Rend. Istit. Mat. Univ. Trieste
Vol. XXXT, 79-94 (1999)

A Note on Sylvester’s Problem for
Random Polytopes in a Convex Body

STEFANO CAMPI, ANDREA COLESANTI
AND PAoLO GRONCHI *)

SUMMARY. - For any d-dimensional convex body K of unit volume,
d>2,let M.(K;n), r>1,n>d+1, be the r-th order moment
of the volume of the convex hull of n random points from K.
The paper deals with the problem of determining mazimizers of
M, (K;n) in the class of all d-dimensional convex bodies of unit
volume.

A method for selecting possible solutions, which is based on special
continuous movements of convex bodies, is presented. The results
obtained by this method support the conjecture that, for every r
and n, the only mazimizers of M,(K;n) are simplices.

1. Introduction

The present paper deals with a famous problem posed in 1864 by
J. J. Sylvester [17].

In the d-dimensional setting, Sylvester’s problem can be stated
as follows. Let K be a convex body in RY, i.e. a compact convex
set with non-empty interior, and take d + 2 random points from K.
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If P(K) denotes the probability that one of these points falls in the
convex hull of the remainders, for which bodies P(K) attains its
extremal values?

In order to handle this problem, it is convenient to notice that
for a body K of unit volume, P(K) is proportional to the expected
value of the volume of a random simplex contained in K. We denote
by M(K) such an expected value divided by the volume of K.

The first significant results on extrema of M(K) were obtained
by Blaschke in [4]. There, it is proved that for d = 2 the minimum
of M(K) is attained if and only if K is an ellipse, and that triangles
are the only maximizers of M (K).

The techniques employed by Blaschke involve two distinct types
of transformations acting on convex bodies. Namely, for the charac-
terization of ellipses the well-known Steiner symmetrization is used,
while the “Schiittelung” process comes in for the maximum problem.
We recall that the Steiner symmetral of K along the direction v is
obtained moving each chord parallel to v on a straight line so that its
midpoint lie on v*. The Schiittelung (or shakedown) process along
v moves each chord of K parallel to v so that one of its endpoints
lies on v and all the chords stay on the same side of v=.

Blaschke’s argument relies on the following two facts. First, the
functional M (K') does not increase (resp. decrease) under the Steiner
(resp. Schiittelung) process. Second, every plane convex set K can
be reduced to a disk (resp. a triangle) via countably many Steiner
symmetrizations (resp. Schiittelung) along suitably selected direc-
tions.

The latter property is true for both processes also in any dimen-
sion (see [10] and [3]), whereas the same does not hold for the first
one. In fact, in higher dimensions M (K) is still not increasing under
Steiner symmetrizations, as Groemer proved in [8], while it has not a
monotonic behaviour with respect to the Schiittelung process when
d > 2 (see the paper by Pfiefer [13] for a discussion regarding this
aspect). Consequently, the d-dimensional Sylvester’s problem for the
minimum case is solved, and the only solutions are ellipsoids. The
maximum problem is still open for d > 2, and it is conjectured that
the simplices are the only maximizers.

In this paper new efforts are provided to such a conjecture. We



A NOTE ON SYLVESTER’S PROBLEM etc. 81

develope a method which enables one to restrict the class of possible
maximizers of M (K). Our approach is based on continuous move-
ments of convex bodies, i.e. families K; of convex bodies depending
continuously on a parameter . The movements considered here can
be described as follows. Fix a convex body K and a direction v and
move each chord of K parallel to v with speed awv, where « is inde-
pendent of ¢. The speed function « is required to be such that K; is
convex as ¢ ranges in some interval containing ¢ = 0. For particular
choices of the speed function, these movements reduce to the Steiner
and Schiittelung processes.

We emphasize that the movements we are dealing with are spe-
cial cases of the linear parameter systems studied by Rogers and
Shephard in [14] (see also [16]).

The method developed here relies on the fact that M(Kj) is a
convex function of ¢ and it is strictly convex unless K; is an affine
image of K for every t (see Theorem 3.1).

This implies that no maximizer of M (K) can be an interior point
of a continuous movement K; unless the speed function is linear.

This result has several consequences. We show that if K is a
maximizer, then its boundary does not contain any open smooth
subset with positive Gaussian curvature.

A further consequence regards convex bodies of the following
type. Let K be the union of two convex bodies, with disjoint interi-
ors, K7 and Ko, such that each point from 0K N K1 N K> is a singular
point for K. Then K can be excluded as a possible maximizer.

The method works as well in other special cases. For instance,
let K be symmetric with respect to the hyperplane 7 and let v be
a direction orthogonal to w. If K is not affinely equivalent to its
Schuttelung with respect to v, then K cannot be a maximizer. From
this fact it follows that no Platonic polyhedron other than the sim-
plex can give the maximum of the Sylvester functional M (K).

Our argument applies also to generalizations of Sylvester’s func-
tional M(K). Namely, all our results can be extended to the r-th
order moment M, (K;n) of the volumes of polytopes which are con-
vex hulls of n random points from K, n>d~+ 1, r > 1.

Extrema of the functionals M, (K;n) were studied by several au-
thors. In particular, Groemer [9] showed that ellipsoids are still the
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only minimizers of M,.(K;n), for every n >d+ 1, r > 1. For r = 1,
Dalla and Larman [6] and Giannopoulos [7] proved that in R? tri-
angles are the unique solutions of the maximum problem. Results
concerning the asymptotic behaviour of Mj(K;n), as n tends to in-
finity, were obtained by Béardny and Larman in [2] and by Bérdny
and Buchta in [1].

The method of selection that we present is not sufficient by it-
self to prove the simplex conjecture for Sylvester’s problem; for in-
stance, it does not exclude a cylinder in R? whose base is a triangle
(see Example 2.6). On the other hand the use of continuous move-
ments reveals itself as a unifying approach to extremum problems for
Sylvester’s functionals. Partial applications of the method employed
here were already contained, as underlying features, in [8], [9] and

[6].
2. RS-decomposability

We begin by recalling the notion of linear parameter system used
by Rogers and Shephard in [14]. Let K¢ be the class of all convex
bodies in R¢. For a given K € K¢ and for a fixed direction v, we set

K; = conv[{z +ta(z)v : z€ K}|,t € R,

where a(z) is a real valued function (the speed function) defined on
K and conv[I] denotes the convex hull of a set I. The family K,
which is a continuous movement of the body K, is called a linear
parameter system.

The main feature of these movements is expressed by the follow-
ing theorem (proofs are given by Rogers and Shephard [14], Shephard
[16] and Hadwiger [11]):

THEOREM 2.1. The d-dimensional volume Vg (Ky) is a convex func-
tion of t.

As pointed out by Rogers and Shephard in [14], the orthogonal
projection of a linear parameter system onto any linear subspace is
also a linear parameter system. Therefore, Theorem 2.1 ensures that
not only the d-dimensional volume but also every quermassintegral
of K; is a convex function of ¢. Indeed, by Kubota’s formulas (see
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Schneider [15, Section 5.3]), for i = 1, 2, ..., d — 1, the i-th quer-
massintegral W;(K) of K is the average of the (d — i)-dimensional
volumes of (d — 7)-dimensional projections of K.

Here we are interested in the particular case of linear parameter
systems, whose speed function is constant on each chord of K parallel
to v.

Let m, : R — vt = {2 € R? : (z,v) = 0} be the orthogonal
projection along v and let K|,. = m,(K).

DEFINITION 2.2. The family of sets
K, ={z+tB(my(z))v : x € K},t € [a,b], (1)

where (3 is a real valued function on K|,1 and 0 € [a,b], is said to
be an RS-movement of K if K; = conv[Ky], for every t € [a,b].

Simple examples of RS-movements of a body K € K% along v are
obtained letting 3 be any linear function defined on v*. Indeed, in
this case, K; is an affine image of K for every ¢t € R.

Other examples can be obtained in connection with the Steiner
symmetrization and the Schiittelung process respectively. Namely,
for every direction v there exist two convex functions f, and gy,
defined on K|,., such that

K={(z,y) eR"' xR:z € K1, fo(z) <y < —go(z)}. (2)

Setting 3 = g, — fy in (1), we obtain the RS-movement

K;={(z,y) e R xR:z € K|, (3)
[fo + (g0 — fo)l(z) <y <[—gv+t(go — fu)](2)},t €[0,1].

Clearly Ky = K and K is the reflection of K with respect to v'.
Moreover Ko is the Steiner symmetral of K with respect to vt
If we choose 8 = gy, the corresponding RS-movement is

K;={(z,y) eR"" xR:z € K|, (4)
fo(@) +tgu(z) <y < (t—1)gu(2)} .t €[0,1].

In this case Ky = K and K is the Schiittelung of K along v.
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As Wi(Ky) = Wi(Ky), i = 1,2,...,d — 1, for the RS-movement
(3), from the convexity of W;(K;) with respect to ¢ we deduce that
for every ¢ the i-th quermassintegral does not increase via a Steiner
symmetrization.

On the other hand it is well-known (see [10]) that every convex
body can be reduced to a ball through repeated Steiner symmetriza-
tions along suitably chosen directions.

These two facts imply the following isoperimetric-type inequali-
ties

Wi Wa(B))
[Va (K=~ [Vy (B)]7

where B is a ball.

As far as the RS-movement (4) is concerned, the Schiittelung of
K is an endpoint of the family. Thus the convexity of the quermass-
integrals is not sufficient to obtain comparison results of the same
type as in the case of Steiner symmetrization. As a matter of facts
simple examples show that the surface area W1 (K) has not in general
a monotonic behaviour with respect to the Schiittelung process. If
we know in addition that %Wi(Kt) l;=o+ 1S non-negative, then clearly
Wi(K) does not decrease via the Schiittelung process. In the case
of regular bodies, a computation of such a derivative, involving inte-
grals of symmetric functions of principal curvatures, was performed
by Voss [19] and Tso [18].

The above considerations can help to understand the following
general facts.

Let F be a continuous functional on K¢ (equipped with the
Hausdorff metric) invariant under reflections with respect to hyper-
planes. Assume that F is a convex function of the parameter of any
RS-movement. Then among all the convex bodies of prescribed d-
dimensional volume, the minimum of F exists and it is attained at
a ball.

The existence of the maximum of F requires some additional as-
sumptions. Let F be invariant under affine volume-preserving maps.
Then we can restrict ourselves to the subclass of bodies contained
in a ball of sufficiently large radius; this follows via standard argu-
ments from the classical result by John [12]. Therefore our assump-
tions guarantee that F has a maximum. Notice that the Sylvester

i=1,2,....d—1,



A NOTE ON SYLVESTER’S PROBLEM etc. 85

functional we shall deal with in the next section fulfils all the above
requests.

We also observe that the condition on F to be invariant under
affine volume-preserving maps can be proved to be necessary for the
existence of the maximum.

RS-movements turn out to be useful to search for maximizers
of F. Indeed, let K; be an RS-movement, ¢ € [a,b], such that the
speed function is not linear. Then no Ky, for t € (a,b), can give the
maximum of F, unless F(K;) is constant.

Consequently, we introduce the following definition.

DEFINITION 2.3. A body K is said to be RS-indecomposable if, for
every RS-movement Ky, t € [—1,1], such that Ky = K, the speed
function of the movement is linear.

A body is called RS-decomposable if it is not RS-indecomposable.
EXAMPLE 2.4. Fvery triangle is RS-indecomposable.

Let T be a triangle and let v be a direction of R2. At least one of
the functions f, and g, (see formula (2)) is linear on 7’|, . Therefore,
the speed function of any RS-movement T3, ¢ € [—1, 1], with Ty = T,
has to be linear. O

EXAMPLE 2.5. Fvery square is RS-decomposable.

Let @ be the square with vertices at (0,0), (1,0), (1,1), (0,1).
We consider the family of sets

Q¢ = conv[{(0,0),(0,1),(1,0),(1 +¢t,1 —t)}], te[-1,1].

It is easy to see that @)y is an RS-movement of ) keeping fixed
conv[{(0,0),(0,1),(1,0)}]; thus the relevant speed function is not
linear. U

EXAMPLE 2.6. Let K € K% be either a cylinder or a cone. Then K
18 RS-decomposable if and only if the base is.

Let K be a cylinder in £?. Up to an affine map, we may assume
that
K={(z,y) eR" ' xR:z e H0<y<1},
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where H € K91 is the base of K.

If H is RS-decomposable, then there exists an RS-movement Hy,
t € [-1,1], such that Hy = H and the speed function is not linear.
Clearly the family

Ki={(z,y) eR"™' xR:z € H,0 <y <1},

is an RS-movement of K, whose speed function is not linear.

Conversely, assume that H is RS-indecomposable and let K; be
an RS-movement of K along the direction v. We distinguish two
cases.

If v is parallel to H then the speed function has to be linear on
the projection of H onto v'. If not, H would be RS-decomposable.
Without loss of generality, we may suppose that the speed function
vanishes identically on H|,.. For each h € [0, 1], consider the section
K, of Ky, parallel to H, at height h. The (d — 1)-dimensional
volume of K} is independent of £ and h. Therefore, by the Brunn-
Minkowski theorem (see [15, Section 6.1]), K, is a translate of H,
for every ¢t and h. Moreover, the speed function must be linear also
on any vertical line segment of the form {(z,y) : 0 <y < 1}, where
xz € H|,.. Hence the speed function is linear on K|, .

Let us turn to the case when the direction v of the movement
K, is not parallel to H. Arguing as above, we know that the speed
function is linear on the projection onto v of each vertical chord
of K; furthermore, we may assume that the speed function vanishes
identically on H|,.. Taking into account that H|,., as a (d — 1)-
dimensional convex body, has nonempty interior leads to the conclu-
sion that K is RS-indecomposable.

An even simpler proof dispensing with the Brunn-Minkowski the-
orem, can be repeated in the case when K is a cone. O

Further considerations on classes of RS-decomposable sets will
be made in connection with Sylvester’s functionals later on.

3. Sylvester’s functionals

Let K € K% We consider the normalized mean expected value
M(K) of the volume of the simplex whose vertices are randomly,
independently and uniformly chosen from K. Such a functional can
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be expressed as

M(K) = W / . / Va (conv[xi]gill) dry...dzge, (5)
K K
——
(d + 1 times)
where con’u[acl]z | = conu[Ty, ..., T4l

The classical Sylvester problem is equivalent to search for the
maximum and the minimum of M (K).

It is easy to check that M(K) is continuous with respect to the
Hausdorff metric and it is invariant under affine transformations.
Therefore the existence of maximizers and minimizers of M(K) is
ensured. As proved by Blaschke [4] and Groemer [8], ellipsoids are
the only minimizers of M (K). The problem of finding maximizers is
still open, except for the case d = 2; in the latter case Blaschke [4]
showed that M (K) is maximum if and only if K is a triangle.

Extensions of M(K) to other functionals which are continuous
and affinely invariant were considered by several authors. A quite
natural one is given by the normalized mean expected value of the
volume of a random polytope with at most n vertices from K:

M(K;n) = W / . ./Vd (conv[z;]iy) dxy ...dzy;  (6)

K K
—

(n times)
obviously here n > d + 1.

For d = 2, M(K;n) is maximum if and only if K is a triangle
(see Dalla and Larman [6] for the if part and Giannopoulos [7] for
the only if part).

For d > 2, Groemer [9] proved that ellipsoids are still the only
minimizers of M (K;n) as well as of its generalization

M, (K;n) = Vi (K n_i_r/ /Vd (conv[z;liey)) dzy ... dxy, (7)
\,_/

(n times)

where 7 > 1. Functionals (7) express the normalized higher order
moments of the volume of a random polytope in K.
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A change of variables in the above integral shows that M, (K;n)
is invariant under affine transformations.

Our purpose is to establish a general property of functionals (7),
which in particular can be used to recover most of the quoted results
about extremum problems for such functionals.

THEOREM 3.1. If K, t € [—1,1], is an RS-movement, then M, (Ky;n)
is a convex function with respect to t, for everyr > 1 andn > d+ 1.

Furthermore M, (Ky;n) is strictly convex if and only if the speed
of K; is not a linear function.

Proof. Let v be the direction of the movement K; and [ be the
relevant speed function; denote by f, and g, the convex functions
such that

Ko={(z,y) €R" ! xR:z € Ko|y1, fu(z) <y < —gu(2)}.

By Fubini’s theorem, functionals (7) can be rewritten as

Kol,1 Kol, 1 \(fot+tB)(x1) (fottB)(zn)
N
(n-times)

T
Vg (conv|z; + yiv]?zl)] dyq ... dyn> dzy ...dz,
-9v(z1)  -go(zn)

- VdK0n+r/ / //

Kol,1 Kol,r \fo(z1) fo(zn)
H—’
(n times)

Va (conv[z; + (t0(x;) + yi)v]?zl)]r dy ... dyn> dry...dz,. (8)

(-gv+tB)(z1) (-gu+tB)(zn)

Thus M, (Ky;n) is the repeated integral of a function which is the
r-th power of a convex function, according to Theorem 2.1. Therefore
M, (K;;n) is convex itself.

As far as the strict convexity is concerned, if § is a linear function
then M, (K;;n) is constant in [—1,1]. Indeed, K; is an affine image
of Ky, for every t € [—1,1].
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In order to prove the converse, we start with the case r = 1,
n = d + 1. Assume that  is not a linear function. It is sufficient to
prove that

M(K_1) + M(Ky) > 2M (K,). (9)

Indeed, if ¢1, t2 € [—1, 1], by suitably rescaling ¢ we obtain a new
RS-movement K, such that K_; = Ky, K, = K;,. Thus (9) implies
that M (K;) is not linear in any subinterval of [—1,1]; hence it is
strictly convex.

If 21, Ty, ..., T4 are arbitrary fixed affinely independent vectors
from the interior of Ky|,., then, up to adding a linear function to £,
we may suppose that 3(z;) = 0,7 =1,2,...,d. Since § is not linear,
there exists at least one vector from Kj|, . with not vanishing speed.

Firstly, assume that we can find a vector Z4,1 from conv[Z;, Zo,
..., Zq| such that B(z411) # 0. Forevery z;,1=1,2,...,d,lety; € R
be such that z; = z;+9;v € K. Denote by 7 the hyperplane through
Z1, 22, ..., 24 and by 9441 the number such that 2441 + yg+1v € 7.

The function

(10(5317 ey Td415Y1y- -0y yd-l—l) = Vd (CO’H/U[IEZ' + (yz + ﬁ(ml))v];j;rll> +

Va (com)[:vi + (yi — B(z))w]E!) — 2V (com)[:vi + yw]?if)

is non-negative by Theorem 2.1.

Moreover ¢(Z1, To, ..., Tai1sY1s Y2, - -« Yar1) > 0. Taking into
account the continuity of ¢, we deduce inequality (9).

In case that G(z) = 0 for every x € conv[Zi, Zo, ..., T4], let
Zg41 be a vector from the interior of Kol such that 5(z441) # 0.
Denote by zz41 € Ko a vector such that its projection onto vt s
Z4+1- Let 7 be a hyperplane through zz,; not containing v and
intersecting the interior of the set I = {z € Ky : z|,. € conv[Z1,

Z9, ..., xq]}. Choose Z1, Z3, ..., Zg € T NI in such a way that
their projections Zi, &9, ..., Zq onto v are affinely independent
vectors and set Zg41 = Zg11. The function ¢ is strictly positive at
(Z1, Z9y -y Tas1,T15 Y25 - - - Yar1), where g; satisfies z; = Z; + g0,

i=1,2,...,d+ 1. Therefore (9) holds in this case too.
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Now let us establish the strict convexity of M, (Ky;n), for arbi-
trary 7 > 1 and n > d + 1. We have that

M’I‘(K—l; n) + Mr(Kl§n) - 2MT(KO§n) =

1
:W/.../zp(zl,...,zn)dzl...dzn, (10)

Ko Ko

(n times)

where

P(21,.- -, 2n) = Va (convlzi + Bzl Joli))
+ [Va (convlzi — B(zil, 1 )olio1)] — 2 [Va (conv[z]i)]" -

Notice that 9 is a continuous function, which is non-negative by
virtue of Theorem 2.1.

As shown in the first part of the proof, there exist zy, Z, ...,
Zg+1 such that

Y(Z1, Z2, ..y Zds1s Zdt1s -+ Zdr1) > 0.

Hence, the strict convexity of M, (K;;n) is obtained by using (10)
and arguing as in the previous case.
This concludes the proof. O

As a first application, Theorem 3.1 gives Groemer’s result: Fl-
lipsoids are the only minimizers of M,(Ky;n).

Indeed, let K be such that M,(K;n) < M,(K;n), for every K €
K¢, If K is not an ellipsoid, then there exists a direction v such that
K is not affinely equivalent to its Steiner symmetral with respect to
vt (see [5, §70]). Hence M, (Ky;n) is strictly convex in ¢, being K
the RS-movement defined as in (3), with Ko = K.

Let us turn now to the problem of finding maximizers of M, (K;n).

In the two-dimensional setting, Theorem 3.1 implies that if T' is
a triangle, then

M,(K;n) < M(T;n), (11)

for every K € K2, r > 1, n > 3.
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We prove (11) in the case when K is a polygon; by virtue of the
continuity of the functional M, (K;n), inequality (11) holds in the
general case.

Let K be a polygon with vertices ay, a9, ..., ap, m > 3, ordered
clockwise. Choose v as a direction parallel to the line joining a; and
as. Set

K, = convlay,as + tv,az, ..., ap].

There exist 01,02 > 0 such that K, t € [—d1, 02, is an RS-movement
and both K_s,, K5, have m — 1 vertices. By Theorem 3.1, M, (K;n)
is strictly convex; therefore

M, (K;n) < max{M,(K_s,;n), M, (Ks,;n)}.

Iterating the above procedure yields M, (K;n) < M,(T;n), where T
is a triangle.

In higher dimensions coupling Theorem 3.1 and Definition 2.2
gives the following necessary condition.

THEOREM 3.2. Every mazimizer of M,(K;n) is RS-indecomposable.

Our next step is to employ Theorem 3.2 as a selection criterion
and to identify classes of RS-decomposable convex bodies.

The first case we consider is the class A¢ of all convex bodies in
R? such that a non empty open subset of the boundary is of class
C?%, ie. is C? and all the principal curvatures are positive.

THEOREM 3.3. Every convex body from A% is RS-decomposable.

Proof. Let K be in A% and choose a coordinate system (O;zy, ...,
zq) so that the interior of K has nonempty intersection with the
hyperplane z4 =0 and 0K N {z € R? : 24 > 0} is C>T.

Let v be a direction parallel to the zi-axis and let f, and g,
be the convex functions defined as in (2). There exists a number
0 > 0 such that the least eigenvalue of both the Hessian matrices
D%f,(y) and D?g,(y) is greater than d, for every y € K|,. N{z €
R : 34 > 0}. Let B € C*(K]|,L), B %0, be a function vanishing in
K|,. N{z € R? : 24 < 0} such that all the eigenvalues of D?3(y)
are in (—d,0). Since f, £ and g, &+ 3 are still convex functions, the
movement K;, ¢ € [—1,1], along v with speed function 3 (see (1))
and Ky = K, is an RS-movement. Clearly 3 is not a linear function,
therefore K is RS-decomposable. U
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Theorem 3.3 suggests to confine the search of maximizers of
M, (K;n) within the class of convex polytopes. The same hint comes
from the results proved by Barany and Larman in [2]. There an up-
per bound for M (K;n) is found; moreover it is showed that M (P;n)
behaves asymptotically, as n tends to infinity, like such a bound when
P is a polytope.

In fact, the simplex was repeatedly conjectured to be the only
maximizer of M(K;n) (see, for instance, [6] and [13]). Such a con-
jecture is supported by the result of Bardny and Buchta [1], who
proved that for every K € K¢ there exists 71, depending on K, such
that M (K;n) < M(T;n), for all n > n, where T is a simplex.

Another contribution to the conjecture was given by Dalla and
Larman in [6]. They characterize simplices in K¢ as the only max-
imizers of M (K;n) in the class of all the convex polytopes with at
most d + 2 vertices. This result can be extended to the functional
M, (K;n) as a consequence of Theorem 3.2.

THEOREM 3.4. If P € K% is a polytope with at most d + 2 vertices,
then
M, (P;n) < M,(T;n)

for every r > 1 and n > d + 1, where T € K% is a simplex. Equality
holds if and only if P is a simplex.

Proof. Standard compactness arguments show that M, (P;n) attains
a maximum in the class of all convex polytopes in K¢ with at most
d+ 2 vertices. Furthermore, it is clear that Theorem 3.2 applies also
in such a restricted class.

Let us suppose that P € K% is not a simplex. Let us fix d + 1
vertices of P which do not lie on the same hyperplane. Among
all the hyperplanes containing d of the fixed vertices, let m be a
hyperplane containing interior points of P. Thus 7 divides P in two
simplices, 77 and T5. One can easily build an RS-movement of P
which keeps 77 unchanged and transforms affinely 75. Therefore P
is RS-decomposable. O

The proof of Theorem 3.4 can be adapted to a wider class of con-

vex bodies, which consequently have to be excluded as maximizers
of M,(K;n).



A NOTE ON SYLVESTER’S PROBLEM etc. 93

THEOREM 3.5. Let K € K. Assume that there exists a hyperplane
m intersecting the interior of K, and such that each point from 0K N
s a singular point for K. Then K is RS-decomposable.

Proof. By the assumptions of the theorem, the hyperplane 7 splits
K into two convex bodies K7 and Ks. Then the proof is the same
as the one of the previous theorem, with 77 and T5 replaced by K3
and K. |

Our final result deals with convex bodies having a hyperplane of
symietry.

THEOREM 3.6. If K € K% is symmetric with respect to a hyperplane
7 = v, and the corresponding functions f, and g, (see (2)) are not

linear, then K is RS-decomposable.

Proof. Formula (4) with ¢ € [—1,1], i.e. the Schiittelung processes
along v and —wv, gives an RS-movement of K whose speed function
is not linear. O

It follows in particular from this theorem that in R?® no Platonic
polyhedron other than the regular tetrahedron can give the maxi-
mum for the Sylvester problem.
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