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On_Addjtive Continuous
Functions of Figures

W. F. PFEFFER *

SUMMARY. - This is an extended summary of results obtained pre-
viously by Z. Buczolich and the author [5]. It describes the rela-
tionship between derivatives and variational measures of additive
continuous functions of figures, and presents a full descriptive
definition of a generalized Riemann integral based on figures.

The set of all real numbers is denoted by R, and the ambient
space of this note is R™ where m is a fixed positive integer. In R™
we use exclusively the metric induced by the maximum norm | - |.
The origin of R™ is denoted by 0. For an z € R™ and € > 0, we let

U(z,e) ={yeR™: |z —y| <€}

and
Ulz,e] ={y e R™ : |z —y| < €}.

For z = (&,...,¢yn) and y = (n1,-..,mm) in R™, we set -y =
Yot &ini. Note that |z - y| < mlz| - |y| is the Schwartz inequality
with the maximum norm.

The closure, interior, boundary, and diameter of a set £ C R™
are denoted by E—, E°, OF, and d(E), respectively. If A,B C R™
and z € R™, we let

AAB=(A-B)U(B-A)

and
dist (z, A) = inf{|z —y| : y € A}.
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Unless specified otherwise, a number is an extended real number,
and a function is an extended real-valued function.

The Lebesgue measure in R™ is denoted by A; however, for £ C
R™, we write |E| instead of A(E). A set E C R™ with |E| =
0 is called negligible. Sets A,B C R™ are called nonoverlapping
whenever A N B is negligible. Unless specified otherwise, the words
“measure” and “measurable” as well as the expresions “almost all,”
“almost everywhere,” and “absolutely continuous” always refer to
the Lebesgue measure A.

The (m — 1)-dimensional Hausdorff measure in R™ is denoted
by H, and a set T' C R™ of o-finite measure H is called thin. The
symbol [ always denotes the Lebesgue integral, with respect to A or
‘H as the case may be.

A cell is a compact nondegenerate subinterval of R™, and a figure
is a finite (possibly empty) union of cells. The family of all figures is
denoted by F, and for A € F, we let F4 = {B € F: B C A}. The
perimeter and exterior normal of a figure A are denoted by || A|| and
va, respectively. Note that ||A|| = H(OA), and that v4 is defined
‘H-almost everywhere on 0A. If B and C are figures, then so are
BUC,

BeoC=[(BNnC)°” and BeC=(B-0)",
and the following inequality holds:
max{||[BUC|,|BoC|,||BeC|} <|B| +[C|-

The regularity of a nonempty figure A is the number

4
A = Fayar

if A =10, welet r(A) = 0. The usual concept of regularity introduced
in [11, Chapter IV, Section 2] is related to r(A) by the inequality
2mr(A)]™ < |A|/[d(A)]™ [9, Proposition 12.1.6]. If r(4) > n > 0,
we say the figure A is n-reqular. A figure C' of maximal regularity,
i.e., with r(C) = 1/(2m), is a cell called a cube.
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1. Additive continuous functions

An additive function is a real-valued function F' defined on the family
F of all figures such that

F(BUC) = F(B) + F(C)

for each pair of nonoverlapping figures B, C.

DEFINITION 1.1. An additive function is continuous if given € > 0,
there is an > 0 such that |F(B)| < e for each figure B with
B cU(0,1/¢), |B|| < 1/e, and |B| <.

REMARK 1.2. A distribution function of an additive continuous func-
tion is continuous, but the converse is true only in dimension one [10].
Thus it is instructive to describe the topology 7 on F such that ad-
ditive functions are continuous according to the above definition if
and only if they are 7-continuous. On each

Fon={Be€F:BCU[0,n] and |B||<n}, n=12,...,

define a metric p(B,C) = |B A C|. Then 7 is induced by the largest
uniformity v on F for which the embeddins (F,,p) — (F,v) are
uniformly continuous. The topology 7 is Hausdorff, separable and
sequential, but not metrizable. The sequential completion of (F,v)
consists of all bounded Caccioppoli sets [8].

ExAMPLE 1.3: We give two important examples of additive conti-
nuous functions.

1. Let f € Ll .(R™,)) [6, Section 1.3], and let F(A) = [, fd\
for each figure A. Then F' is an additive continuous function
by the absolute continuity of the Lebesgue integral.

2. Let v be a continuous vector field on R™, and let F(A) =
Jo4 v-va dH for each figure A. Then F is an additive continuous
function, called the fluz of v [9, Proposition 11.2.8].

LEMMA 1.4. An additive function F' is continuous if and only if the
following condition is satisfied: given € > 0, there is a 8 > 0 such
that

[F(B)| <0|B|+e(]|B] +1)

for each figure B C U[0,1/¢].
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The proof of Lemma 1.4 is not simple; the interested reader is
referred to [9, Proposition 12.8.3].

An additive function in a figure A is a real valued function defined
on the family F4 of all subfigures of A such that

F(BUC) = F(B) + F(C)

for each pair of nonoverlapping figures B,C C A. We say that an
additive function F' in a figure A is continuous if given € > 0, there is
an 7 > 0 such that |F(B)| < € for each figure B C A with ||B|| < 1/e
and |B| < 7.

Let F be a function defined on F4. Setting

(FA)(B) = F(A® B)

for each B € F defines a function F|A on F, called the canonical
extension of F. It follows immediately that F'| A is an additive func-
tion if and only if F' is an additive function in A. Moreover, since the
condition B C U(0,1/¢) is satisfied for all B € F4 whenever ¢ > 0
is sufficiently small, we see that for an additive function F' in A, the
canonical extension F'| A is continuous if and only if F' is continuous.

2. Derivatives

Let z € R™, and let F be a real-valued function defined on F. For
a positive n < 1/(2m), set

D, F(x) = sup [inf F(B)] and D,F(z) = inf

F(B)]
su
s>0 LB |B| >0 P

B |B]

where the infimum and supremum in the brackets are taken over all
n-regular figures B C U(z,d) with z € B. The numbers

DF(z)= inf D,F(z) and DF(z)= sup D,F(x)
o<nt e

are called, respectively, the lower and upper derivate of F at x.

Using an argument similar to [11, Chapter IV, Theorem 4.2], it
is easy to show that the functions D, F, D,F, DF, and DF, defined
on R™ in the obvious way, are measurable and the inequality

DF < D,F < DyF < DyF < D,F < DF
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holds for all n,0 with 0 <7 < 6 < 1/(2m).

If DF(z) = DF(x) # 400, we denote this common value by
DF(z), and say that F' is derivable at x; the number DF(z) is called
the derivate of F at z. If D,|F|(z) < 400 for all positive n < 1/(2m),
we say that F' is almost derivable at = (cf. [9, Section 11.7)); in
particular, F is almost derivable at z whenever D|F|(z) < +oo.
The term “almost derivable” is justified by the following theorem.

THEOREM 2.1. Let F be an additive continuous function, and let E
be the set of all z € R™ at which F is almost derivable. Then F is
derivable at almost all x € E.

In dimenson one, Thorem 2.1 is a consequence of Ward’s the-
orem [11, Chapter IV, Theorem 11.15] or Stepanoff’s theorem |7,
Theorem 3.1.9]. In higher dimensions, however, it requires a rather
elaborate proof for which we refer to [5, Theorem 3.3].

Let v be a vector field defined on R™. We say v is almost differ-
entiable at x € R™ whenever

lim sup M < +00.
Yy ly — z|
If F is the set of all z € R™ at which v is almost differentiable, then
v is differentiable almost everywhere in E by Stepanoff ’s theorem [7,
Theorem 3.1.9]. Note that E is measurable whenever v is.

EXAMPLE 2.2: Let F' be the flux of a continuous vector field v on

R™, and let z € R™. The following facts are easy to prove [9,
Lemma 11.7.4].

1. If v is almost differentiable at z, then F' is almost derivable at
x.

2. If v is differentiable at z, then F is derivable at z and DF(z) =
divo(z).

It will be convenient to relativize the concept of derivates. Let
Ae F, ¢ € A, and let F be a real-valued function on F4. For a
positive n < 1/(2m), set

. . F(B)
D, F4(xz) = sup inf
K () 5>0 B |B]
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where the infimum is taken over all n-regular figures B C ANU (z, 9)
with z € B. The number

DFa(r) = inf D, Fs(x)
0<n< 5

is called the lower derivate of F' at z relative to A. The numbers
D, F4(z), DFs(z), and DF4(z) are defined similarly; the meaning
of derivability and almost derivability relative to A is obvious.

The connection between derivates and relative derivates is simple.
Let A € F, let F be a real-valued function on F4, and let F'| A be the
canonical extension of F' defined at the end of Section 1. If z € A°,
then

D,Fa(x) = D,(F|4)(x)

for each positive n < 1/(2m). Moreover, D(F|A)(z) = 0 for every
r € R™—A. While there is no obvious relationship between D, Fs(z)
and D, (F|A)(z) for z € OA, this is irrelevant since A is a thin set.

3. Variations

A partition is a collection (possibly empty) P = {(A1,21),...,(A4p,zp)}
where Ay,..., A, are nonoverlapping figures, and z; € A; for i =
1,...,p. Given a positive n < 1/(2m), a set E C R™, and a nonneg-
ative function on E, we say that P is

1. n-regular if each A; is n-regular;

2. in B if J'_, A; C E;

3. anchored in E if {z1,...,zp} C E;

4. 6-fine if it is anchored in F and d(4;) < d(z;) fori =1,...,p.

A nonnegative real-valued function defined on a set £ C R™
is called a gage or an essential gage (abbreviated as e-gage) on E

whenever its null set N5 = {z € E : 6(z) = 0} is thin or negligible,
respectively.
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LEMMA 3.1. Let F be an additive continuous function in a figure A,
and let § be a gage on A. For each positive € < 1/(2m) there is an
e-regular 6-fine partition {(A1,z1),...,(4p,zp)} in A with

|F(Ao LPJ Al <e

=1

For the proof of Lemma 3.1, which is not trivial, we refer to [9,
Proposition 11.3.7 and Lemma 11.3.4].

Let E C R™, and let F be a real-valued function defined on F.
Given a positive n < 1/(2m) and a nonnegative function § defined
on F, set

p
Voo F(E) = sup D IF(4)
i=1

where the supremum is taken over all n-regular partitions P =
{(A1,z1),...,(Ap,zp)} anchored in E that are d-fine. The varia-
tion or essential variation (abbreviated as e-variation) of F on E is
the number
sup infV, sF(FE)
0<n<ﬁ J

where the infimum is taken over all gages or e-gages on E, respec-
tively; it is denoted by V. F(E) or V..F(E), respectively. An easy
verification reveals that the functions

V,F:Ew V,F(E) and V.,F:Ew~ V,F(E)

are metric measures in R™ (cf. [12, Theorem 3.7] and [9, Sec-
tion 3.2]), and that the measure V., F' is absolutely continuous.

In dimension one, a concept similar to variation has been intro-
duced in [12]. Versions of the e-variation were studied previously
in the real line (see [4] and [2]) and in an abstract measure space
(see [1]).

PROPOSITION 3.2. If F is a real-valued function on F, then Ve, F' <
Vi F' and the equality occurs whenever Vi, F is absolutely continuous.

Proof. As the inequality is obvious, assume V, F' is absolutely conti-
nuous. Seeking a contradiction suppose Vo.F(E) < V,F(E) for an
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E C R™. There is a positive n < 1/(2m) and an e-gage o on E such
that
VioF(B) < ¢ = int V, 5 (E)

where the infimum is taken over all gages ¢ on E. Since the null set
N, of o is negligible, V,F(N,) = 0. Thus given € > 0, we can find
a gage p on N, so that V, ,F(N,) < €. Define a gage 6 on E by
setting
() = { o(z) Tfm € E— Ny,
p(z) ifz € N,

and observe that

A contradiction follows from the arbitrariness of &. O

Let F' be a real-valued function defined on F. The standard
variation of F on a figure A is the number

VE(A) = sup Y [F(AL)]
k=1

where the supremum is taken over all nonoverlapping collections
{A1,...,A,} C Fa. I F is additive, a routine argument shows
that the function VF, defined on F in the obvious way, is additive
whenever it is real-valued. Note that if F' is a real-valued function
defined only on F4, the number V F(B) has still meaning for each
figure B C A, and (VF)|A=V(F|A).

LEMMA 3.3. If F is an additive continuous function, then V,F(A) =
VF(A) for each figure A.

Proof. Let A be a figure. The function § : z — dist (z,0A) is a gage
in A, and every J-fine partition is a partition in A. Thus V, 5F(A4) <
VF(A) for each positive n < 1/(2m), and hence V,F(A) < VF(A).

Proceeding towards a contradiction, assume V,F(A) < VF(A).
Then there is a nonoverlapping collection {41,...,A,} C F4 such
that

V.F(A) < 3 |F (AR
k=1
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Choose a positive n < 1/(2m) and find a gage J on A so that

V,sF(A Z |F(Ap)|
Given ¢ > 0, it follows from Lemma 3.1 that in each Aj there is an
n-regular é-fine partition P, = {(B¥, z%),, (B;fk, pk)} such that
Pk P Pg
S IF(Bf)| > ‘F (U Bf)‘ = ‘F(Ak) ~F (Ak olJ Bf) ‘
i=1 i=1 i=1

£
> |F(Ak)\—5-

Since P = |J;_; Pk is an n-regular é-fine partition in A4,

n Pk
>ZZ|FB’“|>Z\FA,€ | —¢
k=1i=1
and a contradiction follows from the arbitrariness of . O

EXAMPLE 3.4: Assume m = 1. Let C' be the Cantor ternary set in
= [0, 1], and let F' be an additive continuous function whose distri-
bution function extends the Cantor function in A [9, Example 5.3.11].
Since the function § : z — dist (z,C) is an e-gage on A and a gage
on A—C, we have V., F(A) = V,F(A— C) = 0. On the other hand,
it follows from Lemma 3.3 that V,F(A) = VF(A) = F(A) =1, and
so Vi(C)=1
PROPOSITION 3.5. If F is a real-valued function on A, then the mea-
sures VoI and Ve F' are Borel regular, i.e., the measure of any set
E C R™ equals the measure of a Borel set containing E.

Proof. We prove the lemma for V, F using the technique of [12, Theo-
rem 3.15]. The proof for V.. F' is analogous. Assume V,F(E) < 400,
choose an ¢ > 0, and fix a positive n < 1/(2m). Find a gage § on E
so that

Voo F(E) <V,F(E)+¢

and let B, ={z € E:6(z) >1/n}forn=1,2,....
We claim V;, 1/n F(Ep) = V1 /n F(E, ). As

Vn,l/nF(En) < V:r],l/nF(E’;)a
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it suffices to obtain a contradiction by supposing this inequality is
sharp. Then there is an 7-regular (1/n)-fine partition P = {(A1, z1),
.--,(Ap,z,)} anchored in E, for which

p

VoamF (En) < Z |F(A;)].
i=1

Employing the additivity and continuity of F, it is easy to modify
P so that it becomes anchored in FE, and still satisfies the other
conditions, a contradiction.

From the claim, we infer

ingTIJF(E;) < Vn,l/nF(Ei) = Vn,l/nF(En) < VW,JF(En)

n

< V,F(E) < V,F(E) +e¢,

where the infimum is taken over all gages o on E. The arbitrariness
of n yields V,F(E; ) < V,F(E) + ¢, and thus

V.F (U En> =1imV,F(E,) < V.F(E) +¢;

n=1

for {E;, } is an increasing sequence of closed sets.

Since E — N5y C U,2; E;,, it follows from the arbitrariness of ¢
that there is a Borel set B such that E — N5 C B and V,F(E) =
ViF(B). Now the thin set Nj is contained in a thin Borel set C' [6,
Section 2.1, Theorem 1]. As V,F(C) =0, the lemma is proved. [

Our next result improves on [3, Theorem 3.3]. Its proof is similar
to that given in [1, Theorem 1] for an abstract measure space with
a derivation base.

THEOREM 3.6. If F is a real-valued function defined on the family
F, then

V,.F(E) = / D|F|d)
E
for each measurable set E C R™.

Proof. As Voo F = V. |F|, we suppose F > 0. Select a measurable
set £ C R™ and note that the integral I = [ DF d) exists (possibly
equal to +00), since DF > 0 is a measurable function.
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First we prove the inequality V. F(E) < I. If the set E, = {z €
E : DF(z) = +oo} has positive measure, then I = +00 and the ine-
quality holds. If B, is negligible, then Ve, F'(Ex) = [ DFd)\=0,
and no generality is lost by assuming F,, = (. Under this assump-
tion, the measurable sets

E,={r € ENU(0,n): DF(z) <n}, n=1,2,...,

form an increasing sequence whose union is F, and so it suffices to
prove the inequality for each E,,.

Consequently, we may assume from the onset I < +00 and there
is an open set U C R™ such that E C U and |U| < 4+o0. Let xg be
the indicator (characteristic function) of E, and let

G(A) = F(A) — /AﬁF-XE A=F4) - [ DFix

for each figure A. Observe the set
N ={z € E: DG(z) # 0}

is negligible according to [11, Chapter IV, Theorem 6.3].

Choose an € > 0 and a positive n < 1/(2m), and define an e-gage
0 on E as follows: if z € N let 6(z) = 0, and if z € E — N select
d(z) > 0 so that U(z,d(z)) C U and G(A) < ¢|A| for each n-regular
figure A C U(z,0(x)) with z € A. Now given an n-regular J-fine
partition {(41,1),...,(Ap, zp)} anchored in E, we obtain

Y F(4;) = Z[G(A,-)+

DF d/\]
i=1 i=1 AiNE

p

N

[5|AZ~| +/ EFdA] <e|U|+1
i—1 A;NE

1=

and so V;, sF(E) < e|U|+ I. The desired inequality follows from the
arbitrarines of n and e.

Proceeding towards a contradiction, assume V.. F(E) < I and fix
an integer n > 1. For each z € E, there is a positive 1, < 1/(2m)
such that given § > 0, we can find an 7,-regular figure A C U(z,0)
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with z € A and F(A) > n|A|. Given an integer k > 1, let Cy, = {z €
Ey :n; > 1/k}, and find an e-gage 6 on E4 so that

VijksF (Ex) < VesF(Ex) +1 < Veu F(E) +1 < +00.

The family C of all (1/k)-regular figures A with d(A4) < d6(z) for
an z € AN Cy and F(A) > n|A| is a Vitali cover of Cy — Nj.
Using Vitali’s covering theorem [11, Chapter IV, Theorem 3.1] and
the negligibility of Ny, find a (1/k)-regular é-fine partition {(A1, z1),

., (Ap,zp)} anchored in Cj such that F'(4;) > n|A;|fori=1,...,p
and YP | |A;| > |Ck|/2. Tt follows

p
Gkl < 2> A < = ZF ) < Vl/k(SF(Ck)
=1

2
< Evl/k,JF(Eoo) < E[Ve*F(E) + 1]
and, as {C}} is an increasing sequence whose union is Fo,, we obtain
2
|Eso| < ;[Ve*F(E) +1].

By the arbitrariness of n, the set E., is negligible. In view of this,
we can proceed with the argument assuming the statements made in
the third paragraph of this proof, i.e., I < +o00 and there is an open
set U C R™ such that E C U and |U| < +o0.

Choose a positive n < 1/(2m) and find an e-gage § on E with
Voo F(E) < I. Making 0 smaller, we may assume N C N;s and
U(z,6(z)) C U for each z € E. Given ¢ > 0, the family £ of all
n-regular figures B with d(B) < d(z) for an z € BN E and G(B) >
—e|B| is a Vitali cover of E— Nj. Hence there is a disjoint sequence
{Bi} in K whose union covers E almost entirely. For i = 1,2,...,
select an z; € B; so that d(B;) < d(z;), and observe that for each
integer p > 1, the collection {(Bi,z1),...,(Bp,zp)} is an n-regular
d-fine partition in U anchored in E. Thus

I = Z/BOEDFd)\ Z[F By)]

pgrgo;F +a§IB il < VasF(E) +elU|

AN
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and a contradiction follows from the arbitrariness of «. O

COROLLARY 3.7. An additive continuous function F is derivable al-
most everywhere in a set E C R™ if and only if E has o-finite
measure Ve, F.

Proof. Let E = ;21 Ep and Ve, F(E,) < 400 for n = 1,2,....
By Proposition 3.5 there are Borel sets B, such that E,, C B, and
Ves F(Ey,) = Veu F(By,). In view of Theorem 3.6, the function F is al-
most derivable almost everywhere in each B,,. This and Theorem 2.1
imply F' is derivable almost everywhere in E.

Conversely, if F' is derivable almost everywhere in E then, up to
a negligible set, F is contained in the measurable set B of all z € R™
at which F is derivable. Clearly, D|F|(z) = |DF(z)| < +oo for each
z € B. Letting

B, ={z € BNnU(0,n): D|F(z)| < n}

forn=1,2,..., Theorem 3.6 yields

VeuF(By) = /B D|F|(x) dA(z) < n|U(0,n)] < +o0.

n

Since B = |2 By, and V. F is absolutely continuous, the corollary
follows. O

PROPOSITION 3.8. Let T' be a thin set, and let F' be an additive
continuous function almost derivable at each x € R™ — T. Then
Vi F is o-finite and absolutely continuous.

Proof. The function F is derivable almost everywhere by Theorem
2.1. In particular, V., F is o-finite according to Corollary 3.7.

Now choose a negligible set £ C R™ and a positive n < 1/(2m).
Forn=1,2,..., let

E,={zt €E—-T:n—1<D,|F|(z) <n}

and find open sets Uy, so that E, C U, and |Uy| < 72" "/n. Given
z € E, thereis a d,(z) > 0 such that U(z, d,(z)) C U, and |F(B)| <
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n|B| for every n-regular figure B C U(z, d,(z)) with z € B. Since
E — T is the disjoint union of the sets E,,, the formula

on(z) ifz € E,,
o(z) = .
0 ifre ENT,

defines a gage on E. For an 7-regular partition {(B1,z1),...,(Bp,zp)}
anchored in F that is é-fine, we obtain

P o0 00
YAFB) = 3 > IFB) <> ) nlBil
=1 n=1z;€EE, n=1z;€E,
o o0
< D onUn <D 27" =n.
n=1 n=1
Thus V, ;F(E) < n, and so V,F(E) = 0 by the arbitrariness of 7.
An application of Proposition 3.2 completes the proof. ]

QUESTION 3.9: Let F' be an additive continuous function such that
V. F' is absolutely continuous. Is it true that V., F is o-finite?

OBSERVATION 3.10: An absolutely continuous Borel measure p in
R™ is o-finite whenever it is semi-finite, i.e., whenever each Borel
set A with 0 < pu(A) contains a Borel set B with 0 < p(B) < +oc.

Proof. By Zorn’s lemma, there is a maximal disjoint family A of
Borel sets such that 0 < p(A) < 4oo for each A € A. The absolute
continuity of u together with the o-finiteness of the Lebesgue mea-
sure A imply that A is a countable family. Since A is maximal and
 is semi-finite, y(R™ —J.A) = 0 and the observation is proved. O

Observation 3.10 may be helpful in answering Question 3.9. While
it is easy to exhibit an absolutely continuous Borel measure y in R™
which is not semi-finite [e.g., by letting p = lim,,_,,(n) ], the ques-
tion is whether such a p is the restriction of V,F where F is an
aditive continuous function.

EXAMPLE 3.11: Let T be a thin set, and let F' be the flux of a
continuous vector field v on R™. If v is almost differentiable at
every x € R™ — T, then V,F is o-finite and absolutely continuous
(Example 2.2 and Proposition 3.8).
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As with the derivates, we relativize the concept of variations. Let
A € F, let F be a real-valued function defined on Fy4, and let £ C A.
Given a positive n < 1/(2m) and a nonnegative function § on E, set

D
VosFa(E) = sgpz |F(A;)]
=1

where the supremum is taken over all 7-regular partitions P =
{(A1,z1),...,(Ap,zp)} in A anchored in E that are d-fine. The
variation of F' on E relative to A is the number

ViF4(E) = sup infVy;Fa(E)

0<n< 50

where the infimum is taken over all gages § on E. The e-variation
Vex FA(E) of F on E relative to A, as well as the measures V, F4 and
Ve« F4 in A, are defined in the obvious way.

Let A be a figure, and let F' be a real-valued function on Fjy.
Since the boundary of A is thin and closed, an easy argument shows

(ViFa)|A =V, (F|A) and (Ves Fa)|A = Veu(FA).

From this, Corollary 3.7, and Proposition 3.8, we obtain immediately
the following proposition.

PROPOSITION 3.12. For an additive continuous function F in a fi-
gure A the following conditions hold.

1. F is derivable relative to A almost everywhere in A if and only
if Ves 4 is o-finite.

2. If T is a thin set and F is almost derivable relative to A at every
x € A° — T, then Vi, F4 is o-finite and absolutely continuous.

4. The generalized Riemann integral

DEFINITION 4.1. A real-valued function f defined on a figure A is
called integrable if there is an additive continuous function F' in A
satisfying the following condition: given € > 0, we can find a gage

on A so that »

Do) Ail = F(A)| <e

1=1
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for each e-regular é-fine partition {(A1,z1),...,(4p,zp)} in A.

It follows from 3.1 that F', called the indefinite integral of f in A,
is uniquely determined by f. If f is integrable in A, it is integrable
in each figure B C A, and F[Fp is the indefinite integral of f in
B. The real number F'(A) is called the integral of f over A, denoted
by [, f dX. Since the integral and Lebesgue integral coincide on the
intersections of their domains [9, Theorem12.2.2 and 11.4.5], this
notation leads to no confusion.

Let A be a figure. As the integral of f over A does not de-
pend on the values f takes in a negligible set [9, Corollary 11.4.7],
the concepts of integrability and integral can be readily extended
to functions defined almost everywhere in A. We shall assume such
an extension has been made, and denote by R(A) the family of all
functions defined almost everywhere in A that are integrable.

PROPOSITION 4.2. Let A € F and f € R(A). If F is the indefinite
integral of f, then V,Fy is o-finite and absolutely continuous.

Proof. Let E, ={z € A:|f(z)| <n}forn=1,2,..., and let E be
a negligible subset of A. With no loss of generality, we may assume
f is a real-valued function defined on A such that f(z) = 0 for each
z € E. In particular A = |J;2; E,,. Choose a positive n < 1/(2m),
and find a gage d on A so that

p

D o\f (@) Al = F(Ai)| <

i=1
for each n-regular é-fine partition P = {(A1,z1),...,(A4p,zp)} in A.
If P is anchored in E,, then

)4

p
DOIF(A) < D0 If (@)l - |Ail + 0 < n Al + 1,
i=1

i=1

and hence V, ;F4(E,) < n|A| +n. If P is anchored in E, then
P L|1F(Ai)] <n, and so V) sF4(E) < n. From the arbitrariness of
71, we conclude

V.FA(E,) <nlA| and  V.Fu(E)=0,

which proves the proposition. O
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THEOREM 4.3. If F is an additive continuous function in a figure
A, then the following conditions are equivalent.

1. V. Fy is o-finite and absolutely continuous.
2. DFy4 belongs to R(A), and F is its indefinite integral.

Proof. As (2 = 1) follows immediately from Proposition 4.2, it suf-
fices to prove (1 = 2). By Proposition 3.12, the set F of all x € A
at which DF4(z) does not exists is negligible. We let

( DFy(z) ifze A—E,
Vo ifz ek,

and show that F' is the indefinite integral of f. To this end, choose a
positive ¢ < 1/(2m), and find a gage 6 on E so that 3>7_, |F(By)| <
¢ for each e-regular dg-fine partition {(B1,y1),...,(Bq,yq)} in A an-
chored in E; such a gage exists, since V,F4(E) = 0 by our assump-
tions. On A — E there is a positive function A such that

@Bl - F(B)| <<B]

for each x € A — E and each e-regular figure B C ANU(z,A(x))
with z € B. Now define a gage d on A by setting
Az) ifzeA-E,
o(z) = .
op(x) ifz€E,

and select an e-regular d-fine partition {(A;,z1),...,(4p,zp)} in A.
Then

P
S\ @Al - F(A)| < 3 1F(A) +e Y 4] < e(1+]A),
=1 T, €ER ;¢FE

and the desired conclusion follows. O

Theorem 4.3 gives the full descriptive definition of the integral
(cf. [9, Remark 5.3.6]). It facilitates simple proofs of some important
results.
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COROLLARY 4.4. Let A € F, and let F be the indefinite integral of
f € R(A). Then DFs(z) = f(z) for almost all z € A.

Proof. By Proposition 4.2 and Theorem 4.3, the derivate DF4(z)
exists for almost all x € A, and F is the indefinite integral of DF4.
The corollary follows from [9, Proposition 6.3.7], which assert that
two integrable functions with the same indefinite integral are equal
almost everywhere. O

COROLLARY 4.5. Let T be a thin set, and let F' be an additive conti-
nuous function in a figure A that is almost derivable relative to A at
each © € A° —T. Then DFy4 belongs to R(A) and F is its indefinite
integral.

This corollary follows immediately from Proposition 3.12 and

Theorem 4.3. Its immediate consequence is the following divergence
theorem.

THEOREM 4.6. Let T be a thin set and let v be a continuous vector
field on a figure A. If v is almost differentiable at every x € A° —T,
then divo belongs to R(A) and

/divvd)\:/ v-vadH.
A A

Proof. Since v has a continuous extension to R™, the flux of v is
the indefinite integral of divv according to Example 2.2 and Corol-
lary 4.5. U

The next proposition contrasts the generalized Riemann and Lebe-
sgue integrals (cf. Theorem 4.3).

PROPOSITION 4.7. If F is an additive continuous function in o fi-
gure A, then the following conditions are equivalent.

1. ViF4 is finite and absolutely continuous.

2. DFy belongs to L*(A, ), and F is its indefinite Lebesgue in-
tegral.

Proof. Note that L'(A4,)\) C R(A) and that the indefinite Lebesgue
integral of f € L'(4,)\) is the indefinite integral of f [9, Theo-
rem12.2.2 and 11.4.5].
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(1 = 2) By Theorem 4.3, the derivate DFy4 belongs to R(A),

and F is its indefinite integral. As Theorem 3.6 yields the inequality

/ IDFa|d\ = / DIF|a dA = Vau Fa(A) < VaFa(A) < 400,
A A

the derivate DF4 belongs to L'(A, \) and the impication follows.

(2 = 1) If DFy € L'(A,)) and F is its indefinite Lebesgue

integral, then V, F4 is absolutely continuous and finite according to
Theorems 4.3 and 3.6, respectively. U

ADDED IN PROOF: Question 3.9 has been answered affirmatively

by Zoltan Buczolich and the author in their paper On Assolute Con-
tinuity, J. Math. Anal. Appl., 222 (1998), pp. 64-78.
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