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An Agmon-Douglis-Nirenberg Type
Result for Some Non Linear
Equations

D. GIACHETTI AND R. ScHIANCHI *)

SUMMARY. - We consider local distributional solutions u € W;)’CT(Q)
of mon linear elliptic equations of the type

—divA(z, Du) = —divf (z) + g(z)

and we prove that u € Wli’cr(Q) when 1 is sufficiently close to
2 which is the exponent related to the growth conditions of the
operator (see assumptions (2) and (3))

1. Introduction

A classical result, due to Agmon,Douglis and Nirenberg (see [1]),
shows that the weak solutions u € WU1 " of second order linear ellip-
tic equations with regular coefficients and right hand side in L"(f2)
belong to W27 () for any r > 1. It is well known also (see [6]) that
weak solutions to second order non linear elliptic equations in diver-
gence form, with right hand side in L2 (), under suitable regularity

loc

and growth assumptions, belong to Wli’cz(ﬁ) As far as we know the
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non linear case has not yet been considered for r different from 2. In
this paper we consider the non linear problem

u € Wh'(Q) r>1 0
—divA(z, Du) = —divf(z) + g(x)
where 2 is an open bounded set in R", f € (Wlf)g(ﬁ))", g € Lj,.(Q)
and A : (z,&) € A x R — R” is a C'-function satisfying
0A;
e (2. 03 > ol )
D Az, 8)| < b(|ka(2)| +[€])  ka(z) € LT(©) (3)
|A(z, )| < c(lka ()] + [£]) ka(z) € L'(€) (4)
[DeA(z, )| < d (5)

for every £, A € R" and for every z € (), with a,b, ¢, d positive con-
stants.

We deal with solutions u of (1) in the sense of distributions for
|2 — 7| small enough and we prove that u € VVEZ(Q)

We point out that we are concerned with regularity properties of
the distributional solutions.

Existence of distributional solutions for problem (1) if » > 2 but
|r — 2| small enough is a consequence of classical results (see [9],
[10]). Some results concerning existence of distributional solutions
for 7 < 2 and |r — 2| small enough have been proved in [2], [8] and
[11].

More precisely we prove:

THEOREM 1.1. Assume that A satisfies (2)-(5). There exist r1, 19 withl}
r1 < 2 < 19 such that, if ri < r < ro and u is a distributional solution
of problem (1) with f € (Wli’g(Q))" and g € L}, (Q),thenu € Wli’cT(Q)
and the following estimate holds:

1 1
|D?u|"dz < ¢ —/ lu|"dz + — |Du|"dz +
/BR R Bagr Rr Bagr

(6)
/ (lgI" +1DJI" + |k1|f)dm).

Bogr
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The main tool in our proof is the Hodge decomposition (see
Lemma 2.3 in Section 2) which allows us to find a good test function
to use in the weak form of the equation. Indeed in our case classical
test functions, which are in the same Sobolev space of the solution
u, cannot be used if 7 < 2 and give only I/Vli’f—regularity ifr > 2.

Similar arguments have been used to prove higher integrability
of the gradient of distributional solutions of non linear equations of
the type (1) (see [4], [3] and [8]). The analogous result for non linear
operators whose growth is p # 2 is still an open problem.

2. Notation and preliminaries

Let €2 be a bounded open set in R* with boundary 02 and v : Q@ — R
a given function, we denote by

2
Du = 6—u,...,8—u and D%y = O"u .
911 9n 02i0%; ) ;-1 .

Moreover, if we consider functions A(z,¢) depending on z € Q and

¢ € R", we shall denote by D,A(z,&) the vector (%A(:p,{),... ,

%A(:v, {)) and by D¢ A(z, &) the vector ((%A(:v, £),..., %A(m, f))l
Finally for h € R we set

u(z + hes) — u(x)
h
where e; = (1,0,0,... ,0),... ,e, = (0,0,...,1).
The function 7, s(u) is defined in the set

ThsU = s=1,2,....n

Qh’s:{xEQ:x—i—hesEQ}.

When no confusion may arise we write 75, and 2}, instead of 7, 5 and
Qp s
The operator 7, verifies the following properties:

0 0
17p l,p - = _
1. If u e W"P(Q) then mu € W'P(Qy) and o (Thu) = Th axiu'

2. If at least one of the functions v and v has support in €, then

/umvd:v = —/vThud:v.
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3. Th(uv) = u(xz + hes) v + v71HU .
We shall use the following propositions which are proved in [6].

PROPOSITION 2.1. For every Q' € Q, if u € WP(Q) and |h| <
dist(Q',09) then

Il < 5] (7)

PROPOSITION 2.2. Let u € LP(Q), 1 < p < +oo, if there exists a
constant k such that for every h with |h| < hq it results

I, q, <&
then
ou
Oz, 0z
We shall denote by B, (z¢), o € R", > 0 the open ball {z €
" : |z —zo| < u} and we shall omit the index zy when no confusion

may arise. The following lemmas will be used in the proof of our
theorem in Section 3.

<k.
P2

€ LP(Q) and H

LEMMA 2.3. Let B C R" be a ball and v : B — R with u € WUI’T(B),
r>1andlet =1 < § < r—1. Then there exists ¢ : B — R and

H:B — R" such that H € L'/0+)(B), ¢ € W'/ "t (B) and
|Du|’Du = D¢+ H .
Moreover

HH| 1+5 . (8)

Lo/ ) S € &(r;n)

We point out that the constant ¢ above does not depend explicitely
on the center and on the radius of the ball.

For details on this lemma see [8].

LEMMA 2.4. Let f: [R,2R] — [0,400) be a bounded function satis-

fying N
f(p) Sef(U)erJFB
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for some constants A, B >0, q> 1,0 < 0 <1 and for every p,o
such that 0 < R < p < 0 < 2R then

F(R) < (0,9) (5 + B)

where

1—-60|\1+86

18 1ncreasing with respect to q.

(0.q) = 2 [(L)”q_1] -

For details on this lemma see [1] and [5].

3. Proof of the theorem
In this section we shall denote by C a constant which may vary from

line to line.
Our aim is to prove the following estimate

/ |Drpul"dx < C
Br

: /
— (lu|" + | Du|")dz +
o [, (" 10

+/ (DST + gl + k|7 )de
Baogr

which implies, by Proposition 2.2, that u € W2’ (€2) and (6) holds
true.
The weak form of the equation is

o O
/QA(x,Du)amidx—/szamz_dm+/ggz/)dx (9)

Vip € WHT(Q) with suppy € Q.
Let 2 € Q, R< p <o <2R, R <1, with 2R < dist(xg, 09).
We consider a cut-off function € C§°(B,) such that n = 1 on
C C
B,, |Dn| < ——, |D?p| < ——— (see [12]).
o D1l < =2 D2 < g (see [12)

We have that nu e WOI’T(BU), supp(nu) € B, and 7, (nu) € WOI’T(BU),
supp7(nu) € By, if |h| is small enough.
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Let us now consider v < o such that suppr,(nu) € B, C B,.
1,1 .
By Lemma 2.3, there exist ¢ € W, " '(B,) and a vector H with
divH = 0, such that

| Dy (npu)|" 2Dy (npu) = Dp + H . (10)

Moreover the following estimates hold

HD(M L'r_il—(B,y) < CHDTh(nU)| TL:(IBA,) (11)
HH| L7/ (=1)(B.) < Clr— 2|HDTh("7“)| TL:(IBW) : (12)

By extending ¢ in B, with zero value, we get ¢ € WOI’T(BU),
suppp € B, .

1,10 .
We remark that —7_,¢ € W, " ' (B,) and we can use it as test
function in (9), therefore we get

—/ Ai(x,Du)T,h%dx: —/ fiTh%d{L‘—/ gT_ppdx
By Oz; Bo Oz; B,

and also

— [ Ao, Dl 5 ds =

)

_ /[Ai(x,D(nu)) — Ai(z, Du)|1_p, gz dz

Ly / g da
B afEZ B,

= I+ IT+1I1. (13)

By (2), (3), (5), recalling the property 2, the integrals at the left
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hand side can be estimated as follows:

/ ThAi(x,D(nu))gj dx =

o

_/ _l/liA-( + thew, D(nu) + thDm, (nu))dt| 22 da =
a B, LhJo dt i\ s, AT Tp\NU oz, T =
= dat| 22 g =
/Ba Jo oz, " 0, Th( Oz; ) ] o, 0=
[ [10A: | 04 (0(u) UD)
B dt| | |D T2 _H) >
*/Ba /0 8$S + afg Th( a.’Ej ) :| <| Th('ﬂu)| 7—h( a{EZ ) ) >

>a [ Drp)lde—d [ 1Dm]H]do +
B Bs

- C/B (161 ()] + 1D (nu)| + [RDy (u)]) (| D7a ()"~ + | H]) ez

Let us now estimate the terms at the right hand side of (13).
If we put

A; = A (z+thes, D(nu)(z)+thDy,(nu)(z)) —A; (z+thes, Du(z)+thDryu(z)) J]

recalling (3) and (5) we get

1[rd ¢
1] = ‘/oBﬁ[ : aAldt] i dx‘

<C [1k1(z + hes) + |D(nu)| + [Du| + |D7y(nu)| + | DTpul] -
B,—B,

(D) + |H] de

1) < / i f| [ Dra ()= + | H] ds

o

11| < /B 9l Ir_nld.

(*) The functions %, % are evaluated in (z + thes, D(nu) + thD1h(nu)).
s J
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Putting together the previous estimates we have

a/ | D7y (nu)|"dx < d/ | D7y (nu)| |H| dz +
B, Bo
+ C/B (|1 (2)] + [D(nu)| + [hD7h(nu)]) (| D7 () "~ + | H) dz +

+C (|1 (2 + hes)| + |D(nu)| + Dul] - [| D7y (nu)|" ' + |H|| dz +
B,—B,

4 / (D7 ()] + | D) | Dy ()|~ +
B

o *Bp

+/ | D7y (nu) + Drpu| |H|dz +
B

o_Bp

+ /B i f| (D () + | 1) d + /B 9l [7_ndlda

By using Young’s inequality several times and Proposition 2.1,
denoting by e and ¢(e) suitable constants to be chosen, we get, for
|h| =¢

a/ | D7y, (nu)|"dz < 5/ | D1y, (nu)|"dz + ¢(e)
Bs B,

+/ |k1|’"dx+/ |Du|’"da:+L/ |u|’"da:+/ \Df|" dz
Br Bo 0—pJB, Bo
+/ |g|rdm—|—/ |D7hu|fdm+/ Dy (nu)[" .
B, B,—B _
(14) |

o Bp
By properties 1 and 3 the last integral in (14) can be estimated
as follows,

/ H|T/ D g +
Bs

p

/ (Iranl |Dul + | Dyl + |mhul |Dnl + |ul [D7yn])" do <
By—B,

C
< 7r/ |Du|" dx —I—/ |Drpul"dx + %/ |u|"dz.
(0 —p) > —B, B,—B (0 —p) B,—B,

(15) |

P
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We can choose € and r in such a way that € + c(e)é|r — 2| < §
(so we find 7 and r9 which is in the statement of the theorem). By
using (12), (14) and (15), we get

/ | D7y, (nu)|"dz <
B,

1
gc/ k1T+DfT+gTd:E+7/ Du|"dx
ARl e g LY

#/ |u|rd:v+/
(0 —=p)* I,y B,—B

Recalling that 7 = 1 on B,, adding the term Cpr |D1pul|"dz to

|DThu|rd:v] .
P

(16)

both sides we have

(c+ 1)/ |Drpul"dz < ¢ [/ (|k‘1|r +|DfI" + |g|’")d$

B, Bar
+#/ | Du|"dz —i—#/ ‘u|7"d:v+/ | DTpul” dm]. I
(@ —=p)" B (0= p)*" [y B,
By Lemma 2.4, with 6 = -5, we get

1
Dru|" <c [—/ Dul|"dx
/ Dmal <e| g [ 1w
]' T T T T
+—RQ,«/ [ul dw+/ (Jfal" + 1DFI" + gl )d:v]
BgR B2R

and the proof is complete.
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