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Some important theorems in measure
theory
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SUMMARY. - In this monograph I shall give several important the-
orems in measure theory which are not included in any regular
graduate/undergraduate courses in measure theory nor are they
normally included in standard text books in measure theory. All
these theorems are important and have several applications.

1 shall assume that you know some set theory, some Boolean al-
gebras and some functional analysis. You should definitely know
some basic measure theory.

Since my aim is to make you familiar with these theorems and
their proofs I make no attempt to give the most general versions.
Instead, I confine myself to the simplest possible versions without
losing the beauty of the proofs.
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Notation

We shall list some of the notations used in this monograph.

If A is a subset of a set X then I 4 stands for the indicator function
of A.

If X is a set then | X| stands for the cardinality of X.

w stands for the first countable ordinal.

If o is an ordinal, cf(a) stands for the cofinality of c.

If A is a subset of a set X then A€ stands for the complement of
the set A.

If p is a finitely additive measure on a Boolean algebra B and
C C B is a subalgebra of B then p|c stands for the restriction of u to
C.

If A is a o-field of subsets of a set  and p is a nonnegative
bounded countably additive measure on .A then we say that (2, A, u)
is complete if every A C Q with the property that there isa B € A
with p(B) = 0, belongs to A.

If (2, A, ) is a probability measure space and B C A is a sub
o-field then for any f which is A-integrable, £,(f|B) stands for the
conditional expectation of f given B.

For a prabability measure space (9, .A4,u), Loo(2, A, ) stands
for the pseudo-normed linear space of all u-essentially bounded .A-
measurable functions. Luo(€2,.A, ) stands for the normed linear
space of all equivalence classes of L (2,4, ) and L1(Q, A, p) is
also defined in a similar way.

For a probability measure space (2,4, p), if B and C are two sub
o-fields of A we say that B and C are independent if u(B N C) =
p(B)u(C) for all B € Band C €C.

In a Boolean algebra V, A, stand for the sup, inf and complement
and 0 and 1 stand for the zero and one of the Boolean algebra.

If B is a Boolean algebra B stands for all the nonzero elements
of B.

If B is a Boolean algebra and b € B then Bl, stands for the trace
of B on b, namely, B, ={aAb:a € B}.

If B is a Boolean algebra and X C B then ba(X) stands for the
Boolean algebra generated by X.

If {B; : i € I} is an indexed set of Boolean algebras then the
direct sum ) B; : i € I is defined as the Boolean algebra whose
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elements are {{(b;) : 2 € I} : b; € B; for all 1 € I} and the Boolean
operations are defined in the natural way.

If B is a Boolean algebra and I is an ideal of B, B/I stands for
the quotient Boolean algebra. If b € B, [b] stands for the element of
B/I containing b.

A Boolean algebra B is said to satisfy the countable chain condi-
tion if every family of nonzero pairwise disjoint elements of B is at
most countable.

If X is a compact topological space, C(X) stands for the Banach
space of all real valued continuous functions with the sup norm.

If X is normed linear space then the w*-topology on X™*, the dual
of X, is the weak topology induced by X.

1. Liapounoff’s Theorem

This Theorem deals with ranges of measures taking values in R".
We shall prove some versions for finitely additive measures also.

A countably additive probability measure y defined on a o-field
A of subsets of a set {2 is said to be nonatomic if for every A €
A, with p(A) > 0 there is a B € A such that 0 < u(B) < u(A).

Let us straightaway prove a one-dimensional version of the Lia-
pounoff’s Theorem.

THEOREM 1.1. If u is a countably additive nonatomic probability

measure defined on a o-field A of subsets of a set §) then the range
of p,Ra(u) = {u(A) : A € A} is the interval [0, 1]

Proof. Let 0 < a < 1. We shall show that there is an A € A with
n(A) = a.

Let S = {A € A: pu(A) < a}. If A,B € S, let us say that
A< B if y(A— B) =0. In this class of sets every chain {4; : i € I'}
has an upper bound. To see this let § = sup {u(4;) : 1 € I} and
realize that there are A; 1 (in the < order) such that u(A4;,) 1 G.
Then take Ay = UA;, . Since p is countably additive p(4g) = S.
Clearly, for every i, A; < Ag or Ay < A;. Also, clearly, if Ay < A;
and p(A; — Ag) > 0 then p(A4;) = p(Ao) + pu(4i — Ao) > p(4o) =B
contradicting the definition of 4. Hence A; < Ag for all 4 € I. Using
the Hausdorff maximality principle, get a maximal element A* in S.
Of course u(A*) < a. If u(A*) = a we are done.
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From the definition of nonatomicity one easily observes that for
any given A € A with p(A) > 0 and € > 0 thereisa Be€ A, BC A
such that 0 < u(B) < e. Now, get a B C A* such that 0 < p(B) <
a — p(A*) if u(A*) < a. Then u(A*) < p(A* U B) < a and so
A* U B € § contradicting the maximality of A*.

Thus p(A*) = a. The theorem is thus proved. O

Professor Pfeffer informs me that it is possible to prove the above
theorem using only the countable dependent choice.

From this theorem we shall give an equivalence to the definition
of nonatomicity.

THEOREM 1.2. A countably additive probability measure defined on a
o-field A of subsets of a set X is nonatomic if and only if it is strongly
continuous, i.e. for every € > 0 there is a partition {A1,--- A,} of
A - sets of Q such that 0 < u(A4;) < € for all 1.

Proof. The ‘if’ part is easy and the ‘only if’ part follows from The-
orem 1.1 U

For a finitely additive strongly continuous measure defined on
a o-field A also Theorem 1.1 is true. It needs a different proof.
(This is not really true. The above proof also works for the following
theorem. We shall anyway give a different proof.)

THEOREM 1.3. If u is a finitely additive strongly continuous proba-
bility measure defined on a o-field A , then the range of u, Ra(p) is
the interval [0,1].

Proof. Let 0 < a < 1. we shall exhibit a set A € A such that
p(A) = a.

Let us first construct two sequences of sets C; C Cy C C3+-+ C
---D3 C Dy C Dy in A such that u(D, — Cy) < 2% and. p(Cp) <
o < p(Dy).

For € = 1/2 get a partition {47 --- A, } such that 0 < u(4;) < 1/2
for all <. Let C; be a largest possible union of these sets such that
u(C1) < a. Let By be any set in this partition which is not in this
union and let D1 = C; U By. Then p(C1) < a < p(D1) and p(Dy —
Cl) < %
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To define Cy and D5, for € = 2% get a partition of By in A such
that each set in the partition has u-value less than 2% and > 0. Let
Ay be a largest possible union of sets from this partition such that
p(A2) < a — u(Cy). Let By be any set in this partition which is
not in the union Ay. Let Co = C; U Ay and Dy = C7 U Ay U Bs.
Proceeding in this way we get the desired sequences.

Now, since A is a o - field, A = UC), will have the property that
A € A and u(A) = a, even though p is not countably additive. O

Later, we shall generalize theorem 1.3.
Theorem 1.2 can be used to prove several results on nonatomic
measures.

EXERCISE 1. Show that a countably additive probability measure p on
a o-field A is nonatomic if and only if there is a countably generated
sub o-field Ay C A such that u on Ag is nonatomic.

EXERCISE 2. Show that the product measure p1 X o on (1 xQ9, Aq X
A») is nonatomic if and only if either u1 or p2 is nonatomic.

EXERCISE 3. If p is a measure on (2, A) and p is nonatomic on
some sub o-field B C A then yu on A is also nonatomic.

The following exercise is of independent interest.

EXERCISE 4. If A is countably generated, a p on A is nonatomic if
and only if p(A) =0 for every atom A of A.

For finitely additive strongly continuous measures defined on a
o-field the following theorem generalizes Theorem 1.3.

THEOREM 1.4. Let py1,po, -+ , un be finitely additive strongly con-
tinuous probabilities defined on a o-field A of subsets of a set €.
Then the Range Ra(py, -+ pn) = {(p1(A), - un(A)) : A€ A)} is a

convex subset of R™.

Proof. We shall prove this by induction on n. For n = 1 this is
Theorem 1.3. Assume that the result is true for n = k and we shall
prove that the result is true for n = k + 1.

1. Define 11 = p1+- -+ g1, T2 = pot- -+ phpst, Thrl = Pktl-
Then clearly Ra(u - - pr+1) is convex if and only if Ra(r -+ Tx41)
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is convex. Though, 7 --- 741 are not probabilities, they are still
strongly continuous.

2. If we show that for every A € A thereis aset B C A,B € A
such that 7;(B) = 57;(A) for i = 1,2,---k + 1 then it would follow
that Ra(7y - - Tx+1) is convex,because :

For a given A € A, by repeated application of the above assertion,
for every dyadic rational r between 0 and 1 we can find a set A, such
that 7(A,) =r7i(A) foralli =1,2, ---k+1, Ag=¢, A1 = A and
A, C A, if r < s are dyadic rationals. For any real number between
0 and 1 if we define A, = |JA, : r < a and r dyadic then 4, € A
because A is a o-field and 7;(4,) = a7;(A4) for all 0 < a < 1 and
i=1,2,-k+1.

Now given Cand Din Aand 0 < a <1, a7;(C)+(1—a)r(D)) =
Ti((C—D) U(CND)Y(D—C)1-q) forevery i = 1,2,--- k+1. Thus
Ra(ry -+ - Tk41) is convex.

3. Thus it suffices to exhibit a B in A for a given A in A such
that 7;(B) = 27;(A) for i = 1,2,--- k + 1. Let us do this.

By the induction hypothesis, get a C in A,C C A such that
7i(C) = 37i(A) for i = 1,2,---k. If we look at the sets C, |J(4 —
C)i—q for 0 < a < 1 then 7((Co U(A — C)1-4) = a7i(C) + (1 —
a)Ti(A—C) = airi(A)+ (1—a)37(4A) = iri(A) foralli = 1,2, - - k.

If 7,11(C) = $7k+1(A) we are done. If not, let us assume that
T511(C) < 2741(A) < Tp41(A — C). Also since 7441 < 74, because
of the way we have defined 71, --- , 71, we get that 74,11(Cy —Cp) <
Tk(Coa— Cp) = (a—b)71(C) and so, 7,+1(C,) is a continuous function
of a. So 744+1(Cy U (A — C)1_4) is also a continuous function of a
taking the values 75,11(C) at a = 1 and 7441 (A—C) at a =0

Thus there is an ag such that 7411 (Coy U(A—C)(1_qq)) = $Th+1(A)
since Tk+1(0) < %T/H_l(A) < Tk+1(A - C)

Thus B = Cpy U (A — C)(1_qy) is the desired set. O

EXERCISE 5. However, the range in Theorem 1.4 need not be closed.
See example 11.4.8 of my book, Theory of charges.

EXERCISE 6. Give an example of two finitely additive probability
measures 1 and po defined on o-fields A1 and As such that

(a) Ra(p1, p2) = [0,1] x [0, 1]

and
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(b) another ezample such that Ra(u1,p2) = the diagonal of [0,1] x
0,1]

and

(c) yet another example such that Ra(u1,u2) = {(z,y) : 0 < z <
1,0 <y <1} U{(0,0),(1,1)}. [Note that (c) is connected with Ezer-
cise 5.]

Now we shall prove the Liapounoff’s Theorem.

THEOREM 1.5. Let py1, 2, , un be countably additive nonatomic
probability measures defined on a o-field A of subsets of a set €.
Then the range Ra(u1,- -+ ,pn) is a compact conver subset of R™.

Proof. We shall prove this by induction. For n = 1 this is really
Theorem 1.1 (Alternately, you can adopt the following proof to the
case n = 1).

For n > 2, let p = p1 + -+ + pn- Equip Loo(Q, A, p) with
the w*-topology, i.e., the topology induced by L;(Q2,.A, 1). Define
W={g:0<g<1,9€ Lo(R,A,p)}. Then W is a w*-compact
subset of Ly (€2, A, 1) by the Banach-Alaoglu Theorem.

Also, W is convex, clearly.

On Ly (92, A, 1) define a mapping into R™ by T'(g9) = ([ gdp1 - - -
[ gduy) for g € Loo(Q, A, ). Let us see that this T is contin-
uous. If {go} is a net in Ly (2, A,u) such that g, — ¢ where
9 € Loo( A, ) then [ gadps = [ go%idy — [g%idp = [gdp
since ‘fi’;j € Li(Q, A, p).

So T(W) is a compact convex subset of R™. So, don’t you see
that we are in business? We got a compact convex set and we want
to show that certain set namely Ra(u; - - - py,) is compact convex and
so let us show that the two sets are the same.

Let (a1,a2, -+ ,a,) € T(W). We have to exhibit a D € A with
T(Ip) = (a1,a2, - ,ayn). Look at Woy={he W :T(h)=(a1,a2" - -an)}.
By Krein-Milman Theorem, W; has extreme points. let g be an ex-
treme point of Wj. We shall prove that g = Ip a.s. (u) for some
De A

Suppose not. Then for some € > 0 u({z : e < g(z) <1—¢€}) > 0.
This implies that for some i, say i = 1, u1({z : € < g(x) < 1—€}) > 0.
Denote the set {z : € < g(z) < 1—¢€} by Z. Choose an A-measurable
subset A C Z such that 0 < u1(A4) < p1(Z2).
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Using the induction hypothesis get sets B and C from A such
that B C A,C C Z — A, pi(B) = 3pi(A) and pi(C) = 5u(Z — A),
for ¢ = 2,3,---n. Next get some real numbers s and ¢ such that

s(p1(A) —2u1(B)) +t(u1(Z — A) —2u1(C)) =0

and 0 < [s| + |t| < e.

Let h be the function = s(I4 — 2Ip) + t(Iz—a — 2I¢). Then
J hdu; = 0 for all &:- for i = 2,---n because of the choice of B and
C and for 7 = 1 because of the choice of s and ¢. Let us see that
h # 0 as. (u1). If h =0 as. (1), since at least one of s and ¢ is
not zero, say that s # 0, then u1(A — B) = 0 and p1(B) = 0 which
means that p;(A) = 0, a contradiction. Also |h| < e.

Now the functions g+h and g—h € W because |h| < g < 1—|h|.
Also g+ h,g—h € Wy from the above. Since h # 0 a.s. (i), we have
that g+ h # g # g — h as.(u). Also, g = 3(g + h) + (g — h). Thus
g is not an extreme point of Wy. Hence g = Ip for some D € A. [

Let us now generalize the concept of nonatomicity and Liapounoff’s
theorem.

Let u be a countably additive probability measure on (€2,.4) and
B C A be a sub o-field. We say that a set A € A is a (B,.A)-
atom if ANB = ANA as. (u) . We shall say that p is (B,.4)-
nonatomic if there are no (B,.A4)-atoms of positive measure. In an
unpublished paper, several years ago, I studied (B, A) - nonatomicity.
For example,

EXERCISE 7. A measure p is (B, A) -nonatomic if and only if there
is a countably generated sub o-field C of A such that p is nonatomic
on C and B and C are independent.

Liapounoff’s theorem can be generalized as follows.

EXERCISE 8. Let py,pg--- pn be (B, A)-nonatomic countably addi-
tive probability measures. Equip Loo(Q, B, p;) with the w* topology
(i.e., the weak topology induced by Li(S2, B, u;)). Then the set

{(€1 (AIB), £y (AIB), -+ - €, (A[B)) = A € A}

is a compact convezr subset of Loo(2, B, p1) X Loo(S2, B, p2) X -+ X
Lo (2, B, p). [Note: Here &,(A/B) stands for the conditional ex-
pectation of A given BJ.
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We need the result of exercise 8 for the case n = 1 later. So, let
us prove this.

THEOREM 1.6. Let u be a (B, A)-nonatomic countably additive prob-
ability measure on (Q, A). For every B-measurable function f with
0 < f <1 there is an A € A such that £,(A|B) = f.

Another version is the following : Let p be a (B,.A)-nonatomic
countably additive probability measure on (Q,.A). Let v be a count-
ably additive measure on B (not necessarily a probability) such that
0 < v(B) < u(B) for all B € B. Then there is an A € A such that
v(B) = p(AN B) for all B € B.

Proof. Let us first prove the second version from the first. Let f =
g—l’:. Then clearly 0 < f < 1. Then by the first version, there is an

A € A such that £,(A|B) = f. So, for any B € B,v(B) = [ fdu =
B

J Eu(AIB)dp = [ Iadp = u(AN B).

B B

Now we shall prove the first version. The proof follows the same
lines as that of Theorem 1.5.

Equip Ly (2, A, 1) with the w*-topology. Let W ={g€ Loo(2,A,
p) : 0 < g<1}. Then W is a compact convex subset of Lo (2, A, 11).

The mapping T : Lo (€2, A, 1) = Loo(2, B, p) defined by T'(g9) =
£,(g|B) is a continuous function (here Lo, (€2, B, 1) is equipped with
its w* topology). Hence T'(W) is compact and convex. Let us show
that T(W) = {T(Ip) : D € A}.

Let h € T(W). We have to exhibit a D € A with T(Ip) = h. Let
Wo = T~1({h}). Wy is a compact convex subset of W. By Krein-
Milman theorem Wj has extreme points. Let g be an extreme point
of Wy. We shall prove that g = Ip a.s. (u).

Suppose not. Then for some € > 0 u({z : e < g(z) <1—€}) > 0.
Denote {z : € < g(z) < 1 —¢€} by Z. Choose an A-measurable
subset A of Z such that for every B € B, u(AA(BN Z)) > 0 and
p((Z — A)A(BN Z)) > 0. Such a choice is possible since Z is not a
(B, A)- atom.

Choose and fix bounded versions of £,(A|B) and £,(Z — A|B).
Let u = £,(A|B) and v = &,(Z — A|B).

Let us define two B-measurable functions s and ¢ such that |s(w)|
< e and |[t(w)| < € for all w € Q and also su = tv. This can be done
as follows
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s=eandt=e€on {u=0,v=0}

s=eandt=0on {u=0,v # 0}

s=0and t=eon {u#0,v=0}

s=ty andt=con {0 <[y <1}

and s = eand t = s% on {|2]| > 1}

Now we define h = sI4 — tI;_4. Then T'(h) = su —tv = 0 and
|h| <g<1—1h|on Q. Hence g —h and g+ h € Wy. Also h # 0 a.s.
(1) because p(A) > 0. Hence g = 3(g + h) + 3(g — h) and g is not
an extreme point of Wj,.

Thus the theorem is proved. O

Now that exercise 8 for the case n = 1 is proved let us remark
that exercise 8 for the general case can be proved by induction. Take
pw = p1 + -+ + pp and look at the map T from L. (92, A, u) to
Loo(QaB,ljfl) X Loo(9531/1'2) X X LOO(Q,Ba Mn) defined by T(g) =
(En(91B), - £, (9/B))-

Realize that there exists i, say 7 = 1 such that p;(Z) > 0. Then
find an A-measurable set A C Z as before for y;. Now use the in-
duction hypothesis and find .A-measurable sets B and C such that
B Cc A C C Z—Aand for 2 < i < n,2E,(B|B) = &,(A|B)
and 2, (C|B) = £,,(Z — A|B). After fixing some versions of condi-
tional expectations of £, (B|B) and &, (C|B), define u = &, (A|B) —
2&,,(B|B) and v = &, (Z — A|B) — 2€,,, (C|B). After defining s and
t as in the case n = 1 define h = s(I4 — 2Ig) + t(2Ic — Iz_4). The
rest of the proof is as in the case n = 1.

2. Kelley’s Theorem

Let us say that a finitely additive measure p defined on a Boolean
algebra A is strictly positive if 4(A) > 0 whenever A # ¢ and A € A.
We shall look at the problem of finding necessary and sufficient con-
ditions on a Boolean algebra A so that there is a strictly positive
finitely additive probability measure on .A. We shall also look at the
existence of strictly positive countably additive measures on com-
plete Boolean algebras.

To study this problem we naturally have to look at properties
that can be derived from the existence of a strictly positive finitely
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additive probability measure y on a Boolean algebra 4. One such
property which is useful is given by the following theorem.

THEOREM 2.1. Let i be a finitely additive probability measure on a
Boolean algebra A. Let a > 0. Let Ay --- Ay, be sets from A (possibly
with repetitions) such that pu(A;) > a for all i. Let i(Aq,--- Ay,) be
the largest k such that there exists i1 < iy < --- < i such that
Aiyy NN Ay # ¢, Then LALzdn) >

Proof. This, though looks formidable is quite easy. Look at the
function f = I4, +---+14,. is a nonnegative integer valued function.
Let Sy = {z : f(z) > £}. Note that z € Sy if and only if there
exists 41 < 49 < --- < ip such that z € 4;; N---N A4;,. Also the
largest ¢ for which Sy # ¢ is £ = i(Ay,--- A,). If we look at the
function g = Y Ig, : 4 = 1,---9(Ay,--- Ay) then g = f. This is
because S;’s are decreasing and g(z) = m if and only if z € S, and
T & Spy1 and this is true if and only if f(z) = m. So [ fdu = [ gdu
n n

and so ;M(Ai) = > u(S;) whereas ;M(Ai) > na and ) p(S;) <

i(A1--+ Ay). Hence we have that o < W_ 0

FScCcAT(={A € A: A¢& ¢}) let us define the intersection
number, I(S) of S to be inf{w where Aq,--- A, € 8}. We
have proved that if S = {A € A : u(A) > a} then the intersection
number of § is > «a. This is the basic key to Kelley’s Theorem.

So, if p is a strictly positive finitely additive probability measure
on a Boolean algebra A then AT = |J A, where A, = {4 € AT :
(A) > L} and these Ay’s have the property that I(A,) > 1. Thus
if A admits a strictly positive finitely additive probability measure
on a Boolean alebra then A™ can be written as a countable union of
subcollections whose intersection numbers are > 0. The converse is
the import of Kelley’s Theorem.

The basic result is :

THEOREM 2.2. Let S be a nonempty subclass of A*. Then there is
a finitely additive probability measure p on A such that u(B) > I(S)
for all B€S.
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Proof. Without loss of generality, using the Stone representaion the-
orem, assume that 4 is the clopen subsets of a compact totally dis-
connected Hausdorff space X.

Let C(X) be the Banach space of all continuous functions with
the supremum norm ||.||. Let us see a relation between the norm and
the intersection number.

Let F = {Ig : S € S} and let G be the convex hull of F. If
g € G we claim that [|g|]| > I(S). First of all if g € G is a rational

k

linear combination ) r;Is, with » 7; = 1 then in fact, g can be
i=1
k .
written as ) 7 Ig, for some integers n;’s and n with ) n; = n.
i=1

n
Then g = % > I1;. Where T;’s are only S;’s with each S; repeated
et

2

n; times. The maximum value that g can take is % and ||g||
being this value, ||g|| > I(S).
k
By the same argument as above, note that if g = ) r;Ig, with
1=1

k k k
>ori > 1then g = } %Ig, with 3 n; = m > n. So, [g| =
i=1 1=1

1
m . .

I3 35 | = 0T) — Aadm > p(s),
1=

n m n —

k

Now if g € G is ) t;Is, with > t; = 1 and if € > 0 get rationals
i=1

r; > t; for i = 1,2,---  k such that |r; — ;| < f for all i. Let

k
h = 2. rils;. Then |[h]| > I(S) and [|h —g]| <. So, I(S) < |[h]| <

=1

||h —Zg|| + |lgll- Thus ||g|| > I(S) — €. This being true for every € > 0
we have that ||g|| > I(S).

Let H be the open sphere {h € C(X) : ||h|| < I(S)}. Let P =
{p € C(X) : p > 0}. Let us show that the function —1 does not
belong to the convex set Q = {s(¢ +h) +p:s>0,9 € G,he H
and p € P} nor does —1 belong to the closure of . We have
already shown that if ¢ € G g(z¢) = ||g|| > I(S) at some zy and
for h € H |h(zo)| < I(S) and so (g + h)(zo) > 0. And so for any
s >0 (s(g+ h) +p)(zg) > 0. Thus —1 &€ Q. Also, if we take any
open sphere of radius 1/4 around —1 then no element of this sphere
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belongs to Q. Thus —1 does not belong to the closure of . So,
by the separation theorem for convex sets there is a nonzero linear
functional ¢ such that ¢(—1) < ¢(f) for every f € Q.

Since 0 € Q, ¢(—1) < 0.If p(—1) = 0 then ¢(1) = 0 and also that
for every p € P ¢(p) > 0. This implies that for f > g, ¢(f) > #(g).
So for any f € C(X) since there is a k such that —k < f < k, we have
that 0 = ¢(—k) < ¢(f) < ¢(k) = 0. Hence ¢(f) =0for all f € C(X)
which is impossible. Hence ¢(—1) < 0. Let us assume without loss
of generality that ¢(—1) = —1. Now, for every f € Q,d(f) > 0.
Because, if ¢(f) < 0, 45(% ) = —2 and ﬁf € @ because % is a
positive constant. This contradicts that ¢(—1) < ¢(f) for all f € Q.

Now if we take a small € > 0,1(S)—e € H and so also —I(S)+e. If
we take any g € G we get that g—I(S)+e € Q and so ¢(g—I(S)+e) >
0. Thus ¢(g) > ¢(I(S) —¢€) = I(S) — € for every ¢ > 0. Hence
bl9) > 1(S).

If we define for every A € A, u(A) = ¢(14) then u is a finitely
additive probability measure such that u(A) = ¢(I4) > I(S) for
every A € S. O

EXERCISE 9. Show that Inf{u(B) : B € S8} = I(S) in the above
proof.

The above theorem helps us give necessary and sufficient condi-
tions for the existence of a strictly positive finitely additive proba-
bility measure on a Boolean algebra.

THEOREM 2.3. There is a strictly positive finitely additive probability
measure on a Boolean algebra A if and only if A" is the union of a
countable number of classes Sy, each of which has a strictly positive
intersection number.

Proof. The ’only if’ part was observed earlier.
For the 'if’ part using Theorem 2.2 get finitely additive probabil-
ity measures u, on A such that u,(A4) > I(S,) for all A in §,, and

for all n. Then p = ) Q%Mn is a strictly positive finitely additive
n>1
probability measure on A. O

Now, let us look at the existence of a strictly positive countably
additive probability measure on a Boolean o-algebra. Well, if A is
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a Boolean o-algebra and if p is a countably additive (even finitely
additive) strictly positive probability measure on A then A has to be
a complete Boolean algebra, because A satisfies the countable chain
condition. So, let us assume that A is a complete Boolean algebra.

We shall say that a complete Boolean algebra is weakly countably
distributive (weakly (w,w) -distributive in the sense of Sikorski) if for
every double sequence A;; of members of A such that A; ;11 C A;;
for all ¢ and j,

V{N{A;j:j > 1} > 1} = A{V{Aip, 11 > 1}ng,ng,--- > 1}
The following theorem gives a necessary condition.

THEOREM 2.4. If there is a strictly, positive countably additive prob-
ability measure on a complete Boolean algebra A then A is weakly
countably distributive.

Proof. Let {A;;:1>0,j > 0} be a double sequence of elements of
A such that A; ;11 C A;; for all i and j. Then clearly

ViMA;j 15 2 1} 2 1) S MV{Aig, i > 1H{n;}}

Let C be the left hand side and D be the right hand side. We
want to show that C' = D, consider D — C = A. We shall show that
u(A) = 0 if p is a strictly positive countably additive probability
measure on A. This will show that A = ¢, i.e., C = D.

If possible let (A) > 0. Fixing an i, since A A (AjA; ;) =0, we
can get an n) such that u(A/\Am?) < ’;Sfl) Then p(AA (ViAi,n?) <

Y (ANA; 0) < @. But since A C D, we have that A C V;A
i (2

i 0
1,

and so p(A4) = pu(A A (viA,-,n?)) < @. This is a contradiction.
Hence p(A) = 0. O

The next theorem gives necessary and sufficient conditions.

THEOREM 2.5. On a complete Boolean algebra A there is a strictly
positive countably additive probability measure if and only if A is
weakly countably distriutive and there is a strictly positive finitely
additive probability measure on A.
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Proof. The ‘Only if’ part is clear from Theorem 2.4.

For the ‘if’ part, let u be a strictly positive finitely additive prob-
ability measure on A. Then look at the Yosida-Hewitt decomposi-
tion of p as pe + pp where . is countably additive and pu, is a
pure charge as given in Theorem 10.2.1 of “Theory of Charges”.
Now, by Theorem 10.2.2 of “Theory of Charges” again, pu.(A) = inf
{nli)ngou(An) : Ap,n > 11 A A, € A;n > 1}. Let us show that if

A # ¢ then pc(A) # 0. Suppose that p.(A) =0 and A # ¢. Then
for every n > 0 there exists {By : K > 1} T A as k — oo such that
(Bpg) < L for all k > 1.

Letting A,y = A — B, we have, A, | ¢ as K — oo and
p(Ank) > p(A) — % for all & > 1. So, V,, Ay App = ¢. Now if
we take any {kn},n > 1 then u(A,x,) > n(4) — % for all n. So
p(Vn>14nk,) = #(A). Since any way Vy>1A4nk, < A and since p is
strictly positive we have that V,>14,, = A. Since {k, : n > 1}
is arbitrary, A{VAn, : n > 1}{kn}} = A, contradicting the weak
countable distributivity of \A. Hence u.(A) # 0.

Thus p is a strictly positive countably additive probability mea-
sure on A. O

EXERCISE 10. Find necessary and sufficient conditions on a Boolean
algebra A so that there is a finitely additive bounded signed measure
pu on A such that u(A) # 0 for every non zero A € A. (Professor
Musiat gave me the easy answer to this exercise).

EXERCISE 11. Is there a Boolean algebra which does not admit a
strictly positive finitely additive probability measure but does admit
a strictly nonzero finitely additive bounded signed measure? (If you
find the answer to exercise 10 then you can easily find the answer to
this ezercise also).

3. Maharam’s Theorem on Measure Algebras

If u is a finitely additive probability on a field A of subsets of a set
) then the quotient Boolean algebra A/I,, where I, is the ideal of
all p-null sets, ie., I, = {A € A: u(A) = 0}, with the strictly
positive finitely additive probability i defined by i([4]) = p(A) is
called the measure algebra associated with (2,4, ). Indeed, A/I,
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is also a metric space where the distance d is defined by d([A4], [B]) =
p(AAB). Several simple properties of this metric space are listed in
the following exrcises. The reference for the following exercises, if
necessary, is my paper of 1977 in the list of references.

EXERCISE 12. If 4 is a countably additive probability measure on a
o-field A of subsets of a set Q then show that (A/I,,d) is a complete
metric space.

EXERCISE 13. Show that (A/I,,d) is a complete metric space if and
only if A/I, is a complete Boolean algebra and fi is countably additive

on A/l,.

EXERCISE 14. If i is a countably additive probability measure on a
o-field A of subsets of a set Q then show that (A/I,,d) is compact
if and only if u is completely atomic.

We shall have occasion to invoke this metric space for one of our
results.

If 44 is a countably additive probability (or nonnegative bounded)
measure on a o-field A of subsets of a set 2 then the situation be-
comes interesting and we shall deal with this situation henceforth.

A Boolean algebra B is said to be complete if for any indexed set
{b; : i € I} of elements from B,V{b; : i € I'} exists.

THEOREM 3.1. If i is a countably additive probability measure on a
o-field A of subsets of a set Q then the Boolean algebra A/I, is a
complete Boolean algebra and [i is countably additive.

Proof. This is really part of exercises 12 and 13. It can be easily
shown that I, is a o-ideal in A and that A/, is a Boolean o-algebra.
It can also be shown that A/I, satisfies the countable chain condi-
tion. Hence A/I, is a complete Boolean algebra. Proving that fi is
countably additive is not difficult. O

We wish to determine the structure of measure algebras associ-
ated with countably additive probability measure spaces. Maharam’s
Theorem says that all such measure algebras can be built up from
some standard simple measure algebras.

Let us call (A, ) a measure algebra if A is a complete Boolean
algebra and p is a countably additive nonnegative bounded strictly
positive measure on A.
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EXERCISE 15. If (A, ) is a measure algebra show that the corre-
sponding metric space (A,d) is complete. This can be seen either
directly or by using Loomis-Sikorski theorem and exercise 12.

Now, we need some notions and results from Boolean algebras.

Let B be a complete Boolean algebra. A subalgebra C C B is
called a complete subalgebra of B if for every indexed set {c; : i € I'}
of elements from C, V{c¢; : i € I'} which exists in B belongs to C. Of
course, for every subset X of a complete Boolean algebra there is a
smallest complete subalgebra containing X and we shall call this the
complete subalgebra generated by X. We shall start with a small
result.

THEOREM 3.2. If A is a complete Boolean algebra, C is a complete
subalgebra of A and a € A then the complete subalgebra generated by
C U {a} is the Boolean algebra generated by C U {a}.

Proof. The Boolean algebra generated by CU{a} is simply {(cAa)V
(dAd'):¢c,deC}. Let us show that this is a complete subalgebra of
A.

Let {(c;Aa)V (d;Aa') : i € I} be an indexed set of elements from
this Boolean algebra. Then the V{¢; Aa:4 € I} in A is simply equal
to (V{¢; : i € I} A a). Since this is slightly tricky, let us show this.

Let d =sup{c; Aa:i € I} and e =sup{c; : i € I'}. Then clearly
d < eAa. Now, since ¢; Aa < d for all i € I, we have ¢, Va' > d' for
alli € I. Hence aAd <aAc,<c forallieI. Soand <Ac, =¢€.
So,e<a'Vd. Hence eNa<dAa<d. Thusd=eAa.

By using a similar argument for the {d; Aa’ : i € I} we conclude
that V{(c;Aa)V(d;Ad') : i € I'} in A belongs to the algebra generated
by CU {a}. O

Another result we require is about the interplay between the
metric and the complete subalgebras.

THEOREM 3.3. Let (A, ) be a measure algebra and d be the metic
induced by p.

a) If C C A is a subalgebra such that C = C% then C is a complete
subalgebra.
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b) If C C A is a complete subalgebra then C is closed in (A, d).

¢) If B C Ais a subalgebra then the complete subalgebra generated
by B is B~

d) If (B,v) is another measure algebra, A’ C A, B’ C B are subal-
gebras and if ¢ : A" — B’ is a measure preserving isomorphism
then it can be extended as a measure preserving isomorphism
to the complete subalgebra A" generated by A’ and B” gener-
ated by B'.

Proof. a) Let {c; : i € I} be elements from C. For any finite subset
F of I define ¢cp = V{¢; : 1 € F}. Then V{c; : i € I} in A is same as
V{cp : F finite C I} in A. Let ¢ = V{cp : F finite C I} in A.

Let sup {u(cp) : F finite C I} = . Get finite sets F; C Fy C

-, all subsets of I such that u(cp,) - a . Then d(cg,,cr,) =
pler, Acr,,) = |u(cr,) — u(cr,,)| — 0 as n,m — oo.

Hence {cp, : n > 1} is a Cauchy sequence in the metric space
(C,d). Since (A, d) is a complete metric space C being a closed subset
of A, (C,d) is also a complete metric space. So there is a ¢; € C
such that u(cp, Aci) — 0 as n — oo. We assert that, ¢y, C ¢; for
all n. This is true because cg,’s are increasing and p(cr, —c1) <
p(cr, Acy) — 0. If there is an ng such that p(cp,, —c1) > 0, then
for all n > ngy p(er, —c1) > u(an0 —¢1). Hence cp, C ¢ for all n.
So, p1(c1) = a. Let us see that ¢; = V{cp : F finite C I} inC. If G
finite C I, then u(cg V ¢1) is also = a. So cg Ve1 = ¢1. Or ¢g C c1.
Now if there is another d € C,d C ¢; such that cp C d for all finite
F C I then p(d) > a. Hence ¢; = d. Thus V{cp : F finite C I} inC
is ¢1. Hence ¢y < ¢1. It follows that u(co) = a. Since p(c1 —cp) >0
unless ¢; — ¢p = ¢, we have that ¢g = ¢;. Thus ¢g € C. Thus C is
complete.

b) If C is a complete subalgebra of A then p restricted to C
is countably additive. So the metric d restricted to C is complete.
Hence C is a closed subset of A.

c) Clearly B is a complete subalgebra by a). If C D B is a

complete subalgebra of A then by b) C must be closed. Hence C D B

Thus B” is the complete subalgebra generated by B.
d) This is really a result in metric spaces. O
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The following exercise describes the importance of complete sub-
algebras.

EXERCISE 16. Let (A, 1) be a measure algebra. If B C A is a sub-
algebra which is complete by itself and u is countably additive on B
then show that B is a complete subalgebra of A.

We define for any complete Boolean algebra B,7(B) = min {
| X| : the complete subalgebra generated by X is B}. We shall also say
that a complete Boolean algebra is 7-homogeneous if for every b €
B*t,7(Bl|y) = 7(B). This definition is especially meaningful because
of the following theorem. Note that if 7(B) < w for a 7-homogeneous
Boolean algebra then 7(B) = 0 and B = {0, 13}.

THEOREM 3.4. a) If B is a complete Boolean algebra and b € BT
then 7(Bly) < 7(B).

b) Every complete Boolean algebra is isomorphic to the direct sum
of complete T-homogeneous Boolean algebras.

Proof. a) Let X C B be such that the complete Boolean algebra
generated by X is B. Let Y = {z Ab:z € X}. Then Y C Bl,. Let
us see that the complete subalgebra of B|, generated by Y is Bl.
If C C BJy is a complete subalgebra of B|, such that Y C C then
C* ={d € B;dN\beC} is a complete subalgebra of B and X C C*.
Hence C* = B. Also, since C*|, = C, we have that C = Bl,. Thus the
complete subalgebra generated by Y is Bl,. Also |Y| < |X|. Thus
7(Blp) < 7(B).

b) Let B be a complete Boolean algebra. Let us first see that
given any b € BT, there is a ¢ € B*,c¢ < b such that Bl is 7-
homogeneous. If there is no such ¢, there would exist ¢; > ¢y >
¢ > --- allin (B|p)T such that 7(B|c;,,) < 7(B|;) for all i. This is
impossible because there cannot exist a strictly decreasing sequence
of cardinals.

Hence, V{b € BT : B|, is 7-homogeneous} = 1. If we take a
maximal family of pairwise disjoint elements {b; : i € I'} in the class
{b € B : By is T-homogeneous} then we have that V{b;: i € I} =1
and B, is 7-homogeneous for each ¢ € I. Now, the map ¢ defined
by ¢(b) = (bAb; : i € I) is an isomorphism between B and a direct
sum of 7-homogeneous Boolean algebras. O
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To illustrate the above concepts and for our further use let us
look at some examples.

Equip the doubleton set {0,1} with its power set o-field and the
{1/2,1/2} probability measure. For any infinite cardinal  let By be
the product o-field of the k-fold product {0, 1}* of copies of the above
measure space and y, be the x-fold product of the above {1/2,1/2}
measure. Here are some properties of this measure space. For kK = 0
let B, be the power set o-field of a singleton set and p(singleton) =
1.

THEOREM 3.5. For the measure algebra By /I,
a) T(B/1,,.) = K and
b) B../1,, is T-homogeneous.

Proof. This is clear for K = 0. Consider the cardinal x as the initial
ordinal corresponding to x. For each ordinal a < k define b, =
{z € {0,1}" : ©, = 1}. Then b, € By, px(by) = 1/2 and for
a # B, pe(bgAbg) = 1/2.

So, if we look at the metric space B/I,, with the metric d,; defined
by di([b], [c]) = px(bAc) then the set {[by] : @ < K} is a subset of the
metric space with distance between any two elements being equal to
1/2.

Now, let X C B,/I,, be a subset such that the complete sub-
algebra generated by X is B/I,.. But the complete subalgebra

generated by X, by Theorem 3.3 (c) is ba(X) * in the metric space
(Bi/ L s dic) -

Now, if we look at the open sphere S 1 ([ba]) of radius } around
[bo] then S%([ba]) Nba(X) # ¢ for every a and for a # £3, Si([ba]) N
Si [bﬂ]) = ¢,

So, if we pick [cy] € Si [ba] Nba(X) for every a < k then for a #
B [ca] # [cg)- Thus |ba(X)| > k. But we know that |ba(X)| = |X]|.
Thus 7(B,/1,,) = k-

b) For a measure algebra (A, ) we have shown essentially that,
if there exist elements {a, : @ < k} in A such that d(aq,ag) =7, a
fixed constant > 0 then 7(A4) > k.

To prove b) we will take a [b] € (Bx/I,. )" and show that in
By /1, | there are such elements {a, : @ < k}. Clearly b € B, and
from the properties of the product o-field By it is clear that there
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exist a1, a9, -+, countably many indices, such that b € the o-field
generated by {b,, : 4 > 1}. Now, if we take any a # «; for all ¢ then
be is independent of the o-field generated by {b,, : ¢ > 1}. Hence
for any a # «; for all i, u(b A by) = p(b)p(bs) and for o, 8 # «; for
all i, pu((b 1 ba)A (51 bg)) = (b) (s(baAbg) — Lu(b).

Thus {[b]A[bs] : @ # «; for all i, < k} serve the purpose of a,’s
in the above argument. Thus 7(By/I,,)|p) > &-

But using Theorem 3.4 (a) we conclude that equality holds. [

We are approaching the statement of Maharam’s Theorem. Let
us first mention a version of Theorem 1.6.

THEOREM 3.6. Let (A,pu) be a measure algebra. Let B C A be a
complete subalgebra. Suppose that u is (B, A)-nonatomic in the sense
that for every a € AT, Aly # Bla. Let v be a bounded countably
additive nonnegative measure on B such that v(b) < u(b) for all
b € B. Then there is an a € A such that v(b) = pu(aAb) for allb € B.

Proof. Using Loomis-Sikorski theorem (A, ) can be realized as the
measure algebra of a measure space (Q,.4,7). Note that since B is
a complete subalgebra of A, u is countably additive on B. So [ is
countably additive on B = {4 € A:[A] € B} and B is a sub o-field
of A. Also 1 is (B, A)-nonatomic. The measure 7 defined from v
is such that 7(B) < f(B) for all B € B. By the second version of
Theorem 1.6 we get an A € A such that 7(B) = m(B N A) for all
B € B. If we call [A] = a then we have v(b) = p(a A D) for all
bekB. O

Let us see a consequence of Theorem 3.6 on extensions of measure
preserving homomorphisms.

THEOREM 3.7. Let (A, u) and (B,v) be measure algebras and C C A
be a complete subalgebra. Let ¢ : C — B be a measure preserving
homomorphism, i.e., for ¢ € C,u(c) = v(d(c)). Suppose further that
Bly # ¢(C)|y for all b € BT. Then for any a € A these is a measure
preserving homomorphism ¢ from ba(C U {a}) to B estending ¢.

Proof. There are several results known on extensions of homomor-
phisms between Boolean algebras — for one of them see A.1 of the
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Appendix. The present theorem is a little difficult because we need
to extend in a measure preserving way.

Of course, we need to define ¢(a) to be an element b of B such
that p(c A a) = v(g(c Aa)) = v(d(c) Ab) for all ¢ € C. This will
automatically imply that i) u(a) = v(b), (1) p(d A d’') = p(d) —
p(d Aa) = v(g(d) — v(¢(d) Ab) = v(d(d) AY). and (iii) for ¢ <
a,c € C,u(c) = u(cNa) = v(p(c) ANb) = v(é(c)) and since (B,v)
is a measure algebra ¢(c) A b = ¢(c), or, ¢(c) < b and (iv) for
a<d,deC,b<¢(d).

The above (i) to (iv) say that ¢ defined by ¢((cAa)V (dAd')) =
(¢(c) Ab) V (¢(d) Ab') will be a measure preserving homomorphism
(using A.1 of the Appendix).

So, let us obtain an element b in B such that p(cAa) = v(p(c)Ab).

Let us first see that ¢(C) is a complete subalgebra of B. Let
{#(c;) : © € I} be an indexed set of elements in ¢(C). For finite
subsets F' C I, let cp = V{¢;;i € F}.

Let sup{cp : F C I F finite} = cp. Also let sup{u(cr) : F' C
I, F finite} = B. Then there exists F,, 1, F,, finite C I such that
pler,) T 6. If we let ¢ = V{cp, : n > 1} then u(c;) = G since
p is countably additive on C. Also for any finite G C I p(cgur,) T
pu(cgUcr) < B. Hence pu(cgUcy) = p(cr). Hence ¢g C c1. This means
that V{cp : F C I, F finite} < ¢1. So, ¢y = ¢1. Thus u(cy) = sup
{u(cr) : F C I, F finite}

If we call V{¢(c;) : i € I} =bthen b € B and b < ¢(cy) because
¢(cp) is an upper bound of {¢(c;),i € I}. But u(cy) = v(g(co)) =
sup{v(¢(cr)) : F C I, F finite } = sup{u(cp) : F C I, F finite }.
Hence v(b) = v(¢(cp)). Hence b = ¢(cp) € ¢(C).

Thus ¢(C) is a complete subalgebra of B. On ¢(C) let us define
a finitely additive measure 7 by n(¢(c)) = u(c A a). Then n(p(c)) <
p(e) = v(é(c)). Since v is countably additive (because ¢(C) is a
complete subalgebra of B) on ¢(C),n is also countably additive on
#(C). Hence by Theorem 3.6 there exists a b € B such that n(¢(c)) =
v(p(c)Ab). i.e. p(cAa) = v(p(c)Ab). As explained earlier this already
defines a measure preserving homomorphism ¢. O

The isomorphism theorem for 7-homogeneous measures algebras
is the following.
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THEOREM 3.8. Let (A, 1) and (B,v) be T-homogeneous measure al-
gebras such tht 7(A) = 7(B) and u(l4) = v(1g). Then there is a
measure preserving isomorphism between (A, p) and (B,v).

Proof. For a 7-homogeneous Boolean algebra C, 7(C) > wif 7(C) # 0.
So, let us assume that 7(A) = k > w.

Let ag,a1,++ ,aq '+ @ < k be such that the complete subalgebra
generated by this collection is A and let by, b1, ,by -+ < Kk be
such that the complete subalgebra generated by this collection is B.

We shall define, using a back and forth argument, elements
ay,al, -+ a5 - <k from A, bj, by, ,b},---a <k from B, com-
plete subalgebras A, of A and B, of B and measure preserving iso-
morphisms ¢, : A, — B, for each a < k.

Since the construction is not difficult, even though we use induc-
tion, we shall not list the properties — they will become clear as we
go along.

Let A, = the complete subalgebra generated by {ag: § < a} U
{aj : B < a} and B, = the complete subalgebra generated by {b :
g < a}U {b; : B < a}. So, let Ay = {0,14},By = {0,135} and
¢o : Ay — By be the natural isomorphism.

For defining aj, , 1,b;, 1 and ¢q1, look at ¢q : Ay — Bg. Since
7(Ba) < |a| < ||, Balp # Bl for every b € BT. Hence, by Theorem
3.7 there is a measure preserving isomorphism (homomorphism be-
tween Boolean algebras with strictly positive bounded measures is
an isomorphism if it is measure preserving) @, : ba(A, U {as}) to
ba(By U {b}}) for some b}, € B which extends ¢,. Using the same ar-
gument again let 5;1 : ba(Ba U{b:}U{by}) to ba{ Ay U{as}U{ak})
for some a}, € A which extends 5;1 Theorem 3.7 is applicable
again because ba(Aq U{aq}) and ba(By U {b},} U {by}) are complete
subalgebras by Theogem 3.2.

Let ¢at1 = fo -

For defining ¢, for a limit ordinal o assuming that ¢g : Ag — Bg
is already defined for all 8 < «a consistently, note that the map
@h  U{Ag : B < a}toU{Bgs: f < a} defined in the natural way from
{¢p : B < a} is a measure preserving isomorphism. By Theorem 3.3
(d) there is a measure preserving isomorphism ¢, : A, — B, because
A, is the complete subalgebra generated by U{As : 8 < a} and B,



104 K.P.S. BHASKARA RAO

is the complete subalgebra generated by U{Bs : # < a}.

This will define all the A,’s, B,’s and ¢,’s.

Then ¢, defined in the same way as in the case of limit ordinals
will give a measure preserving isomorphism between A = A, and
B = B. O

Now we are ready to state and prove Maharam’s Theorem.

THEOREM 3.9. (Maharam’s Theorem) Let (A,u) be a measure al-
gebra. Then there exist cardinals Kk1,k2--- all of them are either 0
or infinite and positive reals r1,719,73--+ such that > {r; : 1> 1} =
p(14) with the property that (A, ) and the direct sum (BM/I ;,)
i>1 ¢
where p.. = i, are isomorphic in a measure preserving way.

Proof. This is a combination of Theorem 3.4 (b), Theorem 3.5 and
Theorem 3.8. Let us see how.

Since A is a complete Boolean algebra, by Theorem 3.4 (b) A
is isomorphic to the direct sum of {Al,; : ¢ € I} for some a;’s in
AT such that A|,, is 7-homogeneous. Since p(a;) > 0 for all ¢, is
countable. We can call u(a;) as r; for all i. Now each (Alq,, ] 4),,)
being 7-homogeneous is isomorphic in a measure preserving way to
(B,%/ 1., rm,,%.) by Theorems 3.5 and 3.8. Hence the result. O

4. Von Neumann - Maharam Lifting Theorem

In this chapter I want to tell you about the von Neumann - Maharam
Lifting Theorem.

Let B be a o-field of subsets of a set 2 and p be a countably
additive probability measure on B. Consider the measure algebra
A = B/N,. Let 7 be the natural homomorphism from B to B/I,
defined by 7(b) = [b], the equivalence class containing b. The lifting
problem asks if we can lift B/I, to B, in the sense that, is there a
subalgebra of B on which 7 is 1-1 and whose image is the whole of
B/I, under 77 Let us make this more precise.

A homomorphism f : B/I, to B is called a lifting of (2, B, 1) if
7o f(a) =a for all a € B/I,.

Every lifting f of a (2, B, i) defines a homomorphism § = for :
B — B such that u(BA#(B)) = 0 for all B € B and whenever
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p(BAC) =0,6(B) = 6(C). Also for such a 0, f defined by f([B]) =
0(B) defines a lifting. Thus there is a correspondence between 0 and
f- We shall call 6 also the lifting of (2, B, ).

We shall show that every complete probability space admits a
lifting. But this will be the final result in a sequence of results.

Let us first see that every lifting of (£2, B, 1) also defines a lifting
for £L2(Q, B, 1), the preudo-normed Banach space of all essentially
bounded real valued measurable functions in which we say that f ~ ¢

if f=gas. [u]

THEOREM 4.1. Let 0 : B — B be a lifting of (2, B,u). Then there
is a linear operator T : L2(Q, B, u) to L2(Q, B, u) which is a lifting
that extends 0, i.e.,

(i) T(Ig) = Iyp)

(ii) for all g € £L(Q, B, 1), Tg ~ g

(iii) if g >0 a.s. () and g € L2(Q, B, ) then Tg > 0 and,
(iv) if g~ h and g,h € L2(Q, B, ) then T(g) = T(h).

Proof. 1 have to make a comment here. It is clear as to how to define
T for simple functions. So, what is the problem? use the usual
limiting arguments. If you are careful in verifying the details, this
will cause problems. So, I adopt the following technique of Fremlin.
See Exercise 18 for an alternate argument.

Let us first realize that for each f € L, (short for L(Q2, B, 1)
we want to pick, or define, one function from [f] = {g € Lo : g ~ f}.

What are the methods of defining a function A? One is of course
by prescribing the values of the function. In our case we have no
hope of doing this. Another method is to prescribe a class of sets
{4, : a € R} which is monotone increasing, to correspond to the
sets h~!(—o0, a], for example. This is what we shall do.

Given f € Lo, look at the sets 8(f~1(—o0,a]) = Ag, for every
a € R. Then {4, : a € R} is a monotone increasing class of sets
and we define the function T'f by T'f(z) = inf{a : z € A,}. Since
f is essentially bounded, and 6 is a homomorphism, 7' f(x) is well
defined.
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Of course T'f(z) = ap if and only if for all a > ap,z € A, and
for all @ < ap,z ¢ A,. Hence Tf(z) = ag if and only if for all
>0z €0({y: |f(y) —aol < e}).

If Tf(z) = ap and Tg(z) = by then for all e > 0 z € O({y :
1£(y) — a0] < €}) N6({y : |g(y) — bol < e}). Hence z € 0({y : | £(y) +
g(y) — (ao+bo)| < 2¢}) for all € > 0 because the later set contains the
former intersection. Hence T'(f + g)(z) = ag + bg. That T'(rf)(z) =
rT(f)(z) is clear. Thus T : Lo, — Lo is linear. Also, if f ~ g then
O(f~'[~00,a]) = 6(g~'(—o0,a]) for all a, because f~'(—o0,a] ~
g !(~o0,ala.s.(u). Thus Tf = Tg.

If at a point z,Tf(x) # f(x) then there is a rational number r
such that Tf(z) < r < f(z) or Tf(z) > r > f(z). In the first case
xz € 0(A;) — A, and in the later case € A, — 6(A,). In any case
z € (A,)AA,. Thus {z : Tf(z) # f(z)} = U{O(A,)AA, : ris a
rational number} and this set € B and has y measure equal to zero.
Thus Tf ~ f.

The above also implies that T'f € L, if you have completeness
of (,B,u). But we do not have it. So realize that T'f(z) < a =
z € 60(4,) = Tf(z) < a. Hence Tf(z) < a if and only if there is a
rational 7 < a such that T'f(z) < r if and only if there is a rational
r < a such that z € 0(A;). Thus {z : Tf(z) < a} = U{0(4,) : r <
a and 7 rational}. Thus T'f is measurable and T'f € L because of
the above paragraph.

Clearly, if f > 0 then A, = ¢ for all a < 0. Hence 0(A;) = ¢
for all @ < 0. Thus Tf > 0. Lastly, if f = I then A, = X for
alla > 1,A, = B¢forall 0 < a <1 and 4, = ¢ for all a < 0.
Hence 0(A,) = X for all a > 1,0(A,) = 6(B°) for all 0 < a < 1 and
0(As) = ¢ for all @ < 0. Thus T'f = Iyp).

Thus T has all the required properties. O

EXERCISE 17. Show that T above also satisfies T(fg) = T(f)T(g)
[Hint: If Tf(x) = ap and Tg(x) = by then z € ({y : |f(y) — ao| <
=) and © € 0({y : |9(y) —bo)| < 55})- So = € 6({y : [fg(y) —
aobo)| < 2¢})/

EXERCISE 18. Regarding the remark at the beginning of the proof
of Theorem 4.1, define T(f) for nonnegative f € Lo(2, B, 1) by
taking a sequence of simple functions f, 1T f and then by defining
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T(f) = lim 1 T(fy) which ezists because T is monotone on simple
functions. Show that T is well defined. Then extend T in a natural
way to the whole of Loo(Q, B, ). (I should confess that T have not
really worked out this exercise).

We shall also need a special case of the Martingale Convergence
Theorem from probability theory. We shall give a simple proof of
this special case since I do not assume your knowledge of any deep
probability theory.

THEOREM 4.2. Let B be a o-field of subsets of a set Q2 and p be a
countably additive probability measure on B. Let C, be sub o-fields
of B such that C,, C Cp, for all m < m. Let C = o(UC,). Let f be
a C—integrable (i.e., C-measurable and p-integrable) function and let

gn = E(f|Cp). Then g, — f a.s. ().

Proof. We shall show that p({z : lim sup gn(z) > f(z)}) = 0. Sim-
ilarly one can show also that u({z : lim inf g, (z) < f(z)}) = 0.

First observe that for every h which is C-integrable and for every
€ > 0 there is an m and a g which is Cp,-integrable such that [ |f —
gldu < e. This is easily seen by first observing that for every C € C
and € > 0 there is an m and a D € C,, such that u(CAD) < €
(How do we do this? Look at all the C' € C with this property and
show that this class contains U{Cj, : n > 1} and that this class is a
o-field). Then look at F = {f : f is integrable, f is C-measurable
and for every € > 0 there is an m and a g which is C,,-integrable
such that [ |f — g|du < €}. Then clearly, Ic € F for all C € C from
the above. Also F is a linear space. Also, if {f,,n > 1} are in F, f
is C-integrable and [ |f, — f|du — 0 then f is also in F. Hence F=
all C-integrable functions. Hence the result.

Now, let € > 0 and 1 > 0 be fixed. From the above observation
find an m and a Cp,-integrable g such that [ |f — g|du < en. Let

D = {w=§1>171:lgn(:c)>g(w)+6}

E = {x:g(x)>f(:v)+e} and
F = {z:limsupg,(z)> f(z)+ 2¢}

n—00
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Then clearly FF C DU E and eu(F) < eu(D) + eu(E). Now,
en(D) = > eu(D,) where Dy, = {z : g,(z) > g(z) + € but gx(z) <

n>m

g(z) + e for k = m,m+1,--- ,n — 1}. From the definition of D,,
we have eu(Dy) < [ gndp— [ gdp = [ (f — g)dp. Hence eu(D) <
D

J(f —g)dp. Also, eu(E) < [(g— f)dp. Hence eu(F) < [(f —g)du+
D E D

J(g— fldp < [|f — g|dp < en. [Observe that for any integrable h,
E

[ hdp+ [(—h)dp = [ hdp+ [ —hdp < [|h|dp]. Thus we have
A B A~B B-A

u(F) < n for all n and e positive. Thus p(F) =0 for all € > 0.
Thus p({z : limsupg,(z) > f(z)}) = 0. Hence the Theorem. [

We are now ready to prove the Lifting Theorem.

THEOREM 4.3. Let B be a o-field of subsets of a set Q and p be a
countably additive probability measure on B. Let further B be com-
plete with respect to the p-null sets. Then (2, B, 1) has a lifting.

Proof. Let (A = B/I,, ) be the measure algebra of (2,8, u). Of
course A is a complete Boolean algebra. Enumerate the elements
of A as ag,a1,a2, - ,04 - < £ for some initial ordinal (. For
a < ¢, let A, be the complete Boolean subalgebra of A generated
by {asg : B < a}. I hope that you have no confusion for o = 0.

Let w : B — B/I,, = A be the natural homomorphism. Not only
that 7 is a homomorphism, but also that 7 (U2, B;) = V2,7 (B;)
for any sequence {B; : ¢ > 1} in B. Since B is complete with respect
to u we have that I, = {A : A C B for aome B € B such that
p(B) = 0} and that I, C B.

Let us first observe that for every a < ¢, A, arises from a B, C B.
For this, let us define B, = {B € B: n(B) € Ay}. Then, since A,
is o-complete, By, is a sub o-field of B, I, C By, 7(By) = A and
(Aq, p) is the measure algebra of (2, By, u). Also, for any limit
ordinal a, B, = o (Uﬁ<a Bg). To show this, let B = o (Uﬂ<a Bg) .
Then w(B}) is a o- complete subalgebra of A (note the difference:
not just a o-complete Boolean algebra which is a subalgebra of A)
and m(B}) D Ag for all § < a. Also, since 7(B},) is a subalgebra of
A, m(B}) also satisfies the countable chain condition. Hence 7 (B},)
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is a complete subalgebra of A. Thus w(B%) = A,. Also, 7(B,) = Aa
and B, D Bj,. Also, I, C B},. Now, if A € B,, there is an A* €
B}, such that w(A) = w(A*). This means that u(AAA*) = 0, ie.,
AAA* €I, C B},. So A= AAA*AA* € B},. Thus B, = B,

With the above observations in place let us start the proof of the
Lifting theorem.

We shall, for each a < £, define a homomorphism f, : Ay, — B,
such that 7o fo(a) = a for every a € A, and also such that fg
extends f, if a < 8 < &. We shall do this by transfinite induction.

Since Ay = {0,1} we define fy(0) = ¢ and fy(1) = Q. We shall
define f,11, knowing f,, as follows. The idea is to use the homo-
morphism extension theorem A.1 from the Appendix. By Theorem
3.2, Aat1 = ba(Aq U {aa}). Let an = sup{a € A, : a < aq} and
Go = inf{a € Aq : an < a}. Both of these exist and aq < a0 < @q.
We need to define f,11(aq) to be an element B of B,11 such that
m(B) = aq and such that foi1(an) < B < fot1(dq) Take any
C € By+1 such that 7(C) = aq. Then correct C by taking B =
(CU fa(@a)) N fo(@a). This B serves the purpose of fo11(aq). By A.1
of the Appendix there is a homomorphism foy;1 : Agt1 — Bay1 ex-
tending f, such that 7o fo11(aa) = @qn. Since Aq11 = ba(AqU{aa})
it follows that 7o fo1+1(a) = a for all a in Ay41.

If « is a limit ordinal, let us define f,, knowing f3: 8 < «, in
the following way, considering two cases.

In case cf(a) > w, let us see that A, = U{Ag: B < a}. Indeed,
if we take ai,a92,--- from U{Ag : B < a}, since c¢f(a) > w there
exists a fy such that a; € Ag, for all i. Since Ag, is a complete
subalgebra of A,V{a; : i > 1} € Ag,. Thus U{Az: 8 < a} is a o-
complete subalgebra of A. Also (J{As : B < a} being a subalgebra
of A, satisfies the countable chain condition. Hence U{Ag : 8 < a}
is a complete subalgebra of A (Note: We are not exactly using the
result: a o-complete Boolean algebra which satisfies the countable
chain condition is complete. We are using a similar result; a o-
complete subalgebra of a complete Boolean algebra which satisfies
the countable chain condition is a complete subalgebra). Also U{ A :
B <a} D{ag: P < a}. Hence Ay = U{Ag: B < a}. We can now
define fy(a) = fg(a) if a € Ag. This f, is an unambiguously defined
homomorphism satisfying all the conditions.
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In case c¢f(a) = w, we proceed as follows. Let aj,as--- be an
increasing sequence of ordinals increasing to a. We are going to
define f,(a) for all a € A, at the same time (unlike the previous
cases). For a € A, let B € B, be such that 7(B) = a. Look at the
sequence of conditional expectations {€(Ip|By, ) : n > 1}. They are
of course defined only p—almost surely. Let g2 = T,, (£(IB|Ba,))-
The T,,’s are the liftings obtained from Theorem 4.1 starting with
the liftings fq,,’s. By Theorem 4.2 £(Ig|B,,) — Ip a.s.(p) as n —
oo. Since Ty, (f) ~ f a.s.(u) for every f, g% =T, (E(I|Ba,)) —
Ip a.s.(u).

If we look at B* = {z : ¢%(z) — 1} and B, = {z : ¢%(z) — 0}
then n(B*) = a = 7n(B¢) and B* C B We shall define a set
somewhere between B* and B¢ as fq(a).

Now, let, for z € Q,F, = {a € Ay : g%(z) — 1}. Let us see that
Fy is a filter. Of course Q2 € F,. If a € F, and ¢ € A, is such
that ¢ > a and D, B € B, are such that 7(D) = ¢ and n(B) = a
then Ip > Ip a.s.(u). Because of the properties of the conditional
expectation and because of the clever way we had demanded that (iii)
be satisfied in Theorem 4.1 we have that 1 > ¢¢ =T, (£(Ip|Ba,)) >
Ts, (E(IB|Ba,)) = g% and so g5(z) — 1. Hence ¢ € Fy. Also, if
a,c € Ay and if D, B € B, are such that 7(D) = ¢ and 7(B) = a
then (BN D) =aAc. So g¢" =T,, (Ipnp|Ba,) = To, I+ Ip —
Igup|Ba,) = g2+95—gtVe. If a,c € Fy then g2(z), g (z) and g2Ve(z)
all - 0. And so a A ¢ € F;. Thus each of the F,’s is a filter in A,.

Extend these filters to maximal filters G, D F; in A,. Define
fala) ={z € Q:a € G;} for a € A,.

For a,b € A,, by the properties of ultrafilters we know that
a Vb € G, if and only if either a or b € G,,a A b € G, if and only if
a and b both € G, and for any a € A,, either a € G, or @’ € G, and
exactly one of them holds. Thus f, is a homomorphism from A, to
P(2) the power set of Q.

If x € B* then a € F, (and so a € G, and consequently z
fa(a)). Also, if z € B, then g%(z) — 0. Since g% (z) + ¢%(z) =
1,9% () = 1 and so a' € F, C G5. Hence z € fo(a’) = Q — fa(a).
Thus if z € fo(a) then z € BS. Thus B* C fq(a) C B¢. Since
m(B*) = n(B¢) = w(B) = a as remarked earlier, by the completeness
of the measure space (€2, B, 1), we have that f, is a homomorphism
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into B.

In case a € Ag for some 8 < «, take an a;,, < «a such that
B < ap, < a. Then for n > ngy, Ty, (E(IB|Ba,)) = Ta, (Iz) which, by
Theorem 4.1 (i) is equal to Iy(p), and this in turn is equal to fg(a).
Thus f, extends each of fg for all 8 < a.

Thus the proof is complete. O

Let me be very optimistic in the following exercise. In the above
proof we have used the hypothesis that (Q, B, 1) is complete. Is this
hypothesis necessary?

EXERCISE 19. Give an example of a o-field B of subsets of a set
Q and a countably additive probability measure p on B such that
(Q, B, ) does not admit any lifting. Note that B is not given to be
p-complete.(This is an open problem.)

We shall now make some comments about the question of lifting
for finitely additive measures — let me call them charges.

In general, for nonnegative bounded charges, liftings need not
exit. Here is an example due to Maharam and Erdds. We refer to
“Theory of charges” for the proof.

Let @ = {1,2,3,---} and A = P(2). We say that a nonneg-
ative charge p on A is a density charge if for A € A pu(A) =
lim #(AN{1,2,---,n})
n—00 n
and Erdos have shown that for any density charge u on (€2, .A) there
is no lifting. See chapter 12 of “Theory of charges” for a proof.

Let me again be very optmistic and give you the following exer-
cise.

whenever the right side limit exists. Maharam

EXERCISE 20. If p is a strongly continuous probability charge on
(Q,.A) as above, show that (Q,.A, u) does not admit a lifting. [Note:
A charge p is said to be strongly continuous if for every e > 0 there
erists a finite partition of Q@ such that p of each of the sets in the
partition is < e.J(I do not know how to do this, but I suspect this
result to be true.)

Appendix

A.1 Extention theorem for homomorphisms. Let A and B be
two Boolean algebras. Let ¢ be a Boolean homomorphism from a
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Boolean sub algebra C of A into B. Let a be an element of A. If b is
an element of B such that whenever z < a <y in A, ¢(z) < b < ¢(y)
then, there is a homomorphism ¢ defined on ba(C U {a}) such that
¢ extends ¢ and ¢(a) = b.

A.2 Stone representation theorem. If A is a Boolean alge-
bra there is a compact totally disconnected Hausdorff space X such
that A is isomorphic to the field of clopen subsets of X.

A.3 Loomis-Sikorski theorem. If A is a Boolean o-algebra
there is a o-field B of subsets of a set X and a o-ideal I in B such
that A is isomorphic to B/I

A.4 Banach-Alaoglu theorem. A norm closed ball in X* is
w*-compact where X is a normed linear space.

A.5 Separation theorem for convex sets. If A is a closed
convex subset of a normed linear space X and if z is an element of
X which is not in A then there is a non-zero real linear functional ¢
on X such that ¢(z) < ¢(y) for all y € A.

A.6 Krein-Milman theorem. If K is a compact convex set in
a normed linear space then K is the closed convex hull of the set of
its extreme points.

In the following section there is a list of papers and books which I
have consulted in the preparation of this monograph. I should make
a special mention of the paper by Fremlin which I have consulted
more than the others. The reader who is interested in further study
1s advised to look at Fremlin’s paper.

The following is the list of papers and books which I have con-
sulted in the preparation of this monograph. I should make a special
mention of the paper by Fremlin which I have consulted more than
the others. The reader who is interested in further study is advised
to look at Fremlin’s paper.
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