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Analogue of

Gidas-Ni-Nirenberg Result

in Hyperbolic Space and Sphere

S. Kumaresan and J. Prajapat (�)

Summary. - Let u 2 C2(
) be a positive solution of the di�erential

equation �u + f(u) = 0 in 
 with boundary condition u = 0
on @
 where f is a C1 function and 
 is a geodesic ball in the

hyperbolic space Hn (respectively sphere Sn). Further in case of

sphere we assume that 
 is contained in a hemisphere. Then we

prove that u is radially symmetric.

1. Introduction

In our paper, \Analogue of Serrin's result for domains in hyper-
bolic space and sphere" [4] we had used the moving plane method to
prove the symmetry of solution and symmetry of the domains in hy-
perbolic space and sphere. Here we use the same technique to prove
the analogue of a theorem of Gidas-Ni-Nirenberg [2] for domains in
hyperbolic space Hn and sphere Sn. More precisely, we prove

Theorem 1.1. Let 
 be a geodesic ball in Hn and u 2 C2(
) be a

positive solution of the di�erential equation

�u+ f(u) = 0 in 
 (1)
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u = 0 on @
 (2)

where f is a C1 function. Then u is radially symmetric.

Theorem 1.2. Let 
 be a geodesic ball in Sn such that 
 is con-

tained in a hemisphere. Let u 2 C2(
) be a positive solution of the

di�erential equation

�u+ f(u) = 0 in 
 (3)

u = 0 on @
 (4)

where f is a C1 function. Then u is radially symmetric.

Remark. We learnt later that Pablo Padilla has proved a version
of Theorem 1.2 in his thesis [5]. However, we would like to mention
that we have given an intrinsic geometric interpretation of \moving
plane method" for the Sphere which allows us to derive results like
[4]. Further, to our knowledge the result of Theorem 1.1 is new.

Before giving the proof of theorems, we shall �rst recall brie
y
the necessary prerequisites and notation. The details can be found
in [4].

2. Prerequisites

We shall consider the upper half-space model of the n-dimensional
hyperbolic space, i.e., Hn denotes the open upper half space f(x1;
: : : ; xn) 2 R

n : xn > 0g with the P�oincare metric ds2 := xn
�2
P

idxi
2.

Also, Sn denotes the unit sphere fx 2 R
n+1 :

Pn+1
i=1 x

2
i = 1g. It is

known that for Hn and Sn, the isometries are generated by \re-

ections with respect to closed, totally geodesic hypersurfaces" of
the respective spaces (see [3]). By a totally geodesic hypersurface
� of a Riemannian manifold (M, g), we mean a hypersurface with
the property that any geodesic of � (with induced metric) is also a
geodesic in (M;g). Given a closed, totally geodesic hypersurface �
(ofHn or Sn) we de�ne the re
ection R� with respect to � as follows:
for x 2 Hn (respectively Sn), let 
 denote the distance minimising
geodesic from x to � such that 
(0) 2 � and 
(t) = x. Since Hn

(respectively Sn) is complete, 
(s) is de�ned for all s 2 R. We de�ne
R�(x) = 
(�t). Moreover, from [4] we have
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Theorem 2.1. Let � � Hn be a totally geodesic hypersurface. Let

' be an isometry of Hn which maps � onto � which is necessarily

a totally geodesic hypersurface. If R� (respectively R�) denotes the

re
ection with respect to � (respectively �) then

R� � ' = ' � R�:

Note that � denotes the Laplace-Beltrami operator on the re-
spective spaces and we shall use the fact the Laplace-Beltrami oper-
ator is invariant under isometries.

3. Proof of Theorem 1.1

Recall that the Laplace-Beltrami operator on Hn is given by

� = xn
2

�Xn

i=1

@2

@2xi2

�
+ (2� n)xn

@

@xn
; (5)

where x1; : : : ; xn denotes the usual coordinate system on R
n . Since


 is a geodesic ball, given a direction �!� in Rn there exists a totally
geodesic hypersurface orthogonal to �!� such that x 2 
 is symmetric
about � i.e., R�
 = 
, where R� denotes the re
ection with respect
to � as de�ned above. We shall prove that u(x) = u(R�x) for every
such �; which proves Theorem 1.1. As in [4], we prove the symmetry
of solution with respect to the particular closed, totally geodesic
submanifold T� = f(x1; : : : ; xn) 2 Hn : x1 = �g of Hn; which is
orthogonal to x1-direction. We shift the hyperplane T� i.e., decrease
� until it begins to intersect 
. Let �0 be the �rst � such that T�0 is
tangential to @
. For � < �0, let �� denote that portion of 
 which
lies on the same side of T� as the x1-direction. Let �0� := R���,
where R� denotes the re
ection with respect to T�. Further, let
�1 < �0 be such that 
 is symmetric about T�1 . We claim that

u(x) = u(R�1x) for x 2 ��1 : (6)

For � < �0, de�ne v�(x) = u(R�x), x 2 ��. It follows that v�
satis�es the di�erential equation

�v� + f(v�) = 0
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on �� and the boundary conditions

v� = u on @�� \ T�;

v� > 0 on @�� n T�:

Consider the function w�(x) = v�(x)� u(x), x 2 �� which satis�es
the di�erential equation

�w� + h(x)w� = 0 on �� (7)

for L1 function h and boundary conditions

w� = 0 on @�� \ T�;

w� � 0 on @�� n T�:

i.e.,
w� � 0 on @��: (8)

Note that w� satis�es the equations (7) and (8) for all � < �0. We
shall show that w�1 � 0, which proves (6).

Claim: for � near �0, w� > 0 on ��.
For the proof of claim, we require the following version of maximum
principle [1, Proposition 1.1]:

Proposition 3.1. Let 
 be a domain in Rn with diam(
) � d. Con-

sider a second order elliptic operator L on 
 given by

L = aij(x)@ij + bi(x)@i + c(x);

with L1 coe�cients and which is uniformly elliptic

c0j�j
2 � aij(�) � C0j�j

2; c0; C0 > 0 for all � 2 Rn ;

and satisfying �X
bi
2
� 1

2
; jcj � b:

Let z 2W
2;n
loc (
) be such that

Lz � 0 in 


and

lim
x!@


z(x) � 0:

Then there exists � > 0 depending only on n, d, c0 and b such that

if meas(
) = j
j < � then z(x) � 0 in 
.
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For the application of the above proposition to Hn, we use the
fact that the measure on Hn is absolutely continuous with respect
to the usual Lebesgue measure on Rn .

For � near �0, the measure of �� is less than the � given by the
above proposition, where L is now the Laplace-Beltrami operator on
Hn given by (5). Since w� satis�es the di�erential equation

�w� + h(x)w� = 0 on ��;

for L1 function h and boundary condition

w� � 0 on @��;

it follows from the proposition that w� � 0 on ��. Now from the
restricted version of maximum principle [5], either w� � 0 or w� > 0.
For �0�� small, w� 6� 0 for otherwise we get a contradiction to u > 0
in 
. Hence w� > 0 on �� for � near �0.

De�ne � = supf� : ws > 0 for all s 2 (�; �0)g.

Claim: � = �1.

Proof of the claim: suppose � > �1. By continuity, we have w� � 0.
Further since � > �1, w� satis�es the equations (7) and (8). Hence
by restricted version of maximum principle, either w� � 0 or w� > 0
in ��. Now, w� � 0 gives a contradiction to fact that u > 0 in 
.
Hence w� > 0 in ��.

Choose a compact set K � �� such that

meas(�� nK) <
�

2
;

where � is the constant chosen in the proposition above. Then w� > 0
on K. Since K is compact, there exists � near � and �1 < � < �

such that
w� > 0 on K: (9)

Further we may choose � such that

meas(�� nK) < �:

On �� nK, w� satis�es the di�erential equation (7) with boundary
condition w� � 0 on @(�� nK). Since meas(�� nK) < �, by propo-
sition it follows that w� � 0 on �� nK. Therefore, w� � 0 on ��.
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Since � > �1, w� 6� 0. Hence w� > 0 on ��; a contradiction to the
de�nition of �. Therefore, the assumption is wrong. Hence � = �1.

By continuity, it follows that w�1 � 0. If we shift the plane
from �x1-direction, then by symmetry of the domain we get the
inequality w�1 � 0. Hence w�1 � 0 in 
, i.e., u(x) = u(R�1x) for all
x 2 
. Using the Theorem 2.1, we further conclude that u is radially
symmetric (see [4]).

Remark. It is clear that one go through the steps mentioned above
just as well to conclude Theorem 1.2.
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