On Additive Continuous Functions of Figures

W. F. Pfeffer (*)

Summary of results obtained previously by Z. Buczolich and the author [5]. It describes the relationship between derivatives and variational measures of additive continuous functions of figures, and presents a full descriptive definition of a generalized Riemann integral based on figures.

The set of all real numbers is denoted by \mathbf{R} , and the ambient space of this note is \mathbf{R}^m where m is a fixed positive integer. In \mathbf{R}^m we use exclusively the metric induced by the maximum norm $|\cdot|$. The origin of \mathbf{R}^m is denoted by $\mathbf{0}$. For an $x \in \mathbf{R}^m$ and $\varepsilon > 0$, we let

$$U(x,\varepsilon) = \{ y \in \mathbf{R}^m : |x - y| < \varepsilon \}$$

and

$$U[x,\varepsilon] = \{y \in \mathbf{R}^m : |x-y| \le \varepsilon\}.$$

For $x = (\xi_1, \ldots, \xi_m)$ and $y = (\eta_1, \ldots, \eta_m)$ in \mathbf{R}^m , we set $x \cdot y = \sum_{i=1}^m \xi_i \eta_i$. Note that $|x \cdot y| \leq m|x| \cdot |y|$ is the Schwartz inequality with the maximum norm.

The closure, interior, boundary, and diameter of a set $E \subset \mathbf{R}^m$ are denoted by E^- , E° , ∂E , and d(E), respectively. If $A, B \subset \mathbf{R}^m$ and $x \in \mathbf{R}^m$, we let

$$A \bigtriangleup B = (A-B) \cup (B-A)$$

and

$$\operatorname{dist}\left(x,A\right)=\inf\{\left|x-y\right|:y\in A\}\,.$$

^(*) Author's address: Departmente of Mathematics, University of California, Davis, CA95616, USA. Supported in part by the Catholic University of Louvain, Louvain-la-Neuve, Belgium, and the National Research Council of Italy.

Unless specified otherwise, a number is an extended real number, and a function is an extended real-valued function.

The Lebesgue measure in \mathbf{R}^m is denoted by λ ; however, for $E \subset \mathbf{R}^m$, we write |E| instead of $\lambda(E)$. A set $E \subset \mathbf{R}^m$ with |E|=0 is called negligible. Sets $A,B \subset \mathbf{R}^m$ are called nonoverlapping whenever $A \cap B$ is negligible. Unless specified otherwise, the words "measure" and "measurable" as well as the expressions "almost all," "almost everywhere," and "absolutely continuous" always refer to the Lebesgue measure λ .

The (m-1)-dimensional Hausdorff measure in \mathbf{R}^m is denoted by \mathcal{H} , and a set $T \subset \mathbf{R}^m$ of σ -finite measure \mathcal{H} is called *thin*. The symbol \int always denotes the Lebesgue integral, with respect to λ or \mathcal{H} as the case may be.

A cell is a compact nondegenerate subinterval of \mathbf{R}^m , and a figure is a finite (possibly empty) union of cells. The family of all figures is denoted by \mathcal{F} , and for $A \in \mathcal{F}$, we let $\mathcal{F}_A = \{B \in \mathcal{F} : B \subset A\}$. The perimeter and exterior normal of a figure A are denoted by ||A|| and ν_A , respectively. Note that $||A|| = \mathcal{H}(\partial A)$, and that ν_A is defined \mathcal{H} -almost everywhere on ∂A . If B and C are figures, then so are $B \cup C$.

$$B \odot C = [(B \cap C)^{\circ}]^{-}$$
 and $B \ominus C = (B - C)^{-}$,

and the following inequality holds:

$$\max\{\|B \cup C\|, \|B \odot C\|, \|B \ominus C\|\} \le \|B\| + \|C\|.$$

The regularity of a nonempty figure A is the number

$$r(A) = \frac{|A|}{d(A)||A||};$$

if $A = \emptyset$, we let r(A) = 0. The usual concept of regularity introduced in [11, Chapter IV, Section 2] is related to r(A) by the inequality $[2mr(A)]^m \leq |A|/[d(A)]^m$ [9, Proposition 12.1.6]. If $r(A) > \eta > 0$, we say the figure A is η -regular. A figure C of maximal regularity, i.e., with r(C) = 1/(2m), is a cell called a cube.

1. Additive continuous functions

An additive function is a real-valued function F defined on the family \mathcal{F} of all figures such that

$$F(B \cup C) = F(B) + F(C)$$

for each pair of nonoverlapping figures B, C.

DEFINITION 1.1. An additive function is *continuous* if given $\varepsilon > 0$, there is an $\eta > 0$ such that $|F(B)| < \varepsilon$ for each figure B with $B \subset U(\mathbf{0}, 1/\varepsilon)$, $||B|| < 1/\varepsilon$, and $|B| < \eta$.

REMARK 1.2. A distribution function of an additive continuous function is continuous, but the converse is true only in dimension one [10]. Thus it is instructive to describe the topology τ on \mathcal{F} such that additive functions are continuous according to the above definition if and only if they are τ -continuous. On each

$$\mathcal{F}_n = \{ B \in \mathcal{F} : B \subset U[\mathbf{0}, n] \text{ and } ||B|| \le n \}, \quad n = 1, 2, \dots,$$

define a metric $\rho(B,C) = |B \triangle C|$. Then τ is induced by the largest uniformity ν on \mathcal{F} for which the embeddins $(\mathcal{F}_n, \rho) \hookrightarrow (\mathcal{F}, \nu)$ are uniformly continuous. The topology τ is Hausdorff, separable and sequential, but not metrizable. The sequential completion of (\mathcal{F}, ν) consists of all bounded Caccioppoli sets [8].

EXAMPLE 1.3: We give two important examples of additive continuous functions.

- 1. Let $f \in L^1_{loc}(\mathbf{R}^m, \lambda)$ [6, Section 1.3], and let $F(A) = \int_A f d\lambda$ for each figure A. Then F is an additive continuous function by the absolute continuity of the Lebesgue integral.
- 2. Let v be a continuous vector field on \mathbf{R}^m , and let $F(A) = \int_{\partial A} v \cdot \nu_A d\mathcal{H}$ for each figure A. Then F is an additive continuous function, called the flux of v [9, Proposition 11.2.8].

LEMMA 1.4. An additive function F is continuous if and only if the following condition is satisfied: given $\varepsilon > 0$, there is a $\theta > 0$ such that

$$|F(B)| < \theta|B| + \varepsilon(||B|| + 1)$$

for each figure $B \subset U[\mathbf{0}, \mathbf{1}/\varepsilon]$.

The proof of Lemma 1.4 is not simple; the interested reader is referred to [9, Proposition 12.8.3].

An additive function in a figure A is a real valued function defined on the family \mathcal{F}_A of all subfigures of A such that

$$F(B \cup C) = F(B) + F(C)$$

for each pair of nonoverlapping figures $B, C \subset A$. We say that an additive function F in a figure A is continuous if given $\varepsilon > 0$, there is an $\eta > 0$ such that $|F(B)| < \varepsilon$ for each figure $B \subset A$ with $||B|| < 1/\varepsilon$ and $|B| < \eta$.

Let F be a function defined on \mathcal{F}_A . Setting

$$(F|A)(B) = F(A \odot B)$$

for each $B \in \mathcal{F}$ defines a function $F \mid A$ on \mathcal{F} , called the *canonical* extension of F. It follows immediately that $F \mid A$ is an additive function if and only if F is an additive function in A. Moreover, since the condition $B \subset U(\mathbf{0}, 1/\varepsilon)$ is satisfied for all $B \in \mathcal{F}_A$ whenever $\varepsilon > 0$ is sufficiently small, we see that for an additive function F in A, the canonical extension $F \mid A$ is continuous if and only if F is continuous.

2. Derivatives

Let $x \in \mathbf{R}^m$, and let F be a real-valued function defined on \mathcal{F} . For a positive $\eta < 1/(2m)$, set

$$\underline{D}_{\eta}F(x) = \sup_{\delta > 0} \left[\inf_{B} \frac{F(B)}{|B|} \right] \quad \text{and} \quad \overline{D}_{\eta}F(x) = \inf_{\delta > 0} \left[\sup_{B} \frac{F(B)}{|B|} \right]$$

where the infimum and supremum in the brackets are taken over all η -regular figures $B \subset U(x, \delta)$ with $x \in B$. The numbers

$$\underline{D}F(x) = \inf_{0 < \eta < \frac{1}{2m}} \underline{D}_{\eta}F(x) \quad \text{and} \quad \overline{D}F(x) = \sup_{0 < \eta < \frac{1}{2m}} \overline{D}_{\eta}F(x)$$

are called, respectively, the *lower* and *upper derivate* of F at x.

Using an argument similar to [11, Chapter IV, Theorem 4.2], it is easy to show that the functions $\underline{D}_{\eta}F$, $\overline{D}_{\eta}F$, $\underline{D}F$, and $\overline{D}F$, defined on \mathbf{R}^{m} in the obvious way, are measurable and the inequality

$$\underline{D}F \leq \underline{D}_{\eta}F \leq \underline{D}_{\theta}F \leq \overline{D}_{\theta}F \leq \overline{D}_{\eta}F \leq \overline{D}F$$

holds for all η, θ with $0 < \eta < \theta < 1/(2m)$.

If $\overline{D}F(x) = \overline{D}F(x) \neq \pm \infty$, we denote this common value by DF(x), and say that F is derivable at x; the number DF(x) is called the derivate of F at x. If $\overline{D}_{\eta}|F|(x) < +\infty$ for all positive $\eta < 1/(2m)$, we say that F is almost derivable at x (cf. [9, Section 11.7]); in particular, F is almost derivable at x whenever $\overline{D}|F|(x) < +\infty$. The term "almost derivable" is justified by the following theorem.

THEOREM 2.1. Let F be an additive continuous function, and let E be the set of all $x \in \mathbf{R}^m$ at which F is almost derivable. Then F is derivable at almost all $x \in E$.

In dimenson one, Thorem 2.1 is a consequence of Ward's theorem [11, Chapter IV, Theorem 11.15] or Stepanoff's theorem [7, Theorem 3.1.9]. In higher dimensions, however, it requires a rather elaborate proof for which we refer to [5, Theorem 3.3].

Let v be a vector field defined on \mathbf{R}^m . We say v is almost differentiable at $x \in \mathbf{R}^m$ whenever

$$\limsup_{y \to x} \frac{|v(y) - v(x)|}{|y - x|} < +\infty.$$

If E is the set of all $x \in \mathbb{R}^m$ at which v is almost differentiable, then v is differentiable almost everywhere in E by Stepanoff's theorem [7, Theorem 3.1.9]. Note that E is measurable whenever v is.

EXAMPLE 2.2: Let F be the flux of a continuous vector field v on \mathbf{R}^m , and let $x \in \mathbf{R}^m$. The following facts are easy to prove [9, Lemma 11.7.4].

- 1. If v is almost differentiable at x, then F is almost derivable at x
- 2. If v is differentiable at x, then F is derivable at x and $DF(x) = \operatorname{div} v(x)$.

It will be convenient to *relativize* the concept of derivates. Let $A \in \mathcal{F}$, $x \in A$, and let F be a real-valued function on \mathcal{F}_A . For a positive $\eta < 1/(2m)$, set

$$\underline{D}_{\eta}F_{A}(x) = \sup_{\delta > 0} \inf_{B} \frac{F(B)}{|B|}$$

where the infimum is taken over all η -regular figures $B \subset A \cap U(x, \delta)$ with $x \in B$. The number

$$\underline{D}F_A(x) = \inf_{0 < \eta < \frac{1}{2m}} \underline{D}_{\eta} F_A(x)$$

is called the *lower derivate* of F at x relative to A. The numbers $\overline{D}_{\eta}F_A(x)$, $\overline{D}F_A(x)$, and $DF_A(x)$ are defined similarly; the meaning of derivability and almost derivability relative to A is obvious.

The connection between derivates and relative derivates is simple. Let $A \in \mathcal{F}$, let F be a real-valued function on \mathcal{F}_A , and let $F \mid A$ be the canonical extension of F defined at the end of Section 1. If $x \in A^{\circ}$, then

$$\underline{D}_{\eta}F_A(x) = \underline{D}_{\eta}(F \lfloor A)(x)$$

for each positive $\eta < 1/(2m)$. Moreover, D(F | A)(x) = 0 for every $x \in \mathbf{R}^m - A$. While there is no obvious relationship between $\underline{D}_{\eta}F_A(x)$ and $\underline{D}_{\eta}(F | A)(x)$ for $x \in \partial A$, this is irrelevant since ∂A is a thin set.

3. Variations

A partition is a collection (possibly empty) $P = \{(A_1, x_1), \dots, (A_p, x_p)\}$ where A_1, \dots, A_p are nonoverlapping figures, and $x_i \in A_i$ for $i = 1, \dots, p$. Given a positive $\eta < 1/(2m)$, a set $E \subset \mathbf{R}^m$, and a nonnegative function on E, we say that P is

- 1. η -regular if each A_i is η -regular;
- 2. in E if $\bigcup_{i=1}^p A_i \subset E$;
- 3. anchored in E if $\{x_1, \ldots, x_p\} \subset E$;
- 4. δ -fine if it is anchored in E and $d(A_i) < \delta(x_i)$ for $i = 1, \ldots, p$.

A nonnegative real-valued function defined on a set $E \subset \mathbf{R}^m$ is called a gage or an essential gage (abbreviated as e-gage) on E whenever its null set $N_{\delta} = \{x \in E : \delta(x) = 0\}$ is thin or negligible, respectively.

LEMMA 3.1. Let F be an additive continuous function in a figure A, and let δ be a gage on A. For each positive $\varepsilon < 1/(2m)$ there is an ε -regular δ -fine partition $\{(A_1, x_1), \ldots, (A_p, x_p)\}$ in A with

$$|F(A \ominus \bigcup_{i=1}^{p} A_i)| < \varepsilon$$

For the proof of Lemma 3.1, which is not trivial, we refer to [9, Proposition 11.3.7 and Lemma 11.3.4].

Let $E \subset \mathbf{R}^m$, and let F be a real-valued function defined on \mathcal{F} . Given a positive $\eta < 1/(2m)$ and a nonnegative function δ defined on E, set

$$V_{\eta,\delta}F(E) = \sup_P \sum_{i=1}^p |F(A_i)|$$

where the supremum is taken over all η -regular partitions $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ anchored in E that are δ -fine. The variation or essential variation (abbreviated as e-variation) of F on E is the number

$$\sup_{0<\eta<\frac{1}{2m}}\inf_{\delta}V_{\eta,\delta}F(E)$$

where the infimum is taken over all gages or e-gages on E, respectively; it is denoted by $V_*F(E)$ or $V_{e*}F(E)$, respectively. An easy verification reveals that the functions

$$V_*F: E \mapsto V_*F(E)$$
 and $V_{e*}F: E \mapsto V_{e*}F(E)$

are metric measures in \mathbf{R}^m (cf. [12, Theorem 3.7] and [9, Section 3.2]), and that the measure $V_{e*}F$ is absolutely continuous.

In dimension one, a concept similar to variation has been introduced in [12]. Versions of the e-variation were studied previously in the real line (see [4] and [2]) and in an abstract measure space (see [1]).

PROPOSITION 3.2. If F is a real-valued function on \mathcal{F} , then $V_{e*}F \leq V_*F$ and the equality occurs whenever V_*F is absolutely continuous.

Proof. As the inequality is obvious, assume V_*F is absolutely continuous. Seeking a contradiction suppose $V_{e*}F(E) < V_*F(E)$ for an

 $E \subset \mathbf{R}^m$. There is a positive $\eta < 1/(2m)$ and an e-gage σ on E such that

$$V_{\eta,\sigma}F(E) < c = \inf_{\delta} V_{\eta,\delta}F(E)$$

where the infimum is taken over all gages δ on E. Since the null set N_{σ} of σ is negligible, $V_*F(N_{\sigma})=0$. Thus given $\varepsilon>0$, we can find a gage ρ on N_{σ} so that $V_{\eta,\rho}F(N_{\sigma})<\varepsilon$. Define a gage δ on E by setting

$$\delta(x) = \begin{cases} \sigma(x) & \text{if } x \in E - N_{\sigma}, \\ \rho(x) & \text{if } x \in N_{\sigma}, \end{cases}$$

and observe that

$$c \leq V_{\eta,\delta}F(E) \leq V_{\eta,\sigma}F(E-N_{\sigma}) + V_{\eta,\rho}F(N_{\sigma}) < V_{\eta,\sigma}F(E) + \varepsilon$$
.

A contradiction follows from the arbitrariness of ε .

Let F be a real-valued function defined on \mathcal{F} . The *standard* variation of F on a figure A is the number

$$VF(A) = \sup \sum_{k=1}^{n} |F(A_k)|$$

where the supremum is taken over all nonoverlapping collections $\{A_1, \ldots, A_n\} \subset \mathcal{F}_A$. If F is additive, a routine argument shows that the function VF, defined on \mathcal{F} in the obvious way, is additive whenever it is real-valued. Note that if F is a real-valued function defined only on \mathcal{F}_A , the number VF(B) has still meaning for each figure $B \subset A$, and $(VF)|_A = V(F|_A)$.

LEMMA 3.3. If F is an additive continuous function, then $V_*F(A) = VF(A)$ for each figure A.

Proof. Let A be a figure. The function $\delta: x \mapsto \operatorname{dist}(x, \partial A)$ is a gage in A, and every δ -fine partition is a partition in A. Thus $V_{\eta,\delta}F(A) \leq VF(A)$ for each positive $\eta < 1/(2m)$, and hence $V_*F(A) \leq VF(A)$.

Proceeding towards a contradiction, assume $V_*F(A) < VF(A)$. Then there is a nonoverlapping collection $\{A_1, \ldots, A_n\} \subset \mathcal{F}_A$ such that

$$V_*F(A) < \sum_{k=1}^n |F(A_k)|$$
.

Choose a positive $\eta < 1/(2m)$ and find a gage δ on A so that

$$V_{\eta,\delta}F(A) < \sum_{k=1}^n |F(A_k)|$$
.

Given $\varepsilon > 0$, it follows from Lemma 3.1 that in each A_k there is an η -regular δ -fine partition $P_k = \{(B_1^k, x_1^k), \dots, (B_{p_k}^k, x_{p_k}^k)\}$ such that

$$\begin{aligned} \sum_{i=1}^{p_k} |F(B_i^k)| & \geq & \left| F\left(\bigcup_{i=1}^{p_k} B_i^k\right) \right| = \left| F(A_k) - F\left(A_k \ominus \bigcup_{i=1}^{p_k} B_i^k\right) \right| \\ & > & |F(A_k)| - \frac{\varepsilon}{n} \,. \end{aligned}$$

Since $P = \bigcup_{k=1}^{n} P_k$ is an η -regular δ -fine partition in A,

$$V_{\eta,\delta}F(A) \geq \sum_{k=1}^n \sum_{i=1}^{p_k} |F(B_i^k)| > \sum_{k=1}^n |F(A_k)| - \varepsilon$$

and a contradiction follows from the arbitrariness of ε .

EXAMPLE 3.4: Assume m=1. Let C be the Cantor ternary set in A=[0,1], and let F be an additive continuous function whose distribution function extends the Cantor function in A [9, Example 5.3.11]. Since the function $\delta: x \mapsto \operatorname{dist}(x,C)$ is an e-gage on A and a gage on A-C, we have $V_{e*}F(A)=V_*F(A-C)=0$. On the other hand, it follows from Lemma 3.3 that $V_*F(A)=VF(A)=F(A)=1$, and so $V_*(C)=1$.

PROPOSITION 3.5. If F is a real-valued function on A, then the measures V_*F and $V_{e*}F$ are Borel regular, i.e., the measure of any set $E \subset \mathbf{R}^m$ equals the measure of a Borel set containing E.

Proof. We prove the lemma for V_*F using the technique of [12, Theorem 3.15]. The proof for $V_{e*}F$ is analogous. Assume $V_*F(E) < +\infty$, choose an $\varepsilon > 0$, and fix a positive $\eta < 1/(2m)$. Find a gage δ on E so that

$$V_{\eta,\delta}F(E) < V_*F(E) + \varepsilon$$
,

and let $E_n=\{x\in E: \delta(x)>1/n\}$ for $n=1,2,\ldots$ We claim $V_{\eta,1/n}F(E_n)=V_{\eta,1/n}F(E_n^-)$. As

$$V_{\eta,1/n}F(E_n) \le V_{\eta,1/n}F(E_n^-),$$

it suffices to obtain a contradiction by supposing this inequality is sharp. Then there is an η -regular (1/n)-fine partition $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ anchored in E_n^- for which

$$V_{\eta,1/n}F(E_n) < \sum_{i=1}^p |F(A_i)|$$
 .

Employing the additivity and continuity of F, it is easy to modify P so that it becomes anchored in E_n and still satisfies the other conditions, a contradiction.

From the claim, we infer

$$\inf_{\sigma} V_{\eta,\sigma} F(E_n^-) \leq V_{\eta,1/n} F(E_n^-) = V_{\eta,1/n} F(E_n) \leq V_{\eta,\delta} F(E_n)$$

$$\leq V_{\eta,\delta} F(E) < V_* F(E) + \varepsilon ,$$

where the infimum is taken over all gages σ on E. The arbitrariness of η yields $V_*F(E_n^-) \leq V_*F(E) + \varepsilon$, and thus

$$V_*F\left(igcup_{n=1}^\infty E_n^-
ight)=\lim V_*F(E_n^-)\leq V_*F(E)+arepsilon\,;$$

for $\{E_n^-\}$ is an increasing sequence of closed sets.

Since $E - N_{\delta} \subset \bigcup_{n=1}^{\infty} E_n^-$, it follows from the arbitrariness of ε that there is a Borel set B such that $E - N_{\delta} \subset B$ and $V_*F(E) = V_*F(B)$. Now the thin set N_{δ} is contained in a thin Borel set C [6, Section 2.1, Theorem 1]. As $V_*F(C) = 0$, the lemma is proved.

Our next result improves on [3, Theorem 3.3]. Its proof is similar to that given in [1, Theorem 1] for an abstract measure space with a derivation base.

Theorem 3.6. If F is a real-valued function defined on the family \mathcal{F} , then

$$V_{e*}F(E) = \int_E \overline{D}|F| \, d\lambda$$

for each measurable set $E \subset \mathbf{R}^m$.

Proof. As $V_{e*}F = V_{e*}|F|$, we suppose $F \geq 0$. Select a measurable set $E \subset \mathbf{R}^m$ and note that the integral $I = \int_E \overline{D}F \, d\lambda$ exists (possibly equal to $+\infty$), since $\overline{D}F > 0$ is a measurable function.

First we prove the inequality $V_{e*}F(E) \leq I$. If the set $E_{\infty} = \{x \in E : \overline{D}F(x) = +\infty\}$ has positive measure, then $I = +\infty$ and the inequality holds. If E_{∞} is negligible, then $V_{e*}F(E_{\infty}) = \int_{E_{\infty}} \overline{D}F \, d\lambda = 0$, and no generality is lost by assuming $E_{\infty} = \emptyset$. Under this assumption, the measurable sets

$$E_n = \{ x \in E \cap U(\mathbf{0}, n) : \overline{D}F(x) < n \}, \ n = 1, 2, \dots,$$

form an increasing sequence whose union is E, and so it suffices to prove the inequality for each E_n .

Consequently, we may assume from the onset $I < +\infty$ and there is an open set $U \subset \mathbf{R}^m$ such that $E \subset U$ and $|U| < +\infty$. Let χ_E be the indicator (characteristic function) of E, and let

$$G(A) = F(A) - \int_A \overline{D} F \cdot \chi_E \, d\lambda = F(A) - \int_{A \cap E} \overline{D} F \, d\lambda$$

for each figure A. Observe the set

$$N = \{ x \in E : \overline{D}G(x) \neq 0 \}$$

is negligible according to [11, Chapter IV, Theorem 6.3].

Choose an $\varepsilon > 0$ and a positive $\eta < 1/(2m)$, and define an e-gage δ on E as follows: if $x \in N$ let $\delta(x) = 0$, and if $x \in E - N$ select $\delta(x) > 0$ so that $U(x, \delta(x)) \subset U$ and $G(A) < \varepsilon |A|$ for each η -regular figure $A \subset U(x, \delta(x))$ with $x \in A$. Now given an η -regular δ -fine partition $\{(A_1, x_1), \ldots, (A_p, x_p)\}$ anchored in E, we obtain

$$\begin{split} \sum_{i=1}^p F(A_i) &= \sum_{i=1}^p \left[G(A_i) + \int_{A_i \cap E} \overline{D} F \, d\lambda \right] \\ &< \sum_{i=1}^p \left[\varepsilon |A_i| + \int_{A_i \cap E} \overline{D} F \, d\lambda \right] < \varepsilon |U| + I \end{split}$$

and so $V_{\eta,\delta}F(E) \leq \varepsilon |U| + I$. The desired inequality follows from the arbitrarines of η and ε .

Proceeding towards a contradiction, assume $V_{e*}F(E) < I$ and fix an integer $n \ge 1$. For each $x \in E_{\infty}$ there is a positive $\eta_x < 1/(2m)$ such that given $\theta > 0$, we can find an η_x -regular figure $A \subset U(x, \theta)$

with $x \in A$ and F(A) > n|A|. Given an integer $k \ge 1$, let $C_k = \{x \in E_{\infty} : \eta_x > 1/k\}$, and find an e-gage δ on E_{∞} so that

$$V_{1/k,\delta}F(E_{\infty}) < V_{e*}F(E_{\infty}) + 1 \le V_{e*}F(E) + 1 < +\infty$$
.

The family C of all (1/k)-regular figures A with $d(A) < \delta(x)$ for an $x \in A \cap C_k$ and F(A) > n|A| is a Vitali cover of $C_k - N_\delta$. Using Vitali's covering theorem [11, Chapter IV, Theorem 3.1] and the negligibility of N_δ , find a (1/k)-regular δ -fine partition $\{(A_1, x_1), \ldots, (A_p, x_p)\}$ anchored in C_k such that $F(A_i) > n|A_i|$ for $i = 1, \ldots, p$ and $\sum_{i=1}^p |A_i| > |C_k|/2$. It follows

$$|C_k| < 2\sum_{i=1}^p |A_i| < \frac{2}{n}\sum_{i=1}^p F(A_i) \le \frac{2}{n}V_{1/k,\delta}F(C_k)$$

$$\le \frac{2}{n}V_{1/k,\delta}F(E_\infty) \le \frac{2}{n}[V_{e*}F(E) + 1]$$

and, as $\{C_k\}$ is an increasing sequence whose union is E_{∞} , we obtain

$$|E_{\infty}| \leq \frac{2}{n} [V_{e*}F(E) + 1].$$

By the arbitrariness of n, the set E_{∞} is negligible. In view of this, we can proceed with the argument assuming the statements made in the third paragraph of this proof, i.e., $I < +\infty$ and there is an open set $U \subset \mathbf{R}^m$ such that $E \subset U$ and $|U| < +\infty$.

Choose a positive $\eta < 1/(2m)$ and find an e-gage δ on E with $V_{\eta,\delta}F(E) < I$. Making δ smaller, we may assume $N \subset N_{\delta}$ and $U(x,\delta(x)) \subset U$ for each $x \in E$. Given $\varepsilon > 0$, the family $\mathcal K$ of all η -regular figures B with $d(B) < \delta(x)$ for an $x \in B \cap E$ and $G(B) > -\varepsilon |B|$ is a Vitali cover of $E - N_{\delta}$. Hence there is a disjoint sequence $\{B_i\}$ in $\mathcal K$ whose union covers E almost entirely. For $i=1,2,\ldots$, select an $x_i \in B_i$ so that $d(B_i) < \delta(x_i)$, and observe that for each integer $p \geq 1$, the collection $\{(B_1,x_1),\ldots,(B_p,x_p)\}$ is an η -regular δ -fine partition in U anchored in E. Thus

$$I = \sum_{i=1}^{\infty} \int_{B_i \cap E} \overline{D} F \, d\lambda = \sum_{i=1}^{\infty} [F(B_i) - G(B_i)]$$

$$\leq \lim_{p \to \infty} \sum_{i=1}^{p} F(B_i) + \varepsilon \sum_{i=1}^{\infty} |B_i| \leq V_{\eta, \delta} F(E) + \varepsilon |U|$$

and a contradiction follows from the arbitrariness of ε .

COROLLARY 3.7. An additive continuous function F is derivable almost everywhere in a set $E \subset \mathbf{R}^m$ if and only if E has σ -finite measure $V_{e*}F$.

Proof. Let $E = \bigcup_{n=1}^{\infty} E_n$ and $V_{e*}F(E_n) < +\infty$ for $n = 1, 2, \ldots$. By Proposition 3.5 there are Borel sets B_n such that $E_n \subset B_n$ and $V_{e*}F(E_n) = V_{e*}F(B_n)$. In view of Theorem 3.6, the function F is almost derivable almost everywhere in each B_n . This and Theorem 2.1 imply F is derivable almost everywhere in E.

Conversely, if F is derivable almost everywhere in E then, up to a negligible set, E is contained in the measurable set B of all $x \in \mathbf{R}^m$ at which F is derivable. Clearly, $D|F|(x) = |DF(x)| < +\infty$ for each $x \in B$. Letting

$$B_n = \{x \in B \cap U(\mathbf{0}, n) : D|F(x)| < n\}$$

for n = 1, 2, ..., Theorem 3.6 yields

$$V_{e*}F(B_n) = \int_{B_n} D|F|(x) d\lambda(x) \le n|U(\mathbf{0}, n)| < +\infty.$$

Since $B = \bigcup_{n=0}^{\infty} B_n$ and $V_{e*}F$ is absolutely continuous, the corollary follows.

PROPOSITION 3.8. Let T be a thin set, and let F be an additive continuous function almost derivable at each $x \in \mathbf{R}^m - T$. Then V_*F is σ -finite and absolutely continuous.

Proof. The function F is derivable almost everywhere by Theorem 2.1. In particular, $V_{e*}F$ is σ -finite according to Corollary 3.7.

Now choose a negligible set $E \subset \mathbf{R}^m$ and a positive $\eta < 1/(2m)$. For n = 1, 2, ..., let

$$E_n = \{x \in E - T : n - 1 \le \overline{D}_{\eta}|F|(x) < n\}$$

and find open sets U_n so that $E_n \subset U_n$ and $|U_n| < \eta 2^{-n}/n$. Given $x \in E_n$ there is a $\delta_n(x) > 0$ such that $U(x, \delta_n(x)) \subset U_n$ and |F(B)| < 0

n|B| for every η -regular figure $B \subset U(x, \delta_n(x))$ with $x \in B$. Since E - T is the disjoint union of the sets E_n , the formula

$$\delta(x) = \begin{cases} \delta_n(x) & \text{if } x \in E_n, \\ 0 & \text{if } x \in E \cap T, \end{cases}$$

defines a gage on E. For an η -regular partition $\{(B_1, x_1), \ldots, (B_p, x_p)\}$ anchored in E that is δ -fine, we obtain

$$\sum_{i=1}^{p} |F(B_i)| = \sum_{n=1}^{\infty} \sum_{x_i \in E_n} |F(B_i)| < \sum_{n=1}^{\infty} \sum_{x_i \in E_n} n|B_i|$$

$$\leq \sum_{n=1}^{\infty} n|U_n| < \sum_{n=1}^{\infty} \eta 2^{-n} = \eta.$$

Thus $V_{\eta,\delta}F(E) \leq \eta$, and so $V_*F(E) = 0$ by the arbitrariness of η . An application of Proposition 3.2 completes the proof.

QUESTION 3.9: Let F be an additive continuous function such that V_*F is absolutely continuous. Is it true that V_*F is σ -finite?

OBSERVATION 3.10: An absolutely continuous Borel measure μ in \mathbf{R}^m is σ -finite whenever it is *semi-finite*, i.e., whenever each Borel set A with $0 < \mu(A)$ contains a Borel set B with $0 < \mu(B) < +\infty$.

Proof. By Zorn's lemma, there is a maximal disjoint family \mathcal{A} of Borel sets such that $0 < \mu(A) < +\infty$ for each $A \in \mathcal{A}$. The absolute continuity of μ together with the σ -finiteness of the Lebesgue measure λ imply that \mathcal{A} is a countable family. Since \mathcal{A} is maximal and μ is semi-finite, $\mu(\mathbf{R}^m - \bigcup \mathcal{A}) = 0$ and the observation is proved. \square

Observation 3.10 may be helpful in answering Question 3.9. While it is easy to exhibit an absolutely continuous Borel measure μ in \mathbf{R}^m which is not semi-finite [e.g., by letting $\mu = \lim_{n\to\infty} (n\lambda)$], the question is whether such a μ is the restriction of V_*F where F is an aditive continuous function.

EXAMPLE 3.11: Let T be a thin set, and let F be the flux of a continuous vector field v on \mathbf{R}^m . If v is almost differentiable at every $x \in \mathbf{R}^m - T$, then V_*F is σ -finite and absolutely continuous (Example 2.2 and Proposition 3.8).

As with the derivates, we relativize the concept of variations. Let $A \in \mathcal{F}$, let F be a real-valued function defined on \mathcal{F}_A , and let $E \subset A$. Given a positive $\eta < 1/(2m)$ and a nonnegative function δ on E, set

$$V_{\eta,\delta}F_A(E) = \sup_P \sum_{i=1}^p |F(A_i)|$$

where the supremum is taken over all η -regular partitions $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ in A anchored in E that are δ -fine. The variation of F on E relative to A is the number

$$V_*F_A(E) = \sup_{0 < \eta < rac{1}{2m}} \inf_{\delta} V_{\eta,\delta}F_A(E)$$

where the infimum is taken over all gages δ on E. The e-variation $V_{e*}F_A(E)$ of F on E relative to A, as well as the measures V_*F_A and $V_{e*}F_A$ in A, are defined in the obvious way.

Let A be a figure, and let F be a real-valued function on \mathcal{F}_A . Since the boundary of A is thin and closed, an easy argument shows

$$(V_*F_A)\lfloor A = V_*(F\lfloor A)$$
 and $(V_{e*}F_A)\lfloor A = V_{e*}(F\lfloor A)$.

From this, Corollary 3.7, and Proposition 3.8, we obtain immediately the following proposition.

PROPOSITION 3.12. For an additive continuous function F in a figure A the following conditions hold.

- 1. F is derivable relative to A almost everywhere in A if and only if $V_{e*}F_A$ is σ -finite.
- 2. If T is a thin set and F is almost derivable relative to A at every $x \in A^{\circ} T$, then V_*F_A is σ -finite and absolutely continuous.

4. The generalized Riemann integral

DEFINITION 4.1. A real-valued function f defined on a figure A is called *integrable* if there is an additive continuous function F in A satisfying the following condition: given $\varepsilon > 0$, we can find a gage δ on A so that

$$\sum_{i=1}^{p} \left| f(x_i) |A_i| - F(A_i) \right| < \varepsilon$$

for each ε -regular δ -fine partition $\{(A_1, x_1), \dots, (A_p, x_p)\}$ in A.

It follows from 3.1 that F, called the *indefinite integral* of f in A, is uniquely determined by f. If f is integrable in A, it is integrable in each figure $B \subset A$, and $F \lceil \mathcal{F}_B$ is the indefinite integral of f in B. The real number F(A) is called the *integral* of f over A, denoted by $\int_A f \, d\lambda$. Since the integral and Lebesgue integral coincide on the intersections of their domains [9, Theorem12.2.2 and 11.4.5], this notation leads to no confusion.

Let A be a figure. As the integral of f over A does not depend on the values f takes in a negligible set [9, Corollary 11.4.7], the concepts of integrability and integral can be readily extended to functions defined almost everywhere in A. We shall assume such an extension has been made, and denote by $\mathcal{R}(A)$ the family of all functions defined almost everywhere in A that are integrable.

PROPOSITION 4.2. Let $A \in \mathcal{F}$ and $f \in \mathcal{R}(A)$. If F is the indefinite integral of f, then V_*F_A is σ -finite and absolutely continuous.

Proof. Let $E_n = \{x \in A : |f(x)| \le n\}$ for n = 1, 2, ..., and let E be a negligible subset of A. With no loss of generality, we may assume f is a real-valued function defined on A such that f(x) = 0 for each $x \in E$. In particular $A = \bigcup_{n=1}^{\infty} E_n$. Choose a positive $\eta < 1/(2m)$, and find a gage δ on A so that

$$\sum_{i=1}^p \biggl| f(x_i) |A_i| - F(A_i) \biggr| < \eta$$

for each η -regular δ -fine partition $P = \{(A_1, x_1), \dots, (A_p, x_p)\}$ in A. If P is anchored in E_n , then

$$\sum_{i=1}^{p} |F(A_i)| \le \sum_{i=1}^{p} |f(x_i)| \cdot |A_i| + \eta < n|A| + \eta,$$

and hence $V_{\eta,\delta}F_A(E_n) \leq n|A| + \eta$. If P is anchored in E, then $\sum_{i=1}^p |F(A_i)| < \eta$, and so $V_{\eta,\delta}F_A(E) \leq \eta$. From the arbitrariness of η , we conclude

$$V_*F_A(E_n) \leq n|A|$$
 and $V_*F_A(E) = 0$,

which proves the proposition.

THEOREM 4.3. If F is an additive continuous function in a figure A, then the following conditions are equivalent.

- 1. V_*F_A is σ -finite and absolutely continuous.
- 2. DF_A belongs to $\mathcal{R}(A)$, and F is its indefinite integral.

Proof. As $(2 \Rightarrow 1)$ follows immediately from Proposition 4.2, it suffices to prove $(1 \Rightarrow 2)$. By Proposition 3.12, the set E of all $x \in A$ at which $DF_A(x)$ does not exists is negligible. We let

$$f(x) = \begin{cases} DF_A(x) & \text{if } x \in A - E, \\ 0 & \text{if } x \in E, \end{cases}$$

and show that F is the indefinite integral of f. To this end, choose a positive $\varepsilon < 1/(2m)$, and find a gage δ_E on E so that $\sum_{j=1}^q |F(B_j)| < \varepsilon$ for each ε -regular δ_E -fine partition $\{(B_1, y_1), \ldots, (B_q, y_q)\}$ in A anchored in E; such a gage exists, since $V_*F_A(E) = 0$ by our assumptions. On A - E there is a positive function Δ such that

$$\left|f(x)|B| - F(B)\right| < \varepsilon |B|$$

for each $x \in A - E$ and each ε -regular figure $B \subset A \cap U(x, \Delta(x))$ with $x \in B$. Now define a gage δ on A by setting

$$\delta(x) = \begin{cases} \Delta(x) & \text{if } x \in A - E, \\ \delta_E(x) & \text{if } x \in E, \end{cases}$$

and select an ε -regular δ -fine partition $\{(A_1, x_1), \ldots, (A_p, x_p)\}$ in A. Then

$$\sum_{i=1}^{p} \left| f(x_i) |A_i| - F(A_i) \right| < \sum_{x_i \in E} |F(A_i)| + \varepsilon \sum_{x_i \notin E} |A_i| < \varepsilon (1 + |A|),$$

and the desired conclusion follows.

Theorem 4.3 gives the full descriptive definition of the integral (cf. [9, Remark 5.3.6]). It facilitates simple proofs of some important results.

COROLLARY 4.4. Let $A \in \mathcal{F}$, and let F be the indefinite integral of $f \in \mathcal{R}(A)$. Then $DF_A(x) = f(x)$ for almost all $x \in A$.

Proof. By Proposition 4.2 and Theorem 4.3, the derivate $DF_A(x)$ exists for almost all $x \in A$, and F is the indefinite integral of DF_A . The corollary follows from [9, Proposition 6.3.7], which assert that two integrable functions with the same indefinite integral are equal almost everywhere.

COROLLARY 4.5. Let T be a thin set, and let F be an additive continuous function in a figure A that is almost derivable relative to A at each $x \in A^{\circ} - T$. Then DF_A belongs to $\mathcal{R}(A)$ and F is its indefinite integral.

This corollary follows immediately from Proposition 3.12 and Theorem 4.3. Its immediate consequence is the following divergence theorem.

THEOREM 4.6. Let T be a thin set and let v be a continuous vector field on a figure A. If v is almost differentiable at every $x \in A^{\circ} - T$, then div v belongs to $\mathcal{R}(A)$ and

$$\int_A \operatorname{div} v \, d\lambda = \int_{\partial A} v \cdot \nu_A \, d\mathcal{H} \, .$$

Proof. Since v has a continuous extension to \mathbf{R}^m , the flux of v is the indefinite integral of div v according to Example 2.2 and Corollary 4.5.

The next proposition contrasts the generalized Riemann and Lebesgue integrals (cf. Theorem 4.3).

PROPOSITION 4.7. If F is an additive continuous function in a figure A, then the following conditions are equivalent.

- 1. V_*F_A is finite and absolutely continuous.
- 2. DF_A belongs to $L^1(A, \lambda)$, and F is its indefinite Lebesgue integral.

Proof. Note that $L^1(A,\lambda) \subset \mathcal{R}(A)$ and that the indefinite Lebesgue integral of $f \in L^1(A,\lambda)$ is the indefinite integral of f [9, Theorem12.2.2 and 11.4.5].

 $(1 \Rightarrow 2)$ By Theorem 4.3, the derivate DF_A belongs to $\mathcal{R}(A)$, and F is its indefinite integral. As Theorem 3.6 yields the inequality

$$\int_A |DF_A| \, d\lambda = \int_A D|F|_A \, d\lambda = V_{e*}F_A(A) \le V_*F_A(A) < +\infty \,,$$

the derivate DF_A belongs to $L^1(A,\lambda)$ and the impication follows.

 $(2 \Rightarrow 1)$ If $DF_A \in L^1(A, \lambda)$ and F is its indefinite Lebesgue integral, then V_*F_A is absolutely continuous and finite according to Theorems 4.3 and 3.6, respectively.

Added in Proof: Question 3.9 has been answered affirmatively by Zoltán Buczolich and the author in their paper *On Assolute Continuity*, J. Math. Anal. Appl., **222** (1998), pp. 64–78.

REFERENCES

- [1] B. Bongiorno, *Essential variation*, Measure Theory Oberwolfach 1981, Lecture Notes Math., vol. 945, Springer, 1981, pp. 187–193.
- [2] B. Bongiorno, L. Di Piazza, and V. Skvortsov, The essential variation of a function and some convergence theorems, Analysis Math. 22 (1996), 3–12.
- [3] B. Bongiorno, W.F. Pfeffer, and B.S. Thomson, A full descriptive definition of the gage integral, 1996.
- [4] B. BONGIORNO AND P. VETRO, Su un teorema di F. Riesz, Atti Acc. Sci. Lettere e Arti Palermo 37 (1979), no. IV, 3–13.
- [5] Z. BUCZOLICH AND W.F. PFEFFER, Variations of additive functions, Czechoslovak Math. J. 47 (1996), 525–555.
- [6] L.C. EVANS AND R.F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
- [7] H. FEDERER, Geometric Measure Theory, Springer-Verlag, New York, 1969.
- [8] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984.
- [9] W.F. Pfeffer, *The Riemann Approach to Integration*, Cambridge Univ. Press, Cambridge, 1993.
- [10] L. DI PIAZZA, A note on additive functions of intervals, Real Anal. Ex. 20 (1994–95), no. 2, 815–818.
- [11] S. Saks, Theory of the Integral, Dover, New York, 1964.
- [12] B. S. THOMSON, Derivates of Interval functions, Mem. Amer. Math. Soc. 452 (1991).

Received October 5, 1995.