and closed subset U(y) such that z ¢ U(y). Consequently, as
F' is a compact space, there exists an open and closed subset of X
containing F', say U, such that z ¢ U. This implies that ind(X) = 0.

For K(X) = 1, let F be a closed subset of X, z a point of X
such that z ¢ F. Since F is compact and K(X) = 1, we can find
an open subset of X, U, with F C U, z ¢ U, Bd(U) C {Bd(U;)/i =
1,...,n}, K(Bd(U;)) <1lfori=1,...,n.

Since Bd(U;) are compact spaces,we get ind(Bd(U;)) =K (Bd(U;))
<1fori=1,...,n. Now, the subspace theorem and the sum theo-
rem for compact spaces with ind-dimension 0 yield ind(Bd(U)) < 1
(see [3], theorem 2.2.7). This implies that ind(X) < 1. O

LEMMA 3.2. Let X be a locally compact, noncompact space, then
K(w(X)) < K(X)+ 1, ind(w(X)) < ind(X) + 1.

Proof. We have that w(X) = X U{p}, with p ¢ X. Let z, y be two
distinct point of w(X), and, say z € X.

As X is an open subset of the regular space w(X), we can find
and open subset of w(X), say U, such that z € U C l(U) C U,
y & cl(U), where cl(U) means the closure of U in w(X).

Then w(X) — Bd(U) = U U (X —cl(U)), where U, X —cl(U) are
disjoint open subsets of w(X) such that z € U, y € X — cl(U).
Moreover, applying the Theorem 2.2 we have that K(Bd(U)) <
K(d(U)) < K(X)< K(X)+1.

This implies that K (w(X)) < K(X) + 1.

The proof for the ind—dimension is analogous (we just have to
substitute the point y for a closed subset of X, say F'). O

LEMMA 3.3. Let X be a locally compact, noncompact space with
K(X) =1ind(X). Then K(w(X)) = K(X).

Proof. We are going to see this lemma for every space X under the
hypothesis of the lemma with K(X) < co.

Let z, y be two distinct point of w(X). If, say, z € X, we can find
an open subset of w(X), V,suchthat z € V,y € H = w(X)—cl(V),
cl(V) C X. Then V is an open subset of X.
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Furthermore, as ind(X) = K(X) and V is an open subset of X,
there exists an open subset of X, U, such that z € U C ¢lx(U) C V,
ind(Bdx (U)) < K(X), and then K(Bdx(U)) < ind(Bdx(U)) <
K(X).

On the other hand, as cl(U) C (V) C X, we have that clx (U) =
c(U), Bdx(U) = Bd(U).

Then w(X) =UUH'UBI(U), where U, H = w(X) —cl(U) are
open subsets of w(X) such that z € U, y € H' (H is included in H').

So we have that Bd(U) is a separation of w(X) between x, y with
K(Bd(U)) = K(Bdx(U)) < K(X), and then K (w(X)) < K(X).

U

LEMMA 3.4. Let X be a compact space with ind(X) = 3. If the equal-
ity K(w(U)) = K(U) holds for every open and non—closed subset U
of X such that K(U) = 2, then K(X) = 3.

Proof. As ind(X) = 3, we can find a point of X, z, and an open
neighbourhood of z, V(z) such that for every open neighbourhood
of z included in V(z), U(z), we have that ind(Bd(U))) > 2.

If K(Bd(U(z))) < 2, since Bd(U(z)) is a compact space, by
Lemma 3.1 we get ind(Bd(U(z))) = K(Bd(U(z))) < 2, a contradic-
tion, so K(Bd(U(z))) > 2 for every open subset U(z) of X included
in V(z).

If we now consider V (z), V(z) is an open subset of X such that
it’s not closed in X (it has boundary), so it’s locally compact, non-
compact space.

For every set U(x) such that U(z) is open in V' (z) and cly () (U ())
is a compact space, U(z) is an open subset of X included in V(x),
and therefore K (Bd(U(z))) > 2.

On the other hand, as cly(;)U(z) is a closed subset of X and
then cly(,)U(z) = cl(U(z)), Bdy(y)U(z) = Bd(U(z)).

We have proved the following assertion: “If U(z) is an open
subset of V() such that cly(,)U(7) is a compact space, then

K(Bdy(y)(U(z))) > 2"

Now, let L be a separation of w(X(z)) between z, p, we have
that w(V(z)) = U'(z) UV'(p) U L, where U'(z), V'(p) are disjoint
open subsets of w(V (z)).
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Since p ¢ U'(z), the set U'(z) is an open subset of V(z) with
cy)U'(z) € w(V(z)) — V'(p), so we have that cly(,)U'(z) is a
compact space and then K(Bdy () (U'(x))) > 2. If we apply the
subspace theorem, we get: K (L) > K(Bdy(,)(U'(z))) > 2, and then
K(w(V(x))) > 2.

On the other hand, if we assume that K(X) < 2, we have that
K(V(z)) < K(X) <2, K(w(V(x))) > 2. Since K(w(V(z))) <
K(V(z))+1 (Lemma 3.2), we have that K(V(z)) = 2, K(w(V (z))) >
2, a contradiction with the hypothesis.

Consequently, K(X) = 3. O

LEMMA 3.5. Let Y be a compact space with Ind(Y) = 3. If the
equality ind(w(U)) = ind(U) holds for every open, non—closed subset
U of Y with ind(U) = 2, then ind(Y') = 3.

Proof. The inequality ind(Y) < Ind(Y) for every normal space Y
is known (see [3], Theorem 1.6.3). Consequently, we only need to
prove the inequality ind(Y) > 2.

As Ind(Y) > 2, we can find a closed subset of Y, say F, and
an open subset of Y including F, say V', such that Ind(Bd(U)) > 2
for every set U open in Y with F C Y C V. Since Bd(U) is a
compact space, the inequality ind(Bd(U)) < 2 would imply that
Ind(Bd(U)) = ind(Bd(U)) < 2 (see [3], Theorems 2.4.2, 2.4.3), so
we have that ind(Bd(U)) > 2.

If we take now the open and non—closed subset of X, V following
the argument of the proof of the Lemma 3.4 we can see that every
partition L of w(V') between F, p has ind(L) > 2. As F is a closed
subset of w(V') (it’s a compact space included in w(V')), this implies
that ind(w(V)) > 2.

If we now assume that ind(Y) < 2, we get that ind(V) < 2,
ind(w(V)) > 2. Since ind(w(V)) <ind(V)+1 (Lemma 3.2) we that
ind(V) = 2, ind(w(V)) > 2, a contradiction with the hypothesis.
Then we have that ind(Y) = 3. O

As we have the equivalence, for a compact space X, between
closed subset of X and compact space included in X, we have the
next lemma:

LEMMA 3.6. If X is a compact space, then Indc(X) = Ind(X).
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LEMMA 3.7. Let X be a compact space, if there exists a partition L
of X between C, F with Indc(L) < n for all disjoint compact spaces
C, F included in X, then Indc(X) < n.

Proof. Let C be a compact in X and let V' be an open subset of X
such that C C V. Since C', X — V, are disjoint compact spaces, we
can find a partition L of X between C, X — V with Indc(L) < n.
So we have that there exists an open subset of X, say U, such that
CcU,BdU)cC L,UN(X—-V)=g. Applying the Lemma 3.6 and
the closed subspace theorem for the Ind-dimension, we have that
Inde(Bd(U)) < Inde(L) < n, and the Indc(X) < n. O

LEMMA 3.8. For every locally compact, noncompact space X,
Inde(w(X)) = Indc(X)

Proof. The relation Inde(X) < Inde(w(X)) is a consequence of
the Proposition 2.5, so we only need to prove that Indc(w(X)) <
Indc(X).

Let C, F be disjoint compact spaces in w(X). At least one of
them, say C, is included in X. We can find an open subset of X, V,
with C CV C X, cdx(V)NF = @, clx(V) being a compact space
(see [2], Theorem 3.3.2). Since clx (V) is a compact space, we have
that clx (V) = (V).

On the other hand, provided that Indc(X) is a finite number,
there exists an open subset of X, say U, such that C C U C V,
Indc(Bdx (U)) < Inde(X). Since Bd(U) = Bdx(U), we have that
L = Bd(U) is a partition between C, F with Indc(L) < Indc(X).
Because of Lemma 3.7, this implies that Indc(w(X)) < Inde(X). O

LEMMA 3.9. If X is a locally compact, noncompact space with
dim(w(X)) < oo
then dim(w(X)) < locdim/(X)

Proof. Assume that locdim(X) = n, then we can find, for each z €
X,an open neighbourhood of z, U(z) with dim(clx(U(z))) < n.
As clx(U(z)) C d(U(X)) C ex(U(x)) U{p} we have that

dim(cl(U(z))) < dim(cly(U(z))) <n  (see [1], [2.2])
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Consequently, if we assume that dim(w(X)) >n, C = {z € w(X)/
w(X) is dim(w(X))-dimensional at z} C {p} and then dim(C) < 0.

On the other hand, we know that C' is a dim(w(X))-dimensional
space (see [1], [3.7]), so we have a contradiction and dim(w(X)) <
n. O

EXAMPLE 3.10. The compact space Th3 has dim(Ts3) = 1, ind(Ta3) =
2, Ind(Ty3) = 3. So there exists an open subset of Tes, say V, with
ind(V) =2 < ind(w(V)) = 3 (Lemma 3.5). Now, Lemma 3.1 im-
plies that K(w(V')) > 2. If K(w(V)) = 3, then K(V) = 2 (Lemma
3.2 and Theorem 2.3), and the Lemma 3.3 yields K (w(V)) = K(V) =
2, a contradiction.

So we have that K(w(V)) = 2 < ind(w(V)) = 3. In order to
prove that Ind(w(V)) = 3, we are going to see that Ind(w(V)) < 3:

Since Indc(Tos) = Ind(Ths) = 3 (Lemma 3.6), we have the
inequality Indc(V) < Indc(Tes) = 3 (Proposition 2.5), so we get
Ind(w(V)) = Indc(w(V)) < Inde(V) <3 (Lemma 3.8).

Now, we are going to see that dim(w(V)) = 1:

As locdim(Tysg) < dim(Tes) =1 ([1], [1.7]), we have that locdim (V)
<locdim(Ta3) <1 ([1], [4.1]), and then dim(w(V')) < locdim(V) <
1 (Lemma 3.9).

Since w(V') is a compact space, the equality dim(w(V)) = 0 is
not possible (it would imply that ind(w(V)) = 0: see [3], Theorem
3.1.30).

Now, as Y = w(V) is a compact space with K(w(V)) = 2 <
ind(w(V')) = 3, we can apply the Lemma 3.4 to find an open, non-
closed subset U included in Y with K(U) = 2 < K(w(U)) = 3.
The same reasoning for X = w(U) as the one we have made for
Y implies that dim(X) = 1, ind(X) = 3, Ind(X) = 3, but X,
Y are non-homeomorphic spaces because we have that K(X) = 3,

K(Y) =2.
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