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The Invariant Subspace Problem:
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SUMMARY. - This paper is devoted to recent developments regarding
the invariant subspace problem for positive operators on Banach
lattices. Some of this material was presented by Y. A. Abramovich
at “Workshop di Teoria della Misura e Analisi Reale,” Grado
(Italia) 18-30 September 1995.
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1. Introduction

This paper is devoted to the invariant subspace problem and de-
scribes some recent! results for positive and close to them operators
on Banach lattices. Most of these results have been obtained in a
series of papers by the authors [3, 4, 5, 6, 7). Whenever possible we
have included the proofs as well as some other insights from these
papers. At the same time this survey is not just the “algebraic” sum
of these works. The material is presented in a logical way using the
advantage of our present hindsight. There are new theorems, im-
provements in the old ones, and, last but not least, we have included
a number of open problems, all of which seem to be of interest to us
and at least some of which, we hope, will be of interest to the reader.
The invariant subspace problem is the following question.

e Does a continuous linear operator T: X — X on a Banach
space have a non-trivial closed invariant subspace?

A vector subspace is “non-trivial” if it is different from {0} and X.
A subspace V of X is T-invariant if T(V) C V. If V is invariant
under every continuous operator that commutes with 7', then V is
called T-hyperinvariant.

If X is a finite dimensional complex Banach space of dimension
greater than one, then each non-zero operator 7' has a non-trivial
closed invariant subspace. Indeed, let A € C be an arbitrary eigen-
value of T, and so Tzg = Azxy for some zy # 0. Then the one-
dimensional subspace {tzg: t € C} generated by z; is obviously
T-invariant. Moreover, if T' is not a multiple of the identity operator
I, then we can easily produce a non-trivial T-hyperinvariant sub-
space. Namely, consider the subspace Ny = {z € X: Tz = Az}.
Clearly this subspace is closed and non-trivial since T' # AI. It
remains to notice that each operator S in the commutant of T
leaves this subspace invariant.? Indeed, for each z € Ny we have

!This paper was completed in December of 1995 and, accordingly, it covers
only the material that was obtained up to then.

>The commutant {7}’ of a continuous operator 7: X — X on a Banach
space is the set of all continuous operators on X which commute with 7. That
is, {T}Y = {S € L(X): ST = TS}, where L(X) is the Banach algebra of all
continuous operators on X. Clearly, {T'}' is a unital subalgebra of L(X).
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TSz = STz = S(Az) = ASz, so that Sz € N,.

On the other hand, if X is non-separable, then the closed vector
subspace generated by the orbit {z,Tz,T?z,...} of any non-zero
vector x is a non-trivial closed T-invariant subspace. Thus, the “in-
variant subspace problem” is of substance only when X is an infinite
dimensional separable Banach space. Accordingly, without any fur-
ther mention, all Banach spaces under consideration will be assumed

to be infinite dimensional separable real or complexr Banach spaces.

Next, let us outline briefly the contents of this survey. Essen-
tially, it can be divided into four parts. The first part (Sections 1-4)
contains some introductory material to familiarize the reader with
the problem, its history, and some basic techniques.

The second part (Sections 3-7) starts with operators on £,-spaces
and progresses to operators on more general “discrete” spaces, in-
cluding Banach spaces with a Schauder basis. A typical result from
this section states: a positive quasinilpotent operator on £,-space has
a non-trivial closed invariant subspace. The results of this part gen-
eralize our work in [3, 5, 6].

The third part (Sections 8-13) represents the main body of this
paper. It contains the most general invariant subspace theorems for
positive operators which have been obtained so far. Here is a sample
result from this part: FEach positive quasinilpotent kernel operator
has a non-trivial closed invariant subspace. The proofs of this and
other results are based on the new concept of a compact-friendly
operator, introduced and discussed in Section 11. The results of this
part extend our work in [4, 7]. We would like to point out that parts
2 and 3 improve upon our work in [3, 4]. This improvement consists
in relaxing the commutativity condition. Namely, on many occasions
for a pair of positive operators B and S acting on a Banach lattice,
we replace the commutativity condition BS = SB by just one of the
inequalities SB < BS or SB > BS.

The concluding part (Sections 14-16) treats the dual invariant
subspace problem, and also the invariant subspace problem for Dun-
ford-Pettis and AM-compact operators. In the last Section 16 the
reader will find a list of open problems related to the invariant sub-
space problem.

The authors would like to thank A. Kitover for reading the manu-
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script and providing us with many valuable suggestions, and C. Pear-
cy for bringing to our attention several pertinent references.

2. Preliminaries and historical comments

For notation and terminology concerning Banach spaces and Banach
lattices not explained below, we refer the reader to [12, 14, 53, 61].
The symbol E will denote a real or complex Banach lattice. The ba-
sic properties of complex Banach lattices can be found in the mono-
graphs [53, pp. 133-138] and [61, pp. 187-208].

In this paper, the word “operator” will be synonymous with “lin-
ear operator.” Moreover, although most operators under consider-
ation will be continuous, we prefer to emphasize the continuity hy-
pothesis explicitly whenever needed. The reason for this lies in a
well known fact that positive operators on Banach lattices are auto-
matically continuous (see [14, Theorem 12.3, p. 175]).

An operator T': E — FE is said to be positive, in symbols T > 0,
whenever £ > 0 implies Tz > 0. As usual we write T > 0if T > 0
and T # 0. The operators lying in the vector subspace generated by
the positive operators are referred to as regular operators. In the
case of a real Banach lattice an operator is regular if and only if it
is the difference of two positive operators.

The main thrust of the approach presented in this survey is to
show that an extensive use of the theory of operators on Banach
lattices and of their order structure is very helpful in dealing with
the invariant subspace problem. Apart from the fact that the order
structure enables us to get new results on the existence of invariant
subspaces, its presence also guarantees a simple geometric form of
the invariant subspaces. As we shall see, the invariant subspaces
of positive operators are quite often closed order ideals, which in
the case of function spaces are just subspaces of functions vanishing
on measurable sets. For this reason, our results are of independent
interest even in the non-separable case.

Here are some brief historical remarks (in chronological order)
regarding the invariant subspace problem. Several other pertinent
results (for example, the Krein-Rutman and Andé-Krieger Theo-
rems) will be mentioned later.
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1. In 1950, M. G. Krein [40, Theorem 6.3] proved that the adjoint of
a positive operator on a C'(£2)-space, where Q is a non-trivial compact
Hausdorff space, has a a positive eigenvector and, consequently, the
operator itself has a non-trivial closed invariant subspace. (A proof
of this will be given in Section 3.)

2. In 1954, N. Aronszajn and K. T. Smith [18] proved that compact
operators have non-trivial closed invariant subspaces.

3. In 1966, A. R. Bernstein and A. Robinson [22] and subsequently
P. R. Halmos [36] established that polynomially compact operators
have non-trivial closed invariant subspaces. The proof of Bernstein
and Robinson used non-standard analysis, while Halmos’ proof was
“standard.”

4. In 1973, V. I. Lomonosov [42] astounded the mathematical world
by proving that every continuous operator which commutes with a
non-zero compact operator has a non-trivial closed invariant sub-
space.

5. It should be pointed out that until the middle of 70’s, the invariant
subspace problem was phrased a bit stronger than formulated in the
introduction. Namely, it asked:

e Does every continuous linear operator on a (separable) Banach
space have a non-trivial closed invariant subspace?

It was P. Enflo [32] who constructed in 1976 an example of a continu-
ous operator on a Banach space without a non-trivial closed invariant
subspace, and thus demonstrated that in this general form the in-
variant subspace problem has a negative answer. For operators on a
Hilbert space, the existence of an invariant subspace is still unknown
and is one of the famous unsolved problems in mathematics. Due to
the above counterexample, the invariant subspace problem for oper-
ators on Banach spaces has been confined to the search for various
classes of operators for which one can guarantee the existence of an
invariant subspace.

6. In 1978, S. W. Brown [23] proved that subnormal operators on
Hilbert spaces have non-trivial closed invariant subspaces.

7. In 1985, C. J. Read [51] presented an example of a continuous
operator on ¢; without a non-trivial closed invariant subspace.

8. Let A C L(X) be a subalgebra of operators on a Banach space
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X. A well known version of the invariant subspace problem is the
following question:

o When does the algebra A have a non-trivial closed invariant
subspace? That is, when does there exist a common (for all
operators in A) non-trivial closed invariant subspace?

The classical Burnside Theorem [50, Corollary 8.6, p.142] asserts
that if X is finite-dimensional, then any proper subalgebra of L(X)
has a non-trivial closed invariant subspace. In a recent work, V.
Lomonosov [43] found a very elegant extension of this result to in-
finite dimensional spaces. Namely, for a proper and weakly closed
subalgebra A of L(X) he proved the existence of non-zero functionals
z' € X' and " € X" such that for any A € A the following estimate
holds:
|z (A'z")] < d(4, K(X)),

where d(A,K(X)) is the distance from A to the space of compact
operators K(X).

This theorem immediately implies Burnside’s Theorem since if
dimX < oo, then d(A,K(X)) = 0 and so z"(A'z') = 0 for each
A € A, guaranteeing the existence of a non-trivial closed invariant
subspace for A (see Proposition 14.1). In the same work [43] V.
Lomonosov proposed the following conjecture:

e The adjoint of an arbitrary continuous linear operator on a
Banach space has a non-trivial closed invariant subspace.

We refer to [7, 28, 54, 55] for some results regarding this conjecture.
The work done in [7] regarding this conjecture will be discussed in
Section 14.

We want to reiterate that this survey is devoted almost entirely
to the invariant subspace problem for positive (and close to them)
operators on Banach lattices. In particular, we practically do not
mention any work on the invariant subspace problem in the vast
areas of operators on Hilbert spaces and on various spaces of analytic
functions. For a comprehensive account on the history and progress
regarding the invariant subspace problem, we refer the reader to [19,
20, 21, 37, 46, 47, 48, 50, 52] and the references therein.
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3. Some basic invariant subspace theorems

The purpose of this section is to remind the reader of several well
known invariant subspace theorems for operators on Banach spaces.
Some of these results will be used repeatedly in our discussion, with-
out reference.

It should be obvious that if a subspace is invariant or hyperinvari-
ant for a continuous operator, then so is its norm closure. Another
elementary fact regarding invariant subspaces is presented in the
next lemma.

LEMMA 3.1. If T: X — X is a continuous operator on a Banach
space, then its kernel and range are T-hyperinvariant subspaces.

Proof. Assume S € L(X) satisfies ST = T'S. If Tz = 0, then from
T(Sz) = S(Tz) = 0, we see that S(KerT) C KerT, ie., KerT is
a T-hyperinvariant closed subspace. On the other hand, if z € X,
then the identity S(Tz) = T(Sz) shows that S(T(X)) C T(X),
and this means that the range T'(X) of the operator T is also T-
hyperinvariant. O

COROLLARY 3.2. If a continuous operator T commutes with another
continuous non-zero operator which is either not one-to-one or fails
to have a dense range, then T has a mon-trivial closed invariant
subspace.

The preceding corollary shows that as far as the invariant sub-
space problem is concerned, not only can we suppose that the oper-
ator is one-to-one and has a dense range but also that every other
non-zero operator which commutes with it is one-to-one and has a
dense range.

Recall that an eigenspace of a continuous operator T: X — X is
any closed non-zero subspace of the form Ny = {z € X: Tz = Az},
where ) is an eigenvalue of T'. It is obvious that A = 0 is an eigenvalue
for T if and only if the kernel of T' is non-trivial, and in this case,
KerT = Ny. Clearly, T is not a multiple of the identity if and only
if there is no eigenvalue X such that Ny, = X. Eigenspaces are the
simplest invariant subspaces.
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LEMMA 3.3. If a continuous operator T: X — X is not a multi-
ple of the identity, then every eigenspace of T is a non-trivial T'-
hyperinvariant closed subspace.

Proof. Let A be an eigenvalue of a bounded operator 7: X — X.
By the hypothesis, Ny = {z € X: Tz = Az} = Ker (T — ) # {0}.
Since every operator which commutes with 7' also commutes with
T — A, it follows from Lemma 3.1 that N, is T-hyperinvariant. [J

Next, we shall prove that if the adjoint of an operator has an
eigenvector, then the operator has a non-trivial closed invariant sub-
space.

THEOREM 3.4. Let T: X — X be a continuous operator on a Ba-
nach space which is not a multiple of the identity. If either T or its
adjoint T" has an eigenvector, then both T and T' have non-trivial
closed hyperinvariant subspaces.

Proof. Notice that T is not a multiple of the identity if and only if
its adjoint 7" is not a multiple of the identity. If T has an eigenvalue
A, then by Lemma 3.3 its eigenspace Ny = {z € X: Tz = Az} isa
non-trivial T-hyperinvariant closed subspace.

Now assume that 7'z’ = Az’ for some scalar A and some non-
zero ' € X'. Let V = (T — \)(X), the closure of the range of the
operator T'— A. Since T' # A, we see that V # {0}; and since
z' # 0, the equality (T — Nz, z') = (z, (T" — \)z') = 0 implies that
V # X. Thus, V is a non-trivial closed subspace of X. We claim
that V is T-hyperinvariant. Indeed, if S € L(X) satisfies ST =TS
and z € X, then S[(T' — M\)z] = (T'— A)(Sz) € V, which implies that
S(V)CV.

To complete the proof notice that if x is an eigenvector of 7', then
x is also an eigenvector of T”, and so the previous part guarantees
that in this case T" also has a non-trivial closed T”-hyperinvariant
subspace. O

M. G. Krein [40, Theorem 6.3] has proved the following remark-
able result.

THEOREM 3.5 (M. G. KREIN). The adjoint of an arbitrary positive
operator on a C(Q2)-space (where Q is a compact Hausdorff space) has
a positive eigenvector corresponding to a non-negative eigenvalue.
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Proof. Let T: C(2) — C(92) be a positive operator. Consider the
set

G={feC@: f(1)=1},

where 1 denotes the constant function one on 2. Clearly, G is a
nonempty, convex, and w*-compact subset of C'(2)’.
Next, define the mapping #': G — G by

F(f) = g = thsto - ()

A straightforward verification shows that F' indeed maps the set
G back to G and that F': (G,w*) — (G,w") is a continuous func-
tion. So, by Tychonoff’s Fixed Point Theorem (see, for instance [12,
Corollary 14.51, p. 483]) there exists some ¢ € G such that F(¢) = ¢.
That is, ¢ + T'¢ = [1 + T'¢(1)]¢, or T'¢ = [T'$(1)]¢, which shows
that 0 < ¢ € C(Q)', is an eigenvector for 7" having the non-negative
eigenvalue T'¢(1). O

COROLLARY 3.6. Every positive operator on a C(2)-space (where
is Hausdorff, compact and not a singleton) which is not a multiple
of the identity has a non-trivial hyperinvariant closed subspace.

Proof. Let T: C(2) — C(€2) be a positive operator which is not a
multiple of the identity. By Theorem 3.5 the adjoint operator 7" has
an eigenvector, and the conclusion follows from Theorem 3.4. U

Regarding eigenvalues and the spectral radius of a positive com-
pact operator we have the following classical result of M. G. Krein
and M. A. Rutman [40], which is an important infinite dimensional
generalization of the Perron—Frobenius theorem. We refer to [53, 61]
for other proofs and pertinent results concerning the Krein-Rutman
theorem. Some relevant results can be also found in [2].

THEOREM 3.7 (KREIN-RUTMAN). For a positive operator T on a
Banach lattice E we have the following.

a. The spectral radius of T belongs to the spectrum of T, i.e.,
r(T) € o(T).
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b. If T is also compact with positive spectral radius, then its spec-
tral radius is an eigenvalue having a positive eigenvector, i.e.,
there exists some x > 0 such that Tz = r(T)zx.

Recall that a vector subspace V' of a vector space X is said to
be complemented if there exists another subspace W such that
V @ W = X. The vector subspace W is called a complement of
V. As usual, an operator P: X — X is said to be a projection if
P? = P. A projection P is proper if P # 0 and P # I. It is easy
to see that a subspace V is complemented if and only if there exists
a projection on X whose range is precisely V. When V is a closed
subspace of a Banach space X, the Closed Graph Theorem implies
that V' has a closed complement if and only if V is the range of a
continuous projection on X.

A closed subspace V of a Banach space X is said to be reducing
a continuous operator T': X — X if V has a closed complement W
such that both V and W are T-invariant. The reducing subspaces of
an operator are very important and they are characterized in terms
of projections as follows.

THEOREM 3.8. A continuous operator T: X — X on a Banach
space has a proper reducing (closed) subspace if and only if there

erists a proper continuous projection P: X — X satisfying TP =
PTP.

Proof. Assume that a proper closed subspace V reduces T and let
P: X — X be a proper continuous projection with P(X) = V. Put
W = (I — P)(X). Now if z € X, write z = z1 + z2 with z; € V,
9 € W and note that PT'Px = PTz; =Txz; = TPzx.

For the converse, assume that T'P = PT P holds for some contin-
uous proper projection Pon X. Put V = P(X) and W = (I-P)(X).
Clearly, V and W are both closed subspaces, and V & W = X.
If z € V, then Tr = TPz = P(TPz) € V, and so T(V) C V.
On the other hand, if x € W, then PTx = PTPz = 0, and so
Tre (I-P)(X)=W,ie, T(W)CW. O

COROLLARY 3.9. Every continuous operator on a Banach space which
commutes with a proper projection has a reducing subspace.
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Proof. If T: X — X is a continuous operator on a Banach space
which commutes with a proper continuous projection P: X — X,
then note that TP = PT = P?T = P(PT) = PTP. O

4. Local quasinilpotence

Recall that a continuous operator 7T': X — X on a Banach space is
said to be quasinilpotent if its spectral radius r(7T") = nlggo ”T"”%
is zero. It is well known that T is quasinilpotent if and only if
lim ||T":1:||% =0 for each z € X.

n—o0
It can easily happen that a continuous operator 7': X — X is not

1
quasinilpotent but, nevertheless, lim ||T”:c” » = () for some z # 0.
n—oQ

In this case we shall say that T is locally quasinilpotent. This prop-
erty was introduced in [3], where it was found to be useful in the
study of the invariant subspace problem.

DEFINITION 4.1. A bounded operator T: X — X on a Banach space
is said to be quasinilpotent at a point z( if lim ||T"x0”% =
The set of all points at which T is quasinilpoten??soiienoted by Qr,
i.e.,
Or={z€X: lim ||T".T||% =0}.
n—oo

It is obvious that the zero vector belongs to Qr, and also that
if T' is not one-to-one, then Q7 is not trivial since each point of the
kernel of T belongs to Q. It is a bit harder to see that a one-to-
one operator can also be quasinilpotent at a non-zero point without
being itself a quasinilpotent operator. Examples of this type will
be presented in the next section. If T: E — E is an operator on a
Banach lattice then, as usual, we let Q; =QrNET.

LEMMA 4.2. If T: X — X is a continuous operator on a Banach
space, then the set Qr of all points at which T is quasinilpotent is
a T-hyperinvariant vector subspace.

Proof. Clearly, x € Qr implies Az € Qr for each scalar A\. Now
let z,y € Qpr, and fix € > 0. Then, there exists some ngy such tlha,t
IT"z|| < €® and | T"y|| < €" for all n > ng. So, | T"(z + y)||» <
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(|1 Tz + ||T”y||)% < 2¢ for all n > ng. Therefore, z + y € Qp, and
so Qr is a vector subspace.

For the last part, fix zg € Qp, and let an operator S: X — X
satisfy ST = TS. Then from

1 1 1 1
[T (Szo)|| ™ = [|S(T"zo) = < ||S]|™ - [T 20| » == 0,
we see that Szy € Or, i.e., Qr is S-invariant. O

We collect below a few more simple properties of the vector space
Qr of quasinilpotent points of a continuous operator 7: X — X.

e The operator T is quasinilpotent if and only if Or = X.

e Op = {0} is possible. For instance, every isometry 7" satisfies
Qr = {0}. Notice also that even a compact operator can
fail to be locally quasinilpotent at every non-zero vector. For
instance, consider the compact positive operator T': £o — /o
defined by T(z1,22,...) = (z1,%,%,...). If z € £, satisfies
z # 0, then pick some k for which z; # 0 and note that
|T"z||» > %|xk\% for each n, from which it follows that 7" is
not quasinilpotent at .

e Qr can be dense without being equal to X. For instance, the
left shift operator S: fo — /f, defined by S(z1,z2,23,...) =
(9,3, ...), has this property.

o If Oy # {0} and Qr # X, then (by Lemma 4.2) Qr is a
non-trivial closed T-hyperinvariant subspace of X.

The above properties show that as far as the invariant subspace
problem is concerned, we need only to consider the two extreme
cases: Qr = {0} and Q7 = X.

5. Operators on /,-spaces

In this section we deal primarily with the classical £,-spaces over the
complex numbers, where 1 < p < co. The case p = oo is excluded for
the obvious reason: the space £, is non-separable, and consequently,
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as explained in the introduction, each continuous operator automati-
cally has a non-trivial closed invariant subspace. Possible generaliza-
tions to more general discrete spaces will be discussed briefly at the
end of the section. It should be pointed out that Theorem 5.1, the
main result of this section, is a special case of a general result which
will be established in Section 10. However, in view of the simplicity
of the proof in the discrete case, it is useful to present this direct
proof as well. Apart from its simplicity it also allows us to obtain
an explicit description of the invariant subspaces.

Our presentation in this section is rather self-sufficient in the
sense that it is independent of the general theory of Banach lattices.
A vector

T

z=(z1,29,...)= [T2| €4,

is said to be positive, in symbols z > 0, if its components are non-
negative real numbers. The absolute value |z| of a vector z is the
vector |z| = (|z1],|22],...). The symbol e, will denote the vector
whose n*-component is one and every other zero.

It is well known that every operator T': £, — £, can be repre-
sented by an infinite matrix [¢;;], where for each z = (z1,29,...) €4,
we have

t11 ti2 13 x1 Z;?ij 15
T(z) — to1 to2 tog T2| Efig t2jTj
@) = lta1 tar tag | |22| = > isjtsiTj

Recall that an operator T': £, — £, is said to be positive if
Tz > 0 holds for all # > 0. This is equivalent to saying that each
entry t;; of the matrix [tij] representing 7' is a non-negative real
number. The notation § > T for operators S and T simply means
that S —T7 > 0.

A (continuous) operator T': £, — £, with matrix [t;;] has a mod-
ulus whenever the matrix of absolute values [|t;;|] also defines an



16 Y. ABRAMOVICH, C. ALIPRANTIS, O. BURKINSHAW

operator on £, (being positive this operator is automatically contin-
uous), that is,

[ti1] |tizl |tz ] [z1
lta1]| |too| |tes| ---| [z2

IT|(z) = [t3t| |t32| |t3s| ---| [=2

Let us note for further reference that each continuous operator on
£ or £y has a modulus [14, Theorem 15.3, p. 249]. If a continuous
operator T': £, — £, has a modulus, then clearly |T'(z)| < |T'|(|z|) for
each x € £,. Also, it should be noted that if each of two continuous
operators S,T: ¢, — ¢, has a modulus, then S + T, ST, and oT
likewise have moduli and |S + T'| < |S| + |T|, |ST| < |S||T|, and
|aT| = |a||T| hold.

A vector subspace J of an £,-space is said to be an order ideal
if |yl < |z| and z € J imply y € J. The closure of any order
ideal is again an order ideal. It should be noted that any non-trivial
closed order ideal J in £, has the following form: there exists a
(unique) non-empty proper subset Ny of natural numbers such that
J = {z € 4y: z, =0for each n € Ny}. In particular, every closed
ideal in an £,-space is complemented.

As mentioned in Section 4, a one-to-one continuous operator can
be quasinilpotent at a non-zero vector without being itself quasinil-
potent. For instance, the one-to-one operator T': £, — £, defined by
the matrix

10000
10000
0000
00 3 00 ’
000 10

is quasinilpotent at e, but fails to be quasinilpotent. Indeed, from

Te, = %enﬂ for all n > 2, we see that T"eq = menw, and hence

o : 1
IT™es|| = ﬁ, from which it follows that nli)ngoHT”ean =0. On
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the other hand, ||T"| > ||T"e;| > 1 implies ||T™||= > 1 for each n.
Therefore, T' is not quasinilpotent.

We are now ready to state and prove the main result of this
section which is an improvement of our main result in [3]. It implies,
in particular, that if a positive operator is quasinilpotent at a non-
zero positive vector, then the operator has an invariant subspace.

THEOREM 5.1. Let T: ¢, — £, (1 < p < 00) be a continuous op-

erator with modulus. If there exists a non-zero positive operator
S: Ly — £y such that

1. S|T| < |T'|S (in particular this holds if S commutes with |T|),
and

2. S is quasinilpotent at a mon-zero positive vector,

then T has a non-trivial closed invariant subspace which is an ideal.

Proof. Assume S > 0 satisfies S|T| < |T'|S and nli_)rgO”S":vOH% =0
for some zy > 0. We distinguish two cases: Szg > 0 and Szg = 0.

We begin by assuming that Szg > 0. In this case, since S is
continuous, an appropriate scaling shows that there exists some k
satisfying zg > e, > 0 and Se; > 0.

Now let P: ¢, — £, denote the natural projection onto the vector
subspace generated by e;. Clearly, 0 < Pz < z for each 0 <z € £,
We claim that

P|T|™Ser, =0 (%)

for each m > 0. To this end, fix m > 0 and let P|T|™Se;, = aey, for
some « > 0. Clearly, S|T|™ < |T|™S, and hence we have

0 < a”ek = (P|T|mS)nek < (|T‘ms)"ek
= |T|™S|T|™S---|T|™Sey, < |T|"™"S ey, < |T|™"S™xq.

Consequently,
0<a < 21" ||8" 0" === 0.

from which it follows that o = 0.
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Next, consider the order ideal J generated by the set
{IT|™Sef: m=0,1,...}
that is,
J={z€t,: IX>0andr>0suchthat |z| < A\YI_o|T|"Sey }.

Since 0 < Sey € J, we see that J # {0}. Also, from (x), it follows
that

(ek,z) = (ex, Px) =0 forall ze€J,

and consequently (ex,z) = 0 for all z € J, the norm closure of J.
The latter shows that J is a non-trivial closed ideal in £,. We claim
that J is T-invariant. Indeed, if z € J, then there exist a scalar
A > 0 and some integer 7 > 0 such that |z] < A>7_, |T|*Sey. So,
T ()| < |T|(Jz]) < A0, |T|*Sek, and hence T'(z) € J. That is, J
(and hence J) is T-invariant.

Now consider the case Sxg = 0. Let A denote the unital algebra
generated by |T| in the Banach algebra of all continuous operators

on £,. Also, let
J={z €ty |z| <|A|z) for some A € A}.

Clearly, J is a T-invariant order ideal which is non-zero since zy € J.
To finish the proof, it suffices to show that J # £,. Since S is assumed
to be nonzero, the previous claim will be established if we show that
the restriction of S to J is identically zero.

To see this, take any element z € J. Pick some A € A with
|z| < |A|zo and then select an integer 7 > 0 and a scalar ¢ > 0 such
that |[A| <ed°r_|T|% So, from

T s
1S(2)| < Slal < S|Alzo < (e [T )mo < 3 IT1(Sm0) = 0,

=0 =0

it follows that S(z) = 0 for all z € J. If J = £,, then S = 0,
which is a contradiction. Hence, J is a non-trivial closed T-invariant
subspace, and the proof is complete. O



THE INVARIANT SUBSPACE PROBLEM 19

A simple example of a pair of noncommuting positive operators
S and B satisfying the inequality SB < BS follows. Let S be the
right shift operator on £, and B be the left shift operator. Then for
each z € £, we clearly have BSz = z and SBz = (0,z2,23,...), s0
that SB < BS.

We do not know presently if an analogue of the previous result
holds provided we replace the inequality S|T'| < |T'|S by the reverse
inequality S|T'| > |T'|S. However, if we assume additionally that S
is quasinilpotent (rather than just being locally quasinilpotent) then
such an analogue does hold, and it will be stated next. A direct
proof of this result can be obtained by a simple modification of the
proof of Theorem 5.1, and is omitted. As a matter of fact, we do
not really need this direct proof since Theorem 5.2 is a special case
of Theorem 10.2.

THEOREM 5.2. Let T: £, = £, (1 < p < 00) be a continuous op-
erator with modulus. If there exists a mon-zero positive operator
S: ¢, = £, such that

1. S|T| > |T|S, and
2. S is quasinilpotent,
then T has a non-trivial closed invariant subspace which is an ideal.

Our first corollary is perhaps the most striking consequence of
Theorem 5.1. It establishes that one can add arbitrary weights to
an operator and still be guaranteed that non-trivial closed invariant
subspaces exist.

COROLLARY 5.3. Assume that a positive matriz A = [a;;] defines an
operator on an £,-space (1 < p < o0o) which is quasinilpotent at a
non-zero positive vector. If w = {w;;: 4,j =1,2,...} is an arbitrary
bounded double sequence of complex numbers, then the continuous
operator defined by the weighted matriz Ay, = [wijaij] has a non-
trivial closed invariant subspace.

Moreover, all these operators A, have a common non-trivial
closed invariant subspace.

Proof. By Theorem 5.1, the operator A has a non-trivial closed in-
variant order ideal V. Now if B = [b;;] is a matrix whose modulus



20 Y. ABRAMOVICH, C. ALIPRANTIS, O. BURKINSHAW

satisfies |B| < cA, then from |Bz| < |B|(|z|) < cA(|z|) it follows
that Bx € V for each x € V, i.e., V is B-invariant. It remains to let
B=A,. 0

It is worth mentioning that in the preceding corollary our as-
sumption that the weights are bounded is not necessary. It suffices
to assume only that the modulus of the matrix A,, defines an oper-
ator on /.

COROLLARY 5.4. If the modulus of a continuous operator T': £, — £,
(1 < p < ) exists and is quasinilpotent at a non-zero positive
vector, then T has a non-trivial closed invariant subspace.

COROLLARY 5.5. Every positive operator on an £p-space (1 < p <
oo) which is quasinilpotent at a non-zero positive vector has a non-
trivial closed invariant subspace.

For quasinilpotent positive operators on £5 Corollary 5.5 was also
obtained in [26]. Although Theorem 5.1 and its corollaries are new
even for a quasinilpotent operator on £,, their main attractiveness
lies in the fact that we do not really need to know that a positive
operator T': £, — £, is quasinilpotent. The only thing needed is the
existence of a single vector zp > 0 for which ||T”x0||% — 0. This
alone implies that 7" has a non-trivial closed invariant subspace of
a simple geometric form. In view of this, the following important
question arises. How can we recognize by “looking at” a matrix [t;;]
defining a positive operator T': £, — £, if the set Q; is non-empty?
This question will be considered in the next section. Originally it
was addressed in [6], and in our presentation we will follow that
work.

We conclude this section with some remarks. First we notice
that for a quasinilpotent positive operator T' on £, the existence
of a non-trivial closed invariant subspace can also be derived from
some results in [1] or [29], and also from the results in the next
section. However, a “genuine” explanation as to why the results of
this section are true depends on the concept of a compact-friendly
operator. This explanation will be given at the end of Section 11
after this new concept is introduced and studied.
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We mentioned before that every continuous operator on #; has
a modulus, i.e., it is a regular operator. Consequently, C. J. Read’s
example [51] of a continuous operator on £; without non-trivial closed
invariant subspaces shows that a regular operator on /£,-spaces may
fail to have an invariant subspace. OQur Theorem 5.1 presents a rather
weak additional condition which guarantees that a regular operator
on an /,-space has an invariant subspace. It is still an open problem
whether or not each positive operator on ¢; (or £, with p < co) has
an invariant subspace. For quite a while it seemed plausible that
the modulus of the operator constructed by C. J. Read might be
a candidate for a counterexample on ¢;. However, this is not true.
V. Troitsky [57] has shown recently that the modulus of C. J. Read’s
operator does have a non-trivial closed invariant subspace.

In our previous discussion, we were considering only operators on
£,-spaces. However, since we never used the specifics of the geometry
of £,-spaces, all of our results and proofs remain true for operators
on arbitrary discrete Banach lattices, in particular, on the Lorentz
and Orlicz sequence spaces. For instance, the following analogue of
Theorem 5.1 is true.

THEOREM 5.6. Let T: E — E be a continuous operator with modu-
lus, where E is a discrete Banach lattice. If there exists a non-zero
positive operator S: E — E such that

1. S|T| < |T|S (in particular this holds if S commutes with |T|),
and

2. S is quasinilpotent at a non-zero positive vector,
then T has a non-trivial closed invariant subspace.

The situation with non-discrete spaces is considerably more com-
plicated and will be discussed in Section 10.

6. Cycles and local quasinilpotence

In this section we continue to deal with operators on £,-spaces with
1 < p < co. Our main objective is to study the local quasinilpotence
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in connection with some other properties that will be introduced be-
low. These properties are strong enough to imply local quasinilpo-
tence, are simple enough to be verified, and therefore imply several
invariant subspace results. As usual, e, is the vector whose n'\
coordinate is one and every other is zero; e, can be viewed either
as a column or row vector. Without any further mention, we shall
identify the operators on ¢, with the (infinite) matrices represent-
ing them. Keep in mind that for an operator A = [a;;]: £, — £, the
n'l-column of the matrix [a;;] coincides with the column vector Ae,,.
The proof of the next lemma is trivial and is omitted.

LEMMA 6.1. A positive operator on an £p-space is quasinilpotent at
some positive vector if and only if it is quasinilpotent at some e;.

Let us say that an operator A = [a;;]: £, — £, essentially shifts
a vector zg if, for each k, the k' coordinate of the vector A"z is
eventually zero. Equivalently, A essentially shifts xq if and only if
for each k there exists some ng such that (A"xzy); = 0 for all n > ny
and all 1 <1 < k.

THEOREM 6.2. If a continuous operator A = [a;j] on £y essentially
shifts some ej, and ||Ae,|| — 0 as n — oo, then A is quasinilpotent
at e;.

J

Proof. For simplicity we denote the £i-norm by || - ||, i.e., we write
||z|| instead of ||z||1 for z € ¢1. Fix € > 0 and pick some k such that
||Ae,|| < e for all n > k.

Since A essentially shifts e; there exists some m > k such that
(A"ej); = 0 for all n > m and each 1 < i < k. So, if A"e; =

o1 a; '€, then, in actuality, A"e; = > 7°, | «; 'e; and hence

A€l = > 21 ||a§n)|. Therefore, for n > m we have

o0 (o]
|amtle;|| = HZ o™ Ae, Sl?>akx||Aei||<.Z |a§n>|)
i=k+1 i=k+1
S 6||A”ej||.

In particular, for n = m + r, we have ||[A"e;|]| = [[A""¢;|| <

€"||A™e;||, and therefore ”A"ej”% < HAmej”%el*% for all n > m.
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Hence, lim sup||A"ej||% < € for each € > 0, from which it follows
n—oo

that || A"e;||» — 0. O

To illustrate the preceding theorem we consider the same matrix
that was used in Section 5:

S OO = =
S OO O
Sw— O O O
RO O O O
[ o B o i e i an B )

Clearly, ||Ae,|| = L for each n > 2, and also A essentially shifts the
vector es. So, from Theorem 6.2, A is quasinilpotent at es.

Also note that an essential shifting alone (i.e., without any addi-
tional assumption) does not imply that A is quasinilpotent at some
ej. For instance, consider, the usual forward shift operator on /o
defined via the matrix

0000 0
1000 0
0100 0

A=10 010 0
00010

Then A essentially shifts every e; but, being an isometry, A fails to
be locally quasinilpotent.

DEFINITION 6.3. We shall say that a matriz A = [a;;] has a cy-
cle starting at column j, if there exist (i1,71), (i2,52),- - - » (i, k)
satisfying the following conditions:

L oji=JJ2=1%,J3=12,--- ,Jk = k1,
2. ix = ju, for some 1 <v <k, and

3. Gipjm 0 forall 1 <m <k
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Let us notice immediately the following two simple facts:

a. If a;; # 0 for some 4, then (4,7) is a cycle for A starting at
column 7. In particular, if A does not have a cycle starting at
column j, then a;; = 0.

b. More generally, if a;; # 0 and a; # 0, then (4, ), (4,7) is a cycle
for A starting at column j.

LEMMA 6.4. Let a non-negative matriz A have a cycle, say

(ilajl)a ey (ikajk)

with j1 = 7 and iy = j, for some 1 < v < k. Then there exists
some constant ¢ > 0 such that for each 1 < r < k there exists some
1 <m <k satisfying Ae;, > cej,.

Proof. Let (i1,j1),--- ,(ik,jx) with j1 = 7 and i = j, for some
1 < v < k be a cycle of A starting at column j and let us put
c= min{awr: 1<r< k} Clearly, ¢ > 0.

If 1 <r <k, then Aejr > @;,j,€, = @;,j,€j,., > cej_,. For
r = k, note that Aejk > iy, 5, €if, = Gy, 5, €5, > cej,. |

COROLLARY 6.5. If a non-negative matriz A: £, — £, has a cycle
starting at some column j, then A cannot essentially shift e;.

The converse of Corollary 6.5 is not true. That is, there exist
non-negative matrices that do not essentially shift some e; but nev-
ertheless have no cycles starting at column j. Here is an example.

ExAMPLE 6.6. Consider the positive operator A: £, — £, whose ac-
tion on the basic vectors is as follows:

1. Ae; = Jes+ te5 + se7+--- = (0,0,3,0,1,0,%,...),
2. Ae3:e2,
3. Aegk = €212 for k = 1,2, [P and

4. Ae2k+1 = €9k_1 for k = 2, 3, [P
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A moments’ thought reveals that A is the following matrix

[0 00000000 -]
001000000
£ 00010000
0 10000O0GO0O
A_iooooaloo
=10 00100000
£ 00000001
0 00001000
L 00000000

Next notice that [|A"e1ll, = (3052, 2%,,)% = ¢ > 0 holds for each n.
This implies that A is not quasinilpotent at e;. Moreover, observe
that (A™e1)e # 0 for all n > 2, and this shows that A does not
essentially shift e;. Finally, a straightforward verification shows that
there is no cycle starting at column 1 (and, as a matter of fact, no

cycle starting at any other column either). O

COROLLARY 6.7. If a non-negative matriz A = [a;;]: £, — £, is
quasinilpotent at some vector e;, then there is no cycle starting at
column j.

Proof. Assume by way of contradiction that A has a cycle starting
at column j, say (i1, 71),--- , (ig, jk) with j1 = j and iy = j, for some
1<v<k.

By Lemma 6.4 there exists a constant ¢ > 0 such that for each
1 <7 < k there exists some 1 < m < k satisfying Ae; > cej,,. Now
an easy inductive argument shows that for each n there exists some
index m, such that 1 < m, <k and A"e; > c"e;, . This implies
||A"ej||% > ¢ > 0 for each n, and so A is not quasinilpotent at e;, a
contradiction. So A has no cycle starting at column j. O

In view of Lemma 6.1, the preceding corollary implies also the
following.

COROLLARY 6.8. If a non-negative matriz A = [a;j]: €, — £p has a
cycle starting at each column j (in particular, if every diagonal entry
of A is positive), then A is quasinilpotent at no positive vector.
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Related to the cycle concept is the notion of a path, which is
introduced next.

DEFINITION 6.9. Let A = [a;] be a matriz, and let (r,s) and (u,v)
be two pairs of natural numbers. We shall say that A has a path
from (r,s) to (u,v) provided there exist (i1, 1), (32,752),--- , (%K, Jk)
satisfying the following conditions:

L. (Iilajl) = (T‘,S) and (Zka]k) = (’U,,’U),
2. jo =11,J3 =12,... ,Jk = fg_1, and
3. a;,j, #0 for eachn=1,2,... k.

We shall say that there is o path joining column s to column v if
for some r and u there exists a path from (r,s) to (u,v).

The reader should notice immediately the difference between a
path and a cycle: A cycle is automatically a path. But a path
(41,71), (i2,72)5 - , (ik, Jx) is a cycle if and only if 75 = j, for some
1<v<k.

LEMMA 6.10. Let A = [ai;]: £y — £, be a matriz. If, for some n,s
and r we have (A"es), # 0 and Ae, # 0, then there is a path joining
column s with column r.

Proof. The proof is by induction on n. For n = 1, we have (Ae;), =
ars 7 0 and (Ae;), = a,, # 0 for some v. Then (r, s), (v,r) is a path
joining column s to column 7. For the induction step, assume that
our claim is true for some n > 1 and suppose that (A""le,), # 0
and Ae, # 0.

Let A"e; = Y07 Aue,. Then A™le, = 3707 A\, Aey,. Since
(A™tley), # 0 there exists some m such that A, # 0 and (4e,,), =
arm # 0. In particular, we have Ae,, # 0. Moreover, from A"e; =
> i1 A€y, we see that (A"e;), # 0. So, by our induction hypoth-
esis, there exists a path

(r,s), (i2,7),--- , (M, Jr—1), (ig, m)

joining column s to column m. Now note that if (de,); = a4 # 0,
then

(rys), (t2,7)y -, (M, Jr—1), (r,m), (t,7)
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is a path joining column s to column r. U

As noticed before, if a matrix A = [a;;] has no cycle starting
at some column j, then the (j,j) entry of A is zero, i.e., a;; = 0.
Moreover, as we shall see next, in this case every (7, j) entry of each
power of A is also zero.

LEMMA 6.11. If a matriz A = [a;;] defines a bounded operator on
some £p-space and has no cycle starting at some column j, then

(A"%;); =0 forall n=1,2,...

Proof. Assume that A has no cycle starting at column j. In par-
ticular, this implies that (Ae;); = aj; = 0. Now assume by way of
contradiction that (A"e;); # 0 for some n, i.e., assume that the set
J={n: (A"e;); # 0} is non-empty. Let K = minJ. Since 1 ¢ J we
have kK > 1. Now consider the vector v = Ak_lej = Z;’no:l Am€m.-
Then Av = AFe; = 3°%°_| )\, Aey,, and so

3 An(den); = (Z )\mAem)j = (Ake;); #0.
m=1 m=1

This implies that for some m we have
Am #0 and (Aep); =ajm #0.

Since (A¥1e;), = A, # 0 and (Aey,); # 0, Lemma 6.10 guarantees
that there is a path joining column j and column m, say

(Taj)’ (iQ’T)a SN (maj&‘—l)a (i87m) -

But then (r,j), (42,7),.-. ,(m,js—1), (j,m), (r,j) is a cycle starting
at column j, a contradiction. Hence (A"e;); = 0 for all n. O

To illustrate the developed theory we shall present two invariant
subspace theorems in terms of cycles of the matrices defining the
operators.

THEOREM 6.12. If a matriz A defines a bounded operator on some
£y-space and has a column with no cycle starting at that column, then
A has a non-trivial closed invariant subspace.

If, in addition, A is a positive operator, then the non-trivial closed
A-invariant subspace can be taken to be an order ideal.
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Proof. Assume the matrix A = [a;;] defines a bounded operator on
some /,-space and that there exists a column j with no cycle starting
there. From Lemma 6.11 we know that (A"e;); = 0 for all n.

If Ae; = 0, then V = {ae;: « scalar} is a non-trivial closed
invariant ideal for A. So, we can assume that Ae; # 0.

Next, let V' denote the closed vector subspace generated by the
set {Ae;,A%ej,...}, ie., V = span{Ae;, A%e;, Adej,...}. Since
Aej # 0 and Ae; € V, we see that V # {0}. On the other hand, it
follows from (A"e;); = 0 (n = 1,2,...) that every z € V satisfies
z; = 0 and consequently V' # £,. That is, V is a non-trivial closed
subspace of £,. Clearly, V' is A-invariant.

Now assume that A is also non-negative and let W denote the
ideal generated by V. That is,

W = {x € ¢p: 3¢ >0 and m such that |z| < cZAiej}.

i=1

Finally, if z € W, then pick ¢ > 0 and m satisfying |z| < c}.1" | A'e;
and note that

m ) m+1 )
|Az| < Alz| < CZAZ"Hej <c Z Ale;.
i=1 i=1

This shows that W is A-invariant and hence the closed order ideal
generated by V (which is the norm closure W of W) is also A-
invariant. Now notice that every x € W satisfies z; = 0, and so w
is a non-trivial A-invariant ideal. O

Since (by Corollary 6.7) every non-negative matrix which is quasi-
nilpotent at some vector e; has no cycle starting at column j, our
Theorem 6.12 should be viewed as a generalization of the results in
Section 5. Now, we are ready to prove a general invariant subspace
theorem.

THEOREM 6.13. If a matriz A defines a reqular operator on some
Ly-space and has a column with no cycle starting at that column,
then A has a non-trivial closed invariant order ideal.

Proof. Assume that the matrix A = [a;;] has no cycle starting at
some column j. Then its modulus matrix [A| = [|a;;|] does not have
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a cycle starting at column j either. By Theorem 6.12 there exists a
non-trivial closed order ideal V' which is |A|-invariant. But if z € V,
then |z| € V and so from |Az| < |A||z| € V, we see that Az € V.
That is, V is also A-invariant. O

Since every bounded operator on £; has a modulus (see [14, The-
orem 15.3, p. 249]), we immediately have the following consequence
of the preceding result.

COROLLARY 6.14. If a matriz A defines a bounded operator on ¢y
and has a column with no cycle starting at that column, then A has
a non-trivial closed invariant order ideal.

7. Spaces with a Schauder basis

A subset C of a (real or complex) vector space X is said to be a
cone whenever C + C C C, aC C C for each real o > 0, and
Cn(—C) = {0}. Every cone C determines a partial order > on X by
letting y > x whenever y—z € C; in particular C = {z € X: z > 0}
and the elements of C' are referred to as positive vectors. The
notation z < y is, of course, equivalent to y > z. A (partially)
ordered vector space (X, C) is a vector space X equipped with
a cone C. For a detailed account about cones and partially ordered
vector spaces, we refer the reader to [49]. In our presentation in this
section we follow [5].

As usual, an operator T: X — X on an ordered vector space
(X,C) is said to be positive if Tz > 0 for each z > 0. For a
positive operator T, it follows that Ty < Tx whenever y < z holds.
The notation 7' > S means T' — § > 0, or equivalently 7'z > Sz for
each z > 0.

Recall that a sequence {z,} in a Banach space X is called a
Schauder basis (or simply a basis) of X if for every z € X there ex-
ists a unique sequence of scalars {ay, } such that £ =37 | apz, (the
convergence of the series is in the norm topology on X). Associated
with the basis is the standard sequence of “coefficient functionals”
fn (n=1,2,...) defined by

)
Jo(z) = o for -’E:ZaiiviEX.
=1
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Obviously each f, is a linear functional on X, and, as is well known
(but not trivial), each of these functionals is continuous, i.e., f, € X'
for each n. Notice that f,(zp) = dpm-

Every basis {z,} gives rise to a closed cone C defined by

o
C:{m:Zanxn: ap, >0 for each n:1,2,...}.

n=1

The cone C' will be referred to as the cone generated by the basis
{zn}. (Exercise: use the continuity of the coefficient functionals to
show that C' is indeed closed.) Observe that each f, is automatically
positive with respect to the cone generated by the basis {z,}. For
an extensive discussion concerning the cone generated by a basis see
[56]. It should be pointed out that the ordered Banach space (X, C)
defined this way is not a Banach lattice in general. (For this to hap-
pen the basis generating the cone should be much “nicer” than just
a mere Schauder basis. Namely, the basis should be unconditional,
and in this case, after an equivalent renorming, we get a discrete
Banach lattice with order continuous norm.)

An operator T: X — X on a Banach space with a basis {z,} is
said to be positive (with respect to this basis) if T(C) C C, where
C is the cone generated by {z,}.

As soon as a basis for a Banach space X is fixed, every operator
T: X — X can be identified in the usual manner with an infinite
matrix [t;;]. In this context, we can also say that an infinite matrix
[tij] defines an operator on X. Note that an operator 7: X — X
with matrix [¢;;] is a positive operator if and only if ¢;; > 0 holds for
each pair (4,7). If the basis {z,} is also unconditional, then every
positive operator is automatically continuous; see [2, Corollary 2.5,
p. 4] or [14, Theorem 12.3, p. 175].

We are now ready to extend the results from Section 5 to oper-
ators acting on a Banach space with a basis. If a basis is specified,
then all notions of positivity are understood with respect to the cone
generated by this basis. As we shall show, the order structure deter-
mined by a basis implies an analogue of Theorem 5.1. We want to
emphasize that since the ordered Banach spaces we are dealing with
now are not, in general, Banach lattices, the results in this section
need direct proofs and cannot be deduced from similar results valid
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for Banach lattices.

THEOREM 7.1. Let T: X — X be a continuous positive operator on
a Banach space with a basis. If T commutes with a non-zero positive
operator that is quasinilpotent at a non-zero positive vector, then T
has a non-trivial closed invariant subspace.

Proof. Let {z,} be a basis of the Banach space X and let {f,} be
the sequence of coefficient functionals associated with the basis {z, }.

Assume that the non-zero positive operator A: X — X satisfies
TA = AT and is qulasinilpotent at some non-zero positive vector
Yo, i€, nli_)nolo”AnyOHE = 0. If Ayp = 0 then the kernel of A is a
non-trivial closed subspace that is invariant under 7. Thus, we can
suppose that Ayg is non-zero. By an appropriate scaling of yg, we
can assume that 0 < zp < yo and Az # 0 for some k.

Now let P: X — X denote the continuous projection onto the

vector subspace generated by zj, defined by P(z) = fi(z)zg. Clearly,
0 < Pz < z holds for each 0 < z € X. We claim that

PT™Az, =0 (%)

for each m > 0. To see this, fix m > 0 and let PT™ Az, = axy
for some non-negative scalar o > 0. Since P is a positive operator
and the composition of positive operators is a positive operator, it
follows that

0 < OtniL'k = (PTmA)n.’I,‘k < (TmA)n.Z‘k = TmnAniL‘k < TmnAn’y().
(The “natural” desire to say that the previous inequality implies the
inequality o™||zg|| < ||T™"A™yq|| would be wrong since the norm
need not be monotone.) The trick is to use the fact that fj is a
positive linear functional, and so the above inequality yields

0<a” = fe(a"z) < fir (T AMyo).

Consequently, 0 < o™ < || fx|| HT”mn . HA"yOH, and so

0< o< |l |TI™ - [ A" 50|l
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From nli_)IgoHA"yOH% = 0, we see that @ = 0, and thus condition (%)
must be true.

Now consider the linear subspace Y of X generated by the set
{TmAa:k: m=20,1,... } Clearly, Y is invariant under 7" and since
0 # Az, € Y, we see that Y # {0}. From (%) it follows now that
fe(T™Azy)x = P(T™Axy) = 0, so that fi,(T™Axy) = 0 for each m.
This implies fx(y) = 0 for each y € Y, and consequently fx(y) =0
for all y € Y. The latter shows that Y is a non-trivial closed vector
subspace of X that is invariant under the operator T', and the proof
is complete. O

COROLLARY 7.2. Let X be a Banach space with a basis. If T is a
continuous quasinilpotent positive operator on X, then T has a non-
trivial closed invariant subspace.

As before, we can add arbitrary weights to the matrix represent-
ing a quasinilpotent positive operator and still be guaranteed that a
non-trivial closed invariant subspace exists.

THEOREM 7.3. Let X be a Banach space with a basis. Assume that a
positive matriz A = [a;j] defines a continuous operator on X that is
quasinilpotent at a non-zero positive vector. If for a double sequence
{wi;} of complex numbers, the weighted matriz B = [wijaij] defines
a continuous operator B on X, then the operator B has a non-trivial
closed invariant subspace.

Proof. Let {z,} be a basis of the Banach space X, and let {f,} be
the sequence of coefficient functionals associated with the basis {z, }.

1
Assume that the positive operator A satisfies lim ||A”y0H n = () for
n—r00

some positive non-zero vector yo. An appropriate scaling of yo shows
that there exists some k satisfying 0 < zp < yo. If Az, = 0, then
an easy argument shows that Bz = 0, and thus the kernel of B is
a non-trivial closed invariant subspace (here we assume, of course,
that B # 0). Thus, we can suppose that Azy is non-zero.

Now let P: X — X denote the positive projection defined by
P(z) = fr(z)zk. Arguing as in the proof of Theorem 7.1, we can
establish that PA™x; = 0 for each m > 1. In particular, we have
fr (Amxk) = (0 for each m > 1. Consequently, for each m > 1 and for
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each positive operator §: X — X satisfying 0 < § < A™ we have
0 < fi(Szk) < fre(A™ay) = 0. (%)
Next, consider the vector subspace Y generated by the set
{S.’Bk: 3 S such that 0< S5 <A™ for some m > 1}.

Clearly, Y is invariant under each operator R satisfying 0 < R < A.
Also, from (%), it follows that

fe(y) =0

for all y € Y. The latter shows that Y is a non-trivial closed vector
subspace of X that is invariant under each operator R: X — X
satisfying 0 < R < A.

Next, consider the operator A;; defined by A;;(z;) = a;jz; and
A;j(zm) = 0 for m # j. Since the operator satisfies 0 < A;; < A, it
follows that Y is invariant under each of the operators A;;. Therefore,
the vector subspace Y is invariant under the operators

B, = Z Z wiinj.

i=1 j=1

However, the sequence of operators { B, } converges in the strong
operator topology to B. Therefore, B(Y) C Y holds, and thus, the
operator B has a non-trivial closed invariant subspace. O

COROLLARY 7.4. Let X be a Banach space with a basis. Assume
that a positive matriz A = [a;;] defines a continuous operator on X
which is quasinilpotent at a non-zero positive vector. If a continuous
operator T: X — X is defined by a matriz T = [t,—j] satisfying
tij = 0 whenever a;; = 0, then the operator T has a non-trivial
closed invariant subspace.

As mentioned earlier, if a Banach space X has an unconditional
basis, then (up to an equivalent norm) X is a discrete Banach lattice.
Therefore, some of the results obtained in Section 5 are special cases
of the results obtained here.
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There exists one more concept of a basis which is weaker than the
notion of Schauder basis. We mean the so called Markushevich basis
or, to be more precise, a variety of Markushevich bases depending on
the additional conditions imposed on the system of vectors (see for
example [56]). It would be interesting to investigate to what extent
the results of this section can be generalized to positive operators on
a Banach space with some type of a Markushevich basis.

We conclude with an important open question. Consider a quasi-
nilpotent operator on a Banach space with a basis. Suppose we do
not assume that the operator is positive with respect to this basis.
At first glance, it appears that our invariant subspace theorems do
not apply. However, if one considers a change of basis, then the
operator might become positive with respect to the new basis, and
therefore, it would have a non-trivial closed invariant subspace. Here
is a simple example that illustrates this point. Consider the operator

2 1
=[5
on IR? with the standard basis e; = (1,0), ez = (0,1). If we intro-

duce the new basis e; + €2, €1 — €9, then it is trivial to verify that
in this basis the operator 7" has the matrix representation

o

and, as we see, in this basis the matrix of the same operator T' posi-
tive. It would be very interesting to find out when a given quasinil-
potent operator on a Banach space with a Schauder basis (in partic-
ular, on a Hilbert space) can be made positive with respect to some
basis. This problem seems to be open even for finite dimensional
spaces.

8. Lomonosov’s theorem

In 1973, V. I. Lomonosov [42] proved the following remarkable the-
orem.

THEOREM 8.1 (LOMONOSOV). If a continuous operator T on a Ba-
nach space commutes with an operator S which is not a multiple of
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the identity, and S in turn commutes with a non-zero compact op-
erator, then the operator T has a non-trivial closed hyperinvariant
subspace.

We will prove below a somewhat weaker version of this result
using a very simple and elegant proof found by H. M. Hilden and
presented in [45]. This version is strong enough to imply immediately
the Aronszajn—Smith theorem. The proof of Theorem 8.1 can be
found in [42] or [50].

THEOREM 8.2 (LomMONOSOV). Let K: X — X be a non-zero com-
pact operator on a Banach space. Then K has a non-trivial closed
hyperinvariant subspace.

Proof. If K has any eigenvector xy, that is, Kxzqg = Azg for some
A € C, then the closed proper subspace Ny = {z € X : Kz = Az} is
K-hyperinvariant.

Therefore we can assume that the operator K has no eigenvectors
and so, by the Fredholm theorem, K is quasinilpotent, and thus
r(K) = lim||K™||*/™ = 0. This implies that lim||(cK)"|| = 0 for
any scalar c. Since the existence of an invariant subspace for any
operator is obviously independent of the norm of that operator, we
can assume that || K| = 1.

For each z # 0 consider the linear subspace X, generated by the
action of the commutant of K on z, ie., X, = {Tz : T € {K}'}.
It is easy to see that T(X,) C X, for each T € {K}'. Therefore, if
there exists at least one z # 0 for which X, is not dense in X, then
the norm closure X is the required closed nontrivial hyperinvariant
subspace of K. To finish the proof we will show that the assumption

X, =X foreach z#0 (%)

contradicts the condition r(K) = 0.

Fix any zp € X with |[Kzy|| > 1 and consider the closed unit
ballU = {z € X: |z —x¢|| <1} centered at zy. Since ||K|| =1 and
|| Kzo|| > 1, we have

0¢U=U and 0¢K(®). (%)

In view of (x) we know that for each z # 0 there exists an operator
T € {K} suchthat Tz € U, i.e., |[Tz—1x|| < 1. Consequently, when
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T runs over {K}' the open sets Ur = {y € X : |Ty — || < 1} cover

X \ {0} and, in particular, the compact set K(U). Consequently, we
can find a finite number of operators T1,... ,T,, € {K} such that

n
K(U) C U Ur;. Let ¢ = max{[|T}|| : 1 < j < n}.
j=1
Since Kzo € K(U) there exists ji such that Kzq € Ur, , and
thus zy = T;,Kzq € U. Then Kz € K(U) and so there is jp
such that o = Tj, Kz, € U. After m steps we produce the indices
J1,92,-- > Jm € {1,2,... ,n} such that z,, =T} Kz,—1 € U. Re-
calling that each operator T} commutes with K we can rewrite the
previous expression for z,, as follows:

Tm = T Ty o T K™ o
= (T ) (€ Typsy) o (71T, ) (K) M2 €U
Since |lc™'T;, || < 1 for each k = 1,...,m and since ||(cK)™| — 0

as m — oo we get ||zp,| — 0, contrary to the first condition in (%x).
This contradiction proves that X, cannot be dense for all z # 0, and
the proof is finished. O

COROLLARY 8.3. Fvery continuous operator which commutes with
a non-zero compact operator has a non-trivial closed invariant sub-
space.

Proof. Let T: X — X be a continuous operator which commutes
with a non-zero compact operator . Now we can apply to K the
previous theorem. O

There exists extensive literature devoted to various generaliza-
tions of Lomonosov’s theorem; see for example [47, 48, 50]. From
the multitude of existing results, we will mention here only one,
which can be found in several places: [47, Theorem 7.17], [24, The-
orem 2] and [33] (see also [38, 39]). This result is of special interest
to us since it suggests many possible generalizations to operators on
Banach lattices.

THEOREM 8.4. If T: X — X is a non-scalar continuous operator
on a Banach space and there exists a non-zero compact operator
K: X — X such that TK = AKT for some scalar X\, then T has a
non-trivial closed hyperinvariant subspace.
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9. The dominance property

We start with the definition of a property which is slightly more
general than the usual order relation between operators on Banach
lattices.

DEFINITION 9.1. Let T,B: E — E be two operators on a Banach
lattice with B positive. We say that the operator T is dominated
by the operator B provided

|T(2)] < B(|a])
for each x € E.

It should be clear that every operator dominated by a positive
operator is automatically continuous, and that a positive operator T’
is dominated by another positive operator B if and only if 0 < T < B.
When FE is order complete, an operator T' is dominated by a positive
operator B if and only if T' is regular and |T'| < B holds. Here we use
the fact that every regular operator 7" on an order complete Banach
lattice has a modulus |T'| which is given by Kantorovich’s formula

|T|(z) = sup{|Ty|: |y| <z}, z€ET.

Operators dominated by compact positive operators enjoy many
remarkable properties one of which is stated in the next theorem. It
was proved in [13] for real Banach lattices; the proof for the complex
case can be derived easily from the real one.

THEOREM 9.2 (ALIPRANTIS-BURKINSHAW). If in the scheme of con-
tinuous operators E 25 F My G M3 H between (real or complex)

Banach lattices each operator M; is dominated by a compact positive

operator, then MsMyM; is a compact operator.

In particular, if an operator T: E — FE on a Banach lattice is
dominated by a compact operator, then T2 is compact.

Recall that a vector subspace J of a Banach lattice E is said to
be an (order) ideal if |z| < |y| and y € J imply that z € J. For each
0 < u € E the principal ideal E, generated by u is the ideal

E,={z € E: 3> 0 such that |z| < \u}.
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A positive element u € E is called a quasi-interior point whenever
E, is norm dense in E, i.e., E, = E.

The next result deals with domination properties of multiplica-
tion operators and will be useful in our study.

LEMMA 9.3. For a Banach lattice with a quasi-interior point u > 0
the following properties hold.

1. For every non-zero element y € E, there erists an operator
V: E — E which carries y to a non-zero positive vector and V
is dominated by the identity operator, i.e.,

V(y) >0 and |V(z)| <|z| forall z€E.

2. For every element v satisfying 0 < v < u there exists an op-
erator U: E — E which carries u to v and U is dominated by
the identity operator, i.e.,

U(u)=v and |U(z)| <|z| forall z € E.

Proof. Let u > 0 be a quasi-interior point in a (real or complex)
Banach lattice E. By the well known Kakutani—Krein representa-
tion theorem (see for instance [14, Theorem 12.28]), there exists a
compact Hausdorff space Q such that E, is lattice isomorphic to
the space C(2) of all continuous functions on €2, and the element v
corresponds to the constant function one on €.

(1) Now fix y € E, with y # 0 and view y as a continuous
function on Q. By scaling appropriately, we can suppose that ||y||c =
max{|y(w)|: w € Q} = 1. Now consider the function § € C(Q)
(the complex conjugate of y) and denote by V' the multiplication
operator defined by the function y on C(Q2) (and hence on E,,). That
is, V(z) = yz for each z € C(Q). Clearly, V(y) = |y|*> > 0 and
|[Vz| < |z| holds for each z € E,. Since E, = E, the (unique)
continuous extension of V' to FE satisfies the desired properties.

(2) Again, as above, we view v as a continuous function on 2 and
consider the multiplication operator U defined on C(f2) (and hence
on E,) by v, i.e, U(z) = vx for each z € C(Q2). Clearly, U(u) = v
and |Uz| < |z| for each z € E,. The (unique) continuous extension
of U to all of E also satisfies |[Uz| < |z| for each z € E. O
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We shall close the section by stating two useful results concern-
ing invariant subspaces of operators that are dominated by positive
operators. We shall say that an operator 7" is polynomially dom-
inated by a positive operator B whenever there exists a polynomial
p(t) = ant™ + ap_1t" "' +- - - + a1t + ag with non-negative coefficients
such that p(B) dominates 7T'.

LEMMA 9.4. Let J be an ideal in o Banach lattice E. If J is invari-
ant under some positive operator B: E — E, then J is also invariant
under every operator T which is polynomially dominated by B.

Proof. Let p(t) be a polynomial with non-negative coefficients such
that p(B) dominates 7. If z € J, then |T'z| < p(B)(|z|) € J implies
that Tz € J, that is, J is T-invariant. O

Not every ideal is principal. However, as the next lemma tells
us, each closed invariant ideal is “saturated” with invariant principal
ideals.

LEMMA 9.5. If J is a non-trivial closed ideal which is invariant un-
der a positive operator B: E — E, then J contains a non-trivial
principal ideal which is also invariant under B.

Proof. By scaling appropriately, we can assume that ||B|| < 1. Fix
an arbitrary 0 < w € J and let u = >_>° ) B"(w). Since J is a closed
B-invariant ideal, we see that u € J. Therefore, E, C J and (since
u > 0) E, # {0}. It remains to verify that E,, is B-invariant. To see
this, take any = € E satisfying |z| < Au. Then

o
|Bz| < B(Jz]) < AB(u) =AY B" ! (w) < A,
n=0
and so Bz € E,,. O

10. Invariant subspace theorems for positive operators

We now come to our first basic result which describes a new large
class of operators with non-trivial closed invariant subspaces. The
proof below utilizes the order structure of Banach lattices and is
inspired by M. Hilden’s proof of Lomonosov’s Theorem presented in
Section 8.
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THEOREM 10.1. Let B: E — E be a positive operator on a Banach
lattice. Assume that there exists a positive operator S: E — E such
that

1. SB < BS (in particular, this holds if S commutes with B),

2. S is quasinilpotent at some xo > 0, i.e., ||S":v0||% =0,

lim
n—oo
and

3. S dominates a non-zero compact operator.

Then the operator B has a mnon-trivial closed invariant subspace.
Moreover, we can choose this invariant subspace to be the closure
of a principal ideal in E.

Proof. Let B, S, and z( satisfy the properties stated in the theorem,
and let K be a non-zero compact operator dominated by S, i.e.,
|K(z)] < S(|z|) for each z € E. Obviously we can assume that
|B|| < 1. Then the series A = )2 ; B" defines a positive operator
on E, and in view of the first condition on S, the inequalities SB* <
BFS and SAF < A% S hold for each k.

For each z > 0 we denote by J[z]| the principal ideal generated
by Axz. That is,

J[z] = {y € E: |y| < XAz for some X > 0}.

Since z € J[z], note that J[z| is non-zero. Moreover, we claim that
J[z] is B-invariant. Indeed, if y € J[z], then |y| < AAz for some
A > 0, and so

o
|By| < Bly| < AB(Az) =AY B"z < Au,
n=1

which implies By € J[z]. So, J[z] is a non-zero closed B-invariant
ideal.

The proof will be finished, if we show that m # FE for some
z > 0. To establish this, assume by way of contradiction that

Jz]=E foreach z>0. (%)
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Now, we claim that without loss of generality, we can suppose
Kz # 0. To see this, consider the ideal J[zg]. If K(y) = 0 for
each 0 < y € J[zg], then K = 0 on J[zy], and consequently by
(%), we get K = 0, a contradiction. Therefore, K(yg) # 0 for some
0 < yo € J[zg]- Since S is quasinilpotent at zyp and 0 < yo < kAzg
for some k, it is easy to verify that S is also quasinilpotent at .
Now, replacing (if necessary) zy by 39, we can assume K (zg) # 0.

By scaling, we can also assume ||K|| = 1. Also, replacing zy by
azg for an appropriate scalar a > 1, we can suppose that ||zg] > 1
and ||Kzol| > 1. Now let U = {z € E: ||zg — 2|| < 1} be the closed
unit ball centered at ¢ > 0. By our choice of zy, we have

0¢U and 0¢ K(U). (%)

By (%), we know that J[|z|] = E for each = # 0. Hence, for each
element y > 0 the sequence {y A nA(|z|)} is norm convergent and
lim, 00 ¥y A nA(|z]) = y; see [14, Theorem 15.13]. In particular, for
each = # 0 there exists some n such that ||zg — z¢ A nA(|z|)|| < 1.
Since the function z — o A nA(|z|) is continuous, we see that the
set {z: |lzo — zo A nA(|z])|| < 1} is open for each n. In view of

0 ¢ K(U), the above arguments guarantee that

KU) C | J{z€BE: |zo—zo AnA(2])]| <1}

n=1

Since the sets {z: |lzg — zo A nA(|z])|] < 1} are increasing as n

increases, the compactness of K (U) implies that
K({U) C{z€E: |zo—z0 AmA(|2])| <1}

for some m. In other words, there exists some fixed m such that
xz € K(U) implies 2o A mA(|z|) € U.

In particular, we have z1 = z9 A mA(|Kzy|) € U. Since K(z1)
belongs to K(U), it follows that zo = 9 A mA(|Kz1|) € U. Pro-
ceeding inductively, we obtain a sequence {z,} of positive vectors in
U defined by z,+1 = 2o A mA(|Kzy,|). Now we claim that
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holds for each n. The proof is by induction. For n = 1, we have
the inequality z; = 2o A mA(|Kx0|) < mA(Szg). For the induction
step, recall that SA™ < A™S and that if 0 < z, < m"A"S™(x0)
holds for some n, then

0 < zpt1 =20 AmA(|Kzy|) < mA(|Kzy,|)
< mA(Sz,) < m"TTA(SATS™ () < mMTTAMTLST ().

Thus, we have ||z,|| < m"||A||"]|S™ x|, and so
1 1
[[zn[[= < m|lA]l - 15" zo]|»

for each n. Since lim ||S":C0||% =0, it follows that lim ||a:n||% =0,
n—0o0 n—0o0

and consequently li_)m |zn|| = 0. However, since {z,} C U, this
n—0o0

implies 0 € U = U, contrary to (%), and the proof of the theorem
is finished. O

It should be pointed out that Theorem 10.1 generalizes Theo-
rem 4.1 in [4]. The difference is that here we have replaced the com-
mutativity condition SB = BS by the weaker assumption SB < BS.
It would be very interesting to investigate in which of the subsequent
results we can replace commutativity by some kind of inequality. An
interesting paper by V. Caselles [25] may be of use for this purpose.

As in Section 5, we do not know presently if an analogue of the
previous result holds true provided that we replace the inequality
SB < BS by the reverse inequality SB > BS. However, if we
assume in addition that S is quasinilpotent (rather than just being
locally quasinilpotent) then, as we shall show next, such an analogue
does hold. Though the proof is quite similar to that of Theorem 10.1
we present all the details to see the differences.

THEOREM 10.2. Let B: E — E be a positive operator on a Banach

lattice. Assume that there exists a positive operator S: E — E such
that

1. SB > BS,
2. S is quasinilpotent and

3. S dominates a non-zero compact operator.
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Then the operator B has a mon-trivial closed invariant subspace.
Moreover, we can choose this invariant subspace to be the closure
of a principal ideal in E.

Proof. Let B, S satisfy the properties stated in the theorem, and
let K be a non-zero compact operator dominated by S, that is,
|K(z)| < S(|z]) for each z € E.

Obviously we can assume that ||B|| < 1. Then the convergent
series A =) >°  B" defines a positive operator on E, and in view of
the first condition on S, the inequalities B¥S < SB* and AS* < §*A
hold for each k.

For each z > 0 we denote by J[z| the principal ideal generated
by Axz. That is,

J[z] = {y € E: |y| < Az for some X > 0}.

Since z € J[z], note that J[z] is non-zero. Moreover, we claim that
J[z] is B-invariant. Indeed, if y € J[z], then |y| < AAz for some
A > 0, and so

o
|By| < Bly| < AB(Az) = XY B"z < M,
n=1

which implies By € J[z]. So, J[z] is a non-zero closed B-invariant
ideal.

The proof will be finished, if we show that m # FE for some
z > 0. To establish this, assume by way of contradiction that

J[z] = E for each z > 0. (%)

Since K # 0 we can find some zy > 0 for which Kxy # 0. By
scaling, we can assume ||K|| = 1. Also, replacing zo by azy for
an appropriate scalar ¢ > 1, we can suppose that ||zo|| > 1 and
|Kzo|| > 1. Now let U = {z € E: |lzo — z|| < 1} be the closed unit
ball centered at zg > 0. By our choice of zy, we have

0¢U and 0¢K(U). (%)

By (%), we know that J[|z|] = E for each z # 0. Hence, the
sequence {yAnA(|z|)} converges in norm and limy, o yAnA(|z]) = y
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for each y > 0. In particular, for each x # 0 there exists some n such
that ||zg — 2o AnA(|z|)|| < 1. Since the function z — o AnA(|z|) is
continuous, we see that the set {z: ||z — 2o AnA(|2])|| < 1} is open

for each n. In view of 0 ¢ K(U), the above arguments guarantee
that

K({U) C U {z € E: ||zg — zo AnA(l2])|| < 1}.

n=1

Since the sets {z: [lzo — zo A nA(|z])|| < 1} are increasing as n

increases, the compactness of K(U) implies that
K(U) C {z € E: |zg — zo AmA(|2])]| < 1}

for some m. In other words, there exists some fixed m such that
z € K(U) implies 2o A mA(|z|) € U.

In particular, we have 1 = 29 A mA(|Kzo|) € U. Since K(z1)
belongs to K(U), it follows that zo = 9 A mA(|Kz1|) € U. Pro-
ceeding inductively, we obtain a sequence {z,} of positive vectors in
U defined by z,+1 = g A mA(|Kzy|). Now we claim that

0 <z, <m"S"A™(z)

holds for each n. The proof is by induction. For n = 1, we have the
inequality 71 = g A mA(|Kxzo|) < mA(Szo) < mSA(zg). For the
induction step, recall that AS* < S* A and note that if the inequality
0 <z, <m"S™A"(xp) holds for some n, then

0<zpt1 = zo AmA(Kzy|) < mA(|Kz,|) < mA(Szy)
< m"TTA(SS"A™(z0)) = m"TTA(SM T A (20))
< mn+15”+1An+1($0).

Thus for each n we have ||z,| < m"||S”||% - |A[|™ - ||zo]|, and so
|znll» < ml|[S™| - | Al - |lzo||. Since lim ||S™||= =0, it follows that
n—00

lim ||z, = 0, and consequently lim ||zn| = 0. However, since
n—oo n—oo

{x,} C U, this implies 0 € U = U, contrary to (%), and the proof
of the theorem is finished. O
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Recall that for a positive operator B: E — E on a Banach lattice
its null ideal Np is defined via the formula

Np = {z € E: B(|z|)=0}.

Clearly, Np is a closed ideal in E and a vector subspace of the null-
space of B. Notice also that B = 0 if and only if Ng = E. We leave
it as a simple exercise to verify that the ideal Np is invariant un-
der every positive operator commuting with B. A positive operator
B: E — FE is strictly positive if £ > 0 implies Bx > 0. Clearly, a
positive operator B is strictly positive if and only if Ng = {0}.

The next result is a strong companion of the two preceding the-
orems. It shows that we can “distribute” properties (2) and (3) in
Theorem 10.1 (previously imposed exclusively on one of the opera-
tors) between the commuting operators.

THEOREM 10.3. Let B,S: E — E be two commuting non-zero pos-
itive operators on a Banach lattice. If one of them is quasinilpotent
at a mon-zero positive vector and the other dominates a mnon-zero
compact operator, then B and S have a common non-trivial closed
invariant ideal.

Proof. Assume that S is quasinilpotent at some point zy > 0, and
that B dominates a non-zero compact operator K. If S is not strictly
positive, then the null ideal Ng is the desired non-trivial common
closed invariant subspace. So, suppose that S is strictly positive.
Without loss of generality, we can also assume that ||B + S|| < 1.
Put A = Y77 ((B+ S)" and let J denote the ideal generated by
A.Z‘(), i.e.,

J = {y € E: 3 X > 0 such that |y| < >\Ax0}.

Clearly, J is a non-zero ideal that is invariant for B + S. Since
0< B,S <S5+ B, Lemma 9.4 implies immediately that this ideal is
invariant under both B and S.

If J # E, then J is a non-trivial closed ideal which is invariant
under both B and S. So, we consider the case J = E. In this case,
since K # 0, there exists some 0 < yo € J such that K(yp) # 0.
Clearly, S remains quasinilpotent at yg.
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Since | K (y0)| < B(yo) € J, it follows from Lemma 9.3 that there
exists an operator V: E — FE satisfying

VK(yo) >0 and |V(z)| <|z| for each z € E.

Now consider the compact operator SVK. Since S is strictly
positive, it follows that SVK(yy) > 0, and so SVK is non-zero.
Moreover, we have

|SVK (z)| < S|VK ()| < S(|K(2)])| < SB(|z]).

Thus, the positive operator SB dominates the non-zero compact op-
erator SVK, is quasinilpotent at yy, and commutes with the positive
operator S + B. By Theorem 10.1, there exists a non-trivial closed
(S + B)-invariant ideal. Clearly, this ideal is invariant under both B
and S. O

COROLLARY 10.4. Let a positive operator B: E — E on a Banach
lattice satisfy the following two conditions:

1. B is quasinilpotent at a non-zero positive vector, and
2. Some power of B dominates a non-zero compact operator.
Then the operator B has a non-trivial closed invariant ideal.

Proof. Apply Theorem 10.3 to B and S = B™, where B™ dominates
a non-zero compact operator. ]

The previous results imply immediately the following theorem
which (being basically equivalent to Theorem 5.6) also implies the
results established in Section 5.

THEOREM 10.5. If a positive operator B: E — E on a discrete Ba-
nach lattice is quasinilpotent at a mon-zero positive vector, then B
has a non-trivial closed invariant ideal.

Proof. As FE is discrete, there exists a set I, such that F is a subspace
of C! and e; = X{i} € E for each 1 € I. If B(e;) = 0 for some
1 € I, then the null ideal Ng is the desired non-trivial closed B-
invariant ideal. So, assume that B(e;) > 0 for each 7 € I. Take
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zo > 0 at which B is quasinilpotent and let ip be any index in [
such that zo(ig) > 0. Consider the operator K = BP, where P
denotes the standard rank-one projection onto the one-dimensional
space spanned by e;,. Clearly, K is compact and 0 < K < B holds.
Now apply Corollary 10.4. O

11. Compact-friendly operators and invariant
subspaces

In the Banach space setting, when we are looking for invariant sub-
spaces of an operator 7', Lomonosov’s theorem tells us the following:
if the commutant of 1" contains a non-zero compact operator K, then
T has a non-trivial closed invariant subspace.

In the Banach lattice setting, when we are looking for invariant
subspaces of a positive operator B the order structure provides new
“dimensions” of bringing compactness into the picture. In our previ-
ous results, we have already seen that compactness enters by means
of the inequality |Kz| < B(|z|). Now we mention several other ways
of how compactness may enter.

i. B may be dominated by a compact operator, or

ii. B may commute with a positive operator which dominates a
compact operator, or

iii. B may commute with a positive operator which in turn is dom-
inated by a compact operator.

And the goal of this section is to show that each of these cases is
“good enough” to guarantee the existence of a (non-trivial) closed
invariant subspace.

To accomplish this, we need to introduce a new notion related
to compactness in terms of the order structure. This notion, in
spite of some cumbersomeness, is much weaker than compactness
and subsumes all the previous cases. This will allow us to extend
Theorem 10.1 considerably.

DEFINITION 11.1. A positive operator B: E — FE is said to be com-
pact-friendly if there exists a positive operator in the commutant
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of B that dominates a non-zero operator which in turn is dominated
by a positive compact operator.

That is, B is compact-friendly if and only if there exist three non-
zero operators R, K,C: E — E with R, K positive and K compact
such that

RB=BR, |C(z)|<R(|z]), and |C(z)|< K(|z|)
for each x € E.

Clearly, every power of a compact-friendly operator is itself com-
pact-friendly. Here are some examples of compact-friendly operators.

e Positive compact operators.

e Positive operators commuting with non-zero positive compact
operators.

e Positive operators that dominate non-zero compact positive
operators.

e Positive operators that are dominated by compact operators.

e Positive kernel operators.

The last three cases are not obvious. Let us discuss them. As-
sume first that 0 < Ky < B, where K is compact. Then the “triplet”
(R, C, K) which is needed to conclude that B is compact-friendly can
be defined as follows: R =B, C' = Ky and K = K.

Assume now that 0 < B < Ky, where K| is compact. Then the
required “triplet” (R,C, K) is the following: R = B, C = B and
K = K.

The proof that each positive kernel operator is compact-friendly
will be given in Lemma 12.1.

And now we come to the main result of this section which is an
invariant subspace theorem for compact-friendly operators.

THEOREM 11.2. If a non-zero positive operator B: E — E is com-
pact-friendly and is quasinilpotent at some xg > 0, then B has a non-
trivial closed invariant ideal. Moreover, if another positive operator
T: E — E commutes with B, then T and B have a common non-
trivial closed invariant ideal.
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Proof. Let B: E — E be a non-zero compact-friendly operator on
a Banach lattice which is quasinilpotent at some zy > 0. Also, let
T: E — FE be another positive operator that commutes with B.
Fix three non-zero operators R,C, K: E — E with K compact and
satisfying

RB = BR, |Cz|< R(|z|), and |Cz|< K(|z|) for each z € E.

Without loss of generality, we can suppose that ||B + T'|| < 1
and define A = >>° (B + T)". Clearly, the positive operator A
commutes with both B and T and satisfies Az > x for each z > 0.
Also, for each z > 0, let J[z] denote the non-zero principal ideal
generated by Az, i.e,

J[z] = {y € E: |y| < Az for some X > 0}.

If J[z] # E for some z > 0, then the ideal J[z] is a non-trivial closed

(B + T)-invariant ideal. This ideal J[z] is, of course, also invariant
under both B and T'. So, we can assume that

Jz] =E

for each z > 0, i.e., Az is a quasi-interior point in E for each z > 0.3

Since C' # 0, there exists some z; > 0 such that Cx; # 0.
Since A|Cz1| is a quasi-interior point and |Czi| < A|Cz1| holds, it
follows from Lemma 9.3(1), that there exists an operator Vi: E — E
dominated by the identity operator such that zo = V1Cz1 > 0. Put
M; = V1C, and note that M; is dominated both by the compact
positive operator K and by the operator R.

From J[z3] = E and C # 0, we see that there exists some element
0 < y < Az such that Cy # 0. Since Azs is a quasi-interior point,
it follows from Lemma 9.3(1) that there is an operator U: E — E
dominated by the identity operator such that U Az, = y. Now note
that the element A|Cy| is (again by our hypothesis) a quasi-interior
point. Since |Cy| < A|Cy|, it follows from Lemma 9.3(2) that there
exists another operator Vo: E — E dominated by the identity oper-
ator such that x5 = VoCy = VoCUAxzg > 0. Let My = VoCU A and

3In the terminology of [1] it means that A is a strongly expanding operator.
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note that M, is dominated both by the positive compact operator
K A and by the operator RA.

If we repeat the preceding arguments with the vector xo replaced
by x3, then we obtain one more operator M3: E — E which satisfies
Msxs > 0 and which is dominated by both the positive compact
operator KA and by the operator RA.

From MsMoMixz1 = Mszs > 0, we see that MsMoM; is a non-
zero operator which (by Theorem 9.2) is also compact. Moreover,
an easy argument shows that

MMy M (z)| < RARAR(|z]) < [RARAR + T)(|z|)

for each = € E.

Now consider the non-zero positive operator S = RARAR + T.
Then B and S commute, S dominates the non-zero compact operator
MsMs M, and B is quasinilpotent at zg. By Theorem 10.3, S and
B have a common non-trivial closed invariant ideal. This ideal is
invariant under both B and T'. O

As we see, both conditions in Theorem 11.2 are imposed on the
same operator, i.e., B is assumed to be both compact-friendly and
quasinilpotent at some positive vector. It is an open and interesting
problem if, as in Theorem 10.3, we can distribute these two properties
between two operators. To be precise, let B and T' be two commuting
positive operators, such that B is compact-friendly and Q; # 0.
Does there exist a non-trivial closed B-invariant subspace, or a T-
invariant subspace, or, even better, a common invariant subspace? It
will be also of interest to find out if we can replace in Theorem 11.2
the commutativity assumption by BT <TB or TB < BT.

We conclude the section by comparing the results of Sections 10
and 11 with the results of Section 5. All results in Sections 10 and 11
depend on some type of explicitly declared compactness of the oper-
ators for which we prove the existence of the invariant subspaces. On
the other hand, the results of Section 5 are free of any compactness.
However, this difference is only ostensible. There is a “hidden” com-
pactness in the case of discrete spaces and exactly this compactness
ties up all the results for discrete and non-discrete Banach lattices
alike. Namely, every positive operator on a discrete Banach lattice
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is automatically compact-friendly, and that is why we did not have
to assume any compactness in Section 5. Though the result is very
simple, we will formulate it below explicitly. Simultaneously, we wish
to point out that this new concept of a compact-friendly operator
is not a universal tool to handle the invariant subspace problem of
every positive operator. (The situation here is similar to that with
Lomonosov’s Theorem 8.1 which does not cover all continuous op-
erators [34, 35].) In [8] we exhibit a positive operator which is not
compact-friendly but which has a non-trivial invariant subspace.

LEMMA 11.3. A positive operator on a discrete Banach lattice is
compact-friendly.

Proof. Let E be a discrete Banach lattice and 0 < B: E — E be a
positive operator. Fix an arbitrary 0 < u € E such that Bu > 0 and
fix an arbitrary m for which the m™® coordinate of Bu is positive.
Consider K = P,, B, where P,, denotes the natural band projec-
tion on the m'™ coordinate. Clearly K is a compact positive oper-
ator (K # 0 since Ku > 0) which is dominated by B. Thus, B is
compact-friendly. O

It is worthwhile to point out that in the above proof we con-
structed a positive compact operator dominated by B. This is bet-
ter than just a non-zero compact operator dominated by B and this
motivates the following open questions.

Let us say for brevity that a positive operator B: E — FE on a
Banach lattice F is “good” (resp. “very good”) if there exists a
non-zero compact (resp. a non-zero positive compact) operator K
which is dominated by B.

e Is every good operator very good?

e Assume that B? is good, is then B? very good?

e Assume that B? is good, is then B (very) good?

e Assume that B? is very good, is then B (very) good?

Similar questions can also be asked if we assume that there exists
a polynomial p with non-negative coefficients such that p(B) is good
or very good.

Finally notice that in general the geometry of the subspace of
compact regular operators of the space of all regular operators is a
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very interesting and important topic, and we refer to [9, 10, 11, 59, 60]
for some recent developments in this area.

12. Invariant subspaces for kernel operators

Now let £ be an order complete Banach lattice with norm dual
E'. Recall that a rank-one operator is any operator of the form
¢ @ u, where ¢ € E', u € E and ¢ @ u(z) = ¢(z)u for each z € E.
Any operator of the form ) | ¢; ® u; is known as a finite rank
operator.

The vector space of all finite rank operators on FE is denoted
by E' ® E. The operators in the band (E' ® E)¢ generated by
E' ® E in the Banach lattice of all regular operators are referred to
as (abstract) kernel operators. The name “kernel operator” comes
from the well known result of G. Ya. Lozanovsky [44] that if E =
Ly,(p), then an operator T': Ly(u) — Ly(u) belongs to (E' ® E)d4 if
and only if there exists a p X u-measurable function T'(-,-) such that
for each f € Ly(u)

L. [|T(,s)f(s)|du(s) € Lp(u) for each f € Ly(p), and
2. Tf(t)= [T(t, s)f(s)du(s) for y-almost all ¢.

For details concerning kernel operators see [61, Chapter 13]. The im-
portant thing to keep in mind is the following property: If T': E — E
is a positive kernel operator, then there exists a net {7}, } of positive
operators such that 0 < Ty, (z) T T'(z) holds for each z > 0, and each
T, is dominated by a positive finite rank operator. In particular, we
have the following result.

LEMMA 12.1. Every positive kernel operator is compact-friendly.

We will prove next that the third power of an arbitrary strictly
positive kernel operator dominates a non-zero compact positive op-
erator (in the terminology of Section 11 this means that the third
power of each strictly positive kernel operator is a very good opera-
tor).

LEMMA 12.2. If S: E — E is a strictly positive kernel operator on
an order complete Banach lattice, then for each element xo > 0 there
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exists a compact positive operator K: E — E satisfying 0 < K < §3
and Kzy > 0.

Proof. Let S: E — E be a strictly positive kernel operator and fix
xzo > 0. So, there exists a net {S,} of positive operators such that
0 < Sy 1 S and each S, is dominated by a positive finite rank
operator. Again, by Theorem 9.2, each S3 is a compact operator.

From Sy,zg T Szg and Szg > 0, we see that there exists some
index a7 such that S,zo > 0 for each @ > «3. Similarly, from
Sa(Sa1Z0) Ta S(Sayzo) and S(Sqa,zo) > 0, we obtain the inequality
Sa(Sa;z0) > 0 for all @ > ay > ap. Finally, from the facts that
So (Sa2 Salwo) Ta S(S’a25a1:1:0) and S(SQQSQI:I:O) > 0, it follows that
Sa (SMSM:EO) >0foralla>as > ay > a.

Now note that if K = ngs’ then K: E — FE is a positive compact
operator satisfying 0 < K < 8% and Kzy > 0. O

And now we are ready to present an invariant subspace theorem
for kernel operators.

THEOREM 12.3. Let S: E — E be a non-zero positive kernel oper-
ator on a Banach lattice and let B: E — E be another non-zero
positive operator commuting with S. If either S or B is quasinil-
potent at a mon-zero positive vector, then the operators S and B
have a common non-trivial closed invariant ideal.

Proof. If the operator S itself is quasinilpotent at a non-zero positive
vector, then S is a compact-friendly operator with a non-trivial set
Q; of positive vectors at which S is quasinilpotent. So Theorem 11.2
is applicable and it guarantees the existence of the required invariant
subspace.

Assume now that Qg is non-trivial, i.e., that the operator B is
quasinilpotent at a non-zero positive vector. Without loss of general-
ity we can assume that S is strictly positive (since otherwise the null
ideal Ng provides at once the required invariant subspace). There-
fore, by Lemma 12.2, the operator S® dominates a non-zero compact
positive operator K. Consider now the operator B+ S+ S3. Clearly
it dominates K and commutes with both S and B. We see now that
B is compact-friendly and Q} is non-trivial. Hence, Theorem 11.2,
applied to B and B + S + S3, guarantees the existence of a common
non-trivial closed invariant ideal for these two operators.
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Since both S and B are dominated by B + S + §3, it follows that
this ideal remains invariant under both S and B. U

T. Andé [16] and H. J. Krieger [41] (see also [1, 29]) proved
that each positive irreducible integral operator on an L,-space has
a positive spectral radius. In the “invariant subspace” terminology
this means that every positive quasinilpotent integral operator has
a non-trivial closed invariant subspace. This was the first result on
the invariant subspace problem in the framework of Banach lattices.

The next corollary, which follows immediately from Theorem 12.3,
improves the And6—Krieger theorem by replacing the quasinilpotence
assumption with quasinilpotence at a single positive vector, and by
removing the assumption of the order continuity of the operator; see
also [1, 29].

COROLLARY 12.4. Each positive kernel operator that is quasinilpo-

tent at a nmon-zero positive vector has a non-trivial closed invariant
ideal.

For the classical Ly-spaces (and, as a matter of fact, for any
Banach function space), the preceding corollary yields the following.

COROLLARY 12.5. Let B: L,(p) — Lp(p) (where p is o-finite and
1 < p < o0) be a positive kernel operator with kernel B(-,-), and let
B be quasinilpotent at a nmon-zero positive function. Then all kernel
operators T': Ly(u) — Ly(p) of the type

Tf(s) = / w(s,)B(s, 1) f(£) du(t), | € Lp(u),

where w(-,-) is an arbitrary bounded u x p-measurable function, have
a common non-trivial closed invariant ideal.*

Proof. Observe that any operator T' defined by a kernel w(-,-)B(-,-),
where w(-,-) is a bounded p X p-measurable function, is dominated
by a multiple of B, and our conclusion follows from Corollary 12.4
and Lemma 9.4. O

*Keep in mind that the closed ideals in L, () are the subspaces of the form
{f € Ly(p): f(t) =0 for p-almost all t € D}

for some p-measurable subset D.
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A positive operator B: E — FE on an order complete Banach
lattice is called a Harris operator if some power of B is not disjoint
from the band (E' ® E)% of kernel operators on E. That is, if
some power of B dominates a non-zero positive kernel operator. In
particular, we see that B is compact-friendly, and therefore the next
corollary is an immediate consequence of Theorem 11.2.

COROLLARY 12.6. Every Harris operator which is quasinilpotent at
a mon-zero positive vector has a non-trivial closed invariant ideal.

13. A one-to-one compact positive
locally quasinilpotent
but not quasinilpotent kernel operator

Our objective here is to present a one-to-one Hilbert—-Schmidt posi-
tive operator on Lo[0, 1] which is locally quasinilpotent at some pos-
itive vector but fails to be quasinilpotent. In order to construct such
an operator we need two preliminary lemmas.

LEMMA 13.1. Let 0 < a <b<1land 0 <c¢c < d<1. Then the
positive kernel operator T': Ls[c,d] — Lo[a,b] defined by

d
Tf(a) = [ sinen)f(y)dy, a <a <b,
c
is one-to-one and compact.

Proof. The compactness of T follows from the fact that 7' is a Hilbert—
Schmidt operator. We shall prove that 7' is one-to-one. The geomet-

ric situation is shown in Figure 1, where the kernel K (z,y) = sin(zy)

is considered defined over the rectangle @ = [a, b] X [c, d].
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Figure 1
It is easy to see that T'f is a continuous function for each function
f € La[c,d]. As a matter of fact, it follows from [15, Theorem 20.4]
that T'f € C*|[c,d] for each f € Lo[c,d] and that

d 7
(T () = / 22 sin(zy)] £ (4) dy. (%)

Now assume that 7'f = 0 for some function f € Ly[c,d]. Then for
each n, it follows from (%) that fcd y*" sin(zy) f (y) dy = 0 for almost
all z € [a, b)].

The subalgebra A of Cfc,d] consisting of all polynomials with
even terms contains the constant function one and separates the
points of [c,d]. (The polynomial p(y) = y? is one-to-one on [c, d].) So,
by the Stone-Weierstrass theorem, A is uniformly dense in C|c, d].
Consequently, A is || - ||2-dense in Ls[c, d]. From (%), we see immedi-
ately that fcdp(y) sin(zy) f(y) dy = 0 for each p € A and almost all
z € [a,b].

It follows that there exists a sequence {p, } of A satisfying p,, — f
a.e. and |p,| < g a.e. for all n and some g € Lg[c, d] (see [15, p. 207]).
So, for almost all y € [¢,d] we have

pn(y) sin(ay) f(y) — sin(zy)[f (y)]
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and [p(y) sin(zy)f(y)| < 9(y)|f(y)|. Since g|f| € Life,d], the
Lebesgue Dominated Convergence Theorem implies

d d
/ sin(zy)[f(y))* dy = lim / pn(y) sin(zy) f(y) dy = 0
c n—0o0 c
for almost all . Therefore, f = 0 a.e. O
LEMMA 13.2. Assume that 0 < a < b < 1. Then the positive kernel

operator T': Lo[a,b] — Lo[a,b] defined by

b
Tf(z) = / sin(zy)f(y) dy, a <o <b,

has a positive spectral radius (and so T is a compact, one-to-one,
positive kernel operator which is not quasinilpotent).

Proof. Since the kernel of T' is symmetric, it follows that T is a
Hermitian operator. Consequently, 7(T) = ||T||2 > 0. O

If for 1 < p < co we consider the operator T': Ly[0,1] — Ly[0, 1]
defined by

1
Tf(z) = /0 sin(zy) f(y)dy, 0< z < 1,

then we have the following norm estimates:

1
ITlhoo = IT1)oc = sup / sin(ey) dy
z€[0,1]J0
]_ _
= sup L. 1—cosl = 0.4597
z€[0,1] T

and

17|

IA

1 pt ) 1
( / / [sin(zy)] d:vdy) ’
0o Jo
1 1 ['sin2z

_ (5_1/0 . dac);zo.?OOQ.
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Our next goal is to construct a one-to-one positive compact kernel
operator which is quasinilpotent at some positive vectors but fails to
be quasinilpotent. The kernel K (z,y) will be defined on the unit
square [0,1] x [0,1] as shown in Figure 2.

Figure 2

The value K (z,y) will be equal to sin(zy) if (z,y) lies in any one
of the shaded rectangles and will be equal to zero everywhere else.
The points ag, a1, as,... shown in Figure 2 are defined by

n—1

1 1
ag=1, and anzl_g_eZE for n>1.
k=0 "

The length of the interval (an1,a,) is equal to a, — a1 = Sy
To avoid introducing some extra notation, we shall denote by
K the operator on L]0, 1] defined be the kernel K (z,y) introduced

above. That is, the operator K: Lo[0,1] — L2[0, 1] is defined by

1
Kf(z) = /0 K(z,y)f(y)dy, 0<a<1.
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THEOREM 13.3. The kernel operator K : L2[0,1] — L2[0,1] is a one-
to-one positive compact operator which is quasinilpotent at some pos-
itive vectors and fails to be quasinilpotent.

Proof. The fact that K is one-to-one follows easily from Lemma 13.1.
Since the kernel K (z,y) is positive and belongs to Ly([0,1] x [0, 1]),
it follows that the operator K is Hilbert—Schmidt. So, K is a positive
compact operator.

To see that K is not quasinilpotent, notice that K leaves Lo [0, %]
invariant. (As usual we identify here Lo [0, %] with the closed sub-
space of Ly[0,1] given by {f € L2[0,1] : f = Oa.e. on [5,1]}.)
Moreover, observe that the restriction of K to Lo [O, %] is the kernel
operator with kernel sin(zy). By Lemma 13.2, the restriction of K to
Lo [O, %] has positive spectral radius. That is, K is not quasinilpotent
when restricted to Lo [O, %] Therefore, K cannot be quasinilpotent.

Now consider the positive function f = x[4,,1]- An easy verifica-

tion shows that 0 < K™ f < x| ]- Consequently,

An+2,an+41

(K" fll)» <\ ()",

from which it follows that lim,_,c (||[K™ f]|2)

3=

=0. O

14. The dual invariant subspace problem

In this section we will be concerned with the following conjecture
due to Lomonosov [43].

e Lomonosov’s Conjecture: The adjoint of a bounded linear
operator on a Banach space has a non-trivial closed invariant
subspace.

L. de Branges in [28] initiated a study aimed at proving this con-
jecture. Specifically, he reduced Lomonosov’s conjecture to proving
that a certain vector subspace of a natural space of vector functions
is not dense with respect to a linear topology introduced in [28].
An alternate approach to this problem will be discussed below. It
was suggested in [7], and the presentation in this section follows this
paper. We precede this with one important comment.
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Consider again C. Read’s operator T': ¢/; — ¢; which has no
non-trivial closed invariant subspace. If this operator were (41, cp)-
continuous, then it would be the adjoint operator to some oper-
ator on ¢y, and thus would disprove the above conjecture. How-
ever, V. Troitsky [58] has recently shown that the operator T is not
o(£1, cg)-continuous, and thus this operator cannot be used to refute
Lomonosov’s conjecture.

As in the Lomonosov—de Branges approach, we study the invari-
ant subspace problem for algebras of operators. The symbol 4 will
denote a subalgebra of L(X), the Banach algebra of all bounded lin-
ear operators on a Banach space X. The dual algebra of A is the
subalgebra of L(X') defined by A’ = {T": T € A}.

A subspace V of X is said to be A-invariant if V is invariant
under every operator of A, i.e., T(V) C V holds for each T' € A.
Notice that a subspace V of X is invariant under an operator 7T’
from L(X) if and only if V' is invariant under the algebra (unital or
not) generated by 7" in L(X).

The next result is a folklore characterization of the existence of
non-trivial closed A-invariant subspaces. As a matter of fact we have
already used this characterization, without stating it explicitly, while
proving Theorems 5.1 and 7.1.

PROPOSITION 14.1. A subalgebra A of L(X) admits a non-trivial
closed A-invariant subspace if and only if there exist a nonzero vector

z € X and a nonzero linear functional ' € X' satisfying (z', Tz) =0
for each T € A.

Proof. Let V be a non-trivial closed A-invariant subspace. Fix a
nonzero vector z € V and consider the closed subspace generated by
the action of A on z, ie., X; = {Tz: T € A}. Clearly, X, C V,
and so X, # X. Therefore, there exists some nonzero z’ € X' that
annihilates X, i.e., we have (z’,Tz) = 0 for all T € A.

For the converse, assume that (z’,Tz) = 0 holds for all T € A
and some nonzero vectors £ € X and =’ € X'. Tt easily follows that
the closed subspace X; = {T'z: T € A} is not norm dense in X. If
X; # 0, then X, is a non-trivial closed A-invariant subspace. In
the case when X, = {0}, note that the non-trivial closed subspace
V ={Xz: X € C} is A-invariant. O
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From the identity (2', Tz) = (T'2’, z), it follows immediately that
if there exists a non-trivial closed .A-invariant subspace, then there
is also a non-trivial closed A’-invariant subspace.

In this section we shall denote by S the closed unit ball of X".
That is,

S={z'eX": |a'| <1}.
As usual, S will be equipped with its weak* topology, and hence S
is a weak* compact subset of X'.

DEFINITION 14.2. The vector space of all continuous functions from
S into X', when both S and X' are equipped with the weak* topol-
ogy, will be denoted by C(S,X"). Occasionally, C(S,X") will also be
denoted by Y, i.e., Y = C(S, X").

Observe that for each T' € L(X) the restriction of the adjoint
T': S — X' is an element of C(S,X’). Clearly, the vector space
C(S,X') equipped with the norm

Ifll=sup|f(s)ll, fe€C(S,X)
seS

is a Banach space.

The Banach space C (S, X’) was the main object of study in [43]
and [28]. V. I. Lomonosov [43], inspired by L. de Branges’ proof
of the Stone-Weierstrass theorem [27], characterized the extreme
points of the closed unit ball of the norm dual of C(S,X’). Sub-
sequently, L. de Branges [28] presented a deep analysis of the be-
havior of these extreme points and obtained an abstract version of
the Stone-Weierstrass theorem. The Lomonosov—de Branges analy-
sis will be employed later on in our characterization of the invariant
subspace problem.

As always, the symbol C'(S) denotes the Banach space of all con-
tinuous complex valued functions defined on S. It is worth mention-
ing that each function a € C(S) defines an “action” (or equivalently,
an operator) on C(S, X') via the formula

(af)(s) = als)f(s), feC(S,X), se8S.

This is, of course, the multiplication operator determined by «.
Clearly,

llecf | < lledooll 711 -
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In algebraic terminology this means that C(S, X') is a C(S)-module
and our discussion can be formulated in terms of modules. However,
we shall not use this terminology any further.

The second norm dual of X will be denoted by X”. Every element
z" € X" and every s € S give rise to a continuous linear functional
z" ® s on C(S, X") via the formula

<w" ®s,f> = (" ®s)(f) = <x",f(s)> = x"(f(s)), fec(s x').

Clearly, 2" ® s is a norm continuous linear functional on C(S, X").
The vector space generated by the set {z"®s: z" € X" and s € S}
in the norm dual of Y = C(S, X’) will be denoted by Y#, i.e.,

n
Y# = {Zmé’@si: z] € X" and s; € S for each i = 1, ... ,n}.
i=1

Obviously, Y# separates the points of Y, and so (Y,Y#) with
its natural duality is a dual system. Apart from the norm topology,
we shall consider on the Banach space C(S,X’) two other easily
accessible topologies. They are defined as follows.

1. The topology 7, on C(S,X') is the locally convex topology
generated by the set {p,»;: z” € X" and s € S} of semi-
norms, where

pors(F) = (" ® 8)(f)] = [(z", (5))]

for each f € C(S,X’). Note that 7, is simply the weak topol-
ogy o(Y,Y#).

2. The topology 75 on C(S,X') is the locally convex topology
generated by the set of seminorms { ps: s€S }, where

ps(f) = ”f(s)”
for each f € C(S,X’).

The introduced topologies are similar to the usual weak and strong
operator topologies on L(X) and this justifies our choice of the sub-
scripts w and s. Moreover, in analogy with the classical weak and
strong operator topologies [31, Theorem 4, p. 477], the topologies T,
and 75 have the same continuous linear functionals. That is, they are
both consistent with the dual system (Y,Y#). The details follow.
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THEOREM 14.3. The locally convex topology s is consistent with the
dual system (Y,Y#). That is, we have the inclusions

U(Ya Y#) C7s C T(Ya Y#),
where as usual T(Y,Y#) denotes the Mackey topology.

Proof. Clearly, we have o(Y,Y#) C 7,. So, we must establish only
that 7, C 7(Y,Y#).

To this end, fix some element s € S. It suffices to show that the
set {f € Y: ps(f) = |If(s)]| < 1} is a 7(Y,Y#)-neighborhood of
zero. Let U” denote the closed unit ball of X”. Next, note that the
operator R: (X", 0(X",X")) - (Y#,0(Y#,Y)), defined by Rz" =
z" ® s, is continuous. Since U” is a o(X"”, X')-compact set, it follows
that the convex circled set D = R(U") = {¢" @ s: 2" € U"} is
o(Y#,Y)-compact. So, its polar

D° = {feY: |(2"®s, )| =|2"(f(s))| <1 for all z" € U"}
= {fey: |f(s)l <1}
is a 7(Y, Y #)-neighborhood of zero, and the proof is finished. O

It should be clear that the preceding theorem can be reformulated
as follows.

THEOREM 14.4. For a linear functional ¢ defined on C(S,X') the
following statements are equivalent.

L. ¢=>7" 2" ®s;, where s1,... s, € S and zf,... ,2 € X".
2. ¢ 18 Ty-continuous.

3. ¢ is Tg-continuous.

Now the standard duality theory yields the following result.

COROLLARY 14.5. The topologies T, and 75 on C(S,X') have the
same closed convez sets.

We are now ready to establish that if a subspace M of C(S, X")
is C(S)-invariant, then M satisfies a nice separation property in the
sense that elements outside of the closure of M can be separated by
a linear functional of the form z” ® s.
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LEMMA 14.6. Let M be a vector subspace of C(S,X") which is in-
variant under multiplication by elements of C(S). Then an element
fo € C(S,X") does not belong to the Ts-closure of M if and only if
there exist " € X" and s € S such that

<$"®3,f0> =1 and <:c"®s,f> =0
for all f € M.

Proof. The “only if” part needs verification. So, suppose that fy
does not belong to the 75-closure of M. Then, there exists some 75-
continuous linear functional ¢ on C(S, X') such that ¢(fy) # 0 and
#(f) = 0 for each f € M. By Theorem 14.4, ¢ = Y " | = ®s;, where
si # s; for i # j. From ¢(fo) = Dr (@), fo(si)) # 0, it follows that
there exists some k satisfying ) # 0 and (z}, fo(sg)) # 0. We can
suppose (z}, fo(sk)) = 1.

Next, by Urysohns’ Lemma, pick some a € C(S) such that
a(sg) =1 and «afs;) = 0 for 7 # k. Since af € M for each f € M,
we have

(2 @ sk, F) = (zh, F(s)) = > (o, e(s:) f(s0)) = dlaf) =0
=1

for all f € M, and the proof is finished. O

Now we are ready to prove our first necessary and sufficient condi-
tion for the existence of a common non-trivial closed invariant sub-
space of X' for all the adjoint operators 7" with T' € A. As we
shall see, this condition is closely related to the properties of the
vector subspace generated in C(S, X') by the collection of functions

{aT": a € C(S), T € A}.

THEOREM 14.7. For an arbitrary subalgebra A of L(X), the follow-
ing two statements are equivalent.

1. There exists a non-trivial closed A'-invariant subspace.

2. There ezists an operator B € L(X) such that B' does not belong
to the Ty-closure in C(S,X") of the vector space generated by
the set

{aT": a € C(S) and T € A}.
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Proof. Let M denote the vector subspace generated in C(S, X') by
the collection of functions {aT": « € C(S) and T € A}, and let M
denote the closure of M in the topology 7s.

(1) = (2) By Proposition 14.1 there exist non-zero z”’ € X" and
s € X' satisfying (z”,T's) = 0 for each T € A. Without loss of
generality we can suppose that s € S.

Pick ¥/ € X’ and b € X such that (z”,b') = 1 and (b,s) = 1.
We claim that the rank-one operator B = b ® b € L(X) satisfies
B' ¢ M.

To see this, note that

(2" ® s,aT") = a(s)(z",T's) =0

for each T € A and all @ € C(S). That is, the 7s-continuous linear
functional z” ® s vanishes on M. On the other hand, the relation

(2" ®s,B") = (2" ®5,bQb') = (z",b)(b,s) =1,

implies that B' ¢ M.

(2) = (1) Pick some B € L(X) such that B' ¢ M. Since M is
invariant under multiplication by elements of C(S), it follows from
Lemma 14.6 that there exist 2”7 € X" and s € S such that

(z",B's)y =1 and (z",T's) =0

for all T € A. Since (2", B's) = 1, it follows that z” # 0 and s # 0,
and by Proposition 14.1 the proof is finished. O

Our next goal is to obtain a similar characterization for the in-
variant subspace problem in terms of the norm topology. To ac-
complish this, we need to introduce the following class of completely
continuous functions.

DEFINITION 14.8. A function f € C(S, X') is said to be completely
continuous if it is continuous for the weak® topology on S and the
norm topology on X'.

The wvector subspace of all completely continuous functions of
C(S, X") will be denoted by K(S, X').
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In other words, a function f € C(S, X') is completely continuous
if and only if s, 2+ s in S implies || f(sq) — f(s)|| = 0. Observe that
if T: X — X is a compact operator, then 7": S — X' is completely
continuous, i.e., T' € K(S, X').

Clearly, K£(S,X') is a normed closed subspace of C(S,X’). As
a vector subspace of C'(S, X’), the space K(S, X’) inherits the three
topologies considered on C(S, X'); the norm topology, the 7,,-topo-
logy, and the 7¢-topology. It is obvious that neither 7, nor 7, is
consistent with the norm topology on K(S,X’). Nevertheless, for
C(S)-invariant subspaces of K(S, X') the situation is different. Using
the Lomonosov-de Branges technique, we are now ready to charac-
terize the closures of the C(S)-invariant subspaces of K(S, X') under
these topologies.

THEOREM 14.9. For a vector subspace M of K(S, X") which is in-
variant under multiplication by elements of C(S) the following state-
ments are equivalent.

1. The vector space M is Ty -closed in K(S, X').
2. The vector space M is T5-closed in K(S,X').
3. The vector space M is norm closed.

Proof. Clearly, (1) = (2) =>(3). It remains to establish the impli-
cation (3) = (1).

To this end, let fy € K(S,X’) belong to the 7,-closure of M.
To show that fy € M, it suffices to prove that fy belongs to the
norm closure of M. By the Hahn-Banach Theorem, this will be
established if we verify that for a norm continuous linear functional
¢ on C(S,X') the identity (¢, f) = 0 for all f € M implies that
(¢, fo) = 0. So, let (¢, f) =0 for all f € M. We can assume that ¢
has norm one.

For each a € C(S), we define on Y = C(S, X’) the continuous
linear functional ¢, by ¢o(f) = ¢(af) where f € C(S, X"). Since M
is invariant under multiplication by elements of C(S), it follows that
(ba, f) = 0 for all f € M. This certainly implies that (¢, f) = 0
for all # € V and f € M, where V is the weak* closed subspace
generated by the ¢, in the norm dual Y'. We denote by U the
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intersection of V' with the closed unit ball of Y’. Obviously we have
¢=¢1€lU.

Let ¥ be any extreme point of /. By the characterization of
extreme points in [28, Theorem 1], it follows that there exist an
element s € S and an element z” € X" such that

»(f) = (" ®s, f) = (", f(s))

holds for every f € K(S,X’). In particular, ¥(fo) = (2", fo(s))
and (f) = (2", f(s)) = 0 for all f € M. Since fy belongs to the
Tw-closure of M, it follows that 1(fo) = (", fo(s)) = 0.

That is, we have proved that (fy) = 0 for each extreme point
1 of U. Since ¢ € U and since, by the Krein—-Milman theorem, i/ is
the weak™* closed convex hull of its extreme points, we can conclude
that ¢(fo) = 0. This completes the proof. O

We are now ready to state the main result of this section which
considerably improves Theorem 14.7 by replacing the topology 7,
with the norm topology.

THEOREM 14.10. If A is a subalgebra of L(X), then the following
statements are equivalent.

1. There exists a non-trivial closed A'-invariant subspace.

2. There are operators B, K € L(X) with K compact such that the
operator B'K'does not belong to the norm closure in C(S, X')
of the vector space M generated by the set

{oT'K': a € C(S) and T € A}.

Proof. (1) = (2) By Proposition 14.1, there exist non-zero z” € X"
and s € X' satisfying (z”,T's) = 0 for each T € A. We can suppose
that s € S. Now, pick elements b € X and ¥’ € X’ such that
(s,b) = 1 and (z",b') = 1. Next, consider the rank-one operators
K =s®band B = b ®b, and note that K's = (s,b)s = s and
B's = (s,b)b/ = V. We claim that B'K' ¢ M, the norm closure of
M.
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To see this, note that the norm continuous linear functional
¢ =1"® s on C(S, X') satisfies

(¢, aT'K') = a(s)(z", T'K's) = a(s)(z",T's) = 0

for each T € A and all « € C(S). That is, ¢ vanishes on M. On
the other hand, ¢(B'K') = (z",B'K's) = (z",b') = 1 shows that
B'K' ¢ M.

(2) = (1) Assume that B, K € L(X) satisfy the stated prop-
erties. Clearly, B'K' € K(S,X’) and M C K(S,X"). Also, M is
C(S)-invariant.

Since B'K' does not belong to the norm closure of M, it fol-
lows from Theorem 14.9 that B'K’ is not in the 7,-closure of M in
K(S,X'"). Therefore, by Lemma 14.6, there exist " € X" and s € §
satisfying

(z",B'K's)y =1 and (2",T'K's) =0

for all T € A. The former condition implies that K's # 0, and
hence the latter condition shows that Proposition 14.1 is applicable
to A'. O

The approach suggested by L. de Branges in [28] was aimed at the
dual invariant subspace problem. As we shall see next, our arguments
above allow us to obtain also a necessary and sufficient condition for
the existence of a common non-trivial closed invariant subspace for
the algebra A itself. It is interesting to notice that the only difference
is that we must apply the compact operator on the left, as opposed
to the multiplication on the right in the preceding theorem.

THEOREM 14.11. For a subalgebra A of L(X) the following state-
ments are equivalent.

1. There exists a non-trivial closed A-invariant subspace.

2. There are operators B, K € L(X) with K compact such that the
operator K'B' does not belong to the norm closure in C(S, X')
of the subspace generated by the set

{aK'T'": a€C(S) and T € A}.
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Proof. (1)=>(2) By Proposition 14.1 there exist non-zero z € X
and z' € X' satisfying (z/,Tx) = 0 for each T € A. We can suppose
that z’ € S.

Take any ' € X' such that (b',z) = 1, and then consider the
rank-one operator K = b’ ® z € L(X). Clearly Kz = (b',z)x = .
Next choose any element b in X such that (z’,b) = 1. Define now
the operator B = b’ ® b € L(X). Clearly, the adjoint operator B’
satisfies B'z' = (z/,b)b' = b'.

The vector space generated by {aK'T': « € C(S),T € A}
will be denoted by N'. We claim that the operator K'B’ is not in
the norm closure of A'. To see this, note that the linear functional
¢ = z ®z' is norm continuous on C(S, X') and satisfies

(¢,aK'T") = a(z')(z, K'T'z"y = a(z')(TKz,2") = a(z')(Tz,2" )= 0

for each T € A and all « € C(S). That is, $ = z ® z’ vanishes on
N. On the other hand, the equality B'z' =¥’ yields

(b(K'B') _ <.’L‘,K’B’.’L‘I> _ <:E,Klbl> _ <K:v,b'> _ <$,b’> =1,

which shows that K’B’ does not belong to the norm closure of N.

(2) = (1) Assume that the operators B and K satisfy the stated
properties. Again, let N denote the vector space generated by the
collection of functions {aK'T': « € C(S),T € A} in C(S,X).
Clearly, K'B' € K(S,X') and N C K(S,X"). Also, N is C(S)-in-
variant.

Since the compact operator K'B’ does not belong to the norm
closure of N, it follows from Theorem 14.9 that K'B’ is not in the
Ts-closure of N in K(S,X’). Consequently, by Lemma 14.6, there
exist " € X" and s € S such that

(z",K'B's) =1 and (z",K'T's)=0

for all T € A. Since (z", K'B's) = 1, it follows that zo = K"z" # 0.
Moreover, the compactness of K implies that o = K"z" € X.
Therefore, for each T € A, we have

<T:c0,s> = <TK"$",3> = <K"$",T's> = <a:",K'T's> =0,

and by Proposition 14.1 the proof is finished. O
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We close the section by emphasizing once again the following
remarkable fact that has been present throughout our discussion: as
soon as we start asking about the existence of a non-trivial closed A-
invariant subspace of X (or about the existence of a non-trivial closed
A'-invariant subspace of X'), a compact operator emerges though the
given algebra A need not be connected with compactness in any way!

We refer to [7] for some applications of the above results, to [30]
for additional properties of spaces of weakly continuous functions
from a compact space to a Banach space and to [54, 55| for some
interesting further developments.

15. Invariant subspaces for other classes of operators

In this section, we shall briefly indicate how one can prove the exis-
tence of invariant subspaces for several other classes of operators on
Banach lattices.

Recall that an operator T': E — F on a Banach lattice is said to
be AM-compact, provided T" maps order bounded sets onto norm
precompact sets, i.e., T'[a,b] is norm precompact for each order in-
terval [a, b]; see [61, p. 505]. Clearly, each compact operator is AM-
compact but an AM-compact operator need not be compact. (Since
the order intervals in any £,-space (1 < p < co) are norm compact,
every continuous operator on £, is AM-compact but, of course, not
every continuous operator is compact.)

If we follow the proofs of Theorems 10.1 and 10.3 and Corol-
lary 10.4 closely, we shall see that the domination of a non-zero
compact operator can be replaced by the domination of a non-zero
AM-compact operator.

For instance, the details of the necessary changes to the proof of
Theorem 10.1 are as follows. In this case, we cannot claim that the
set K (U) is compact, but we certainly have that the set K (U N [0, zo])
is compact. The inclusion

KU N[0,z0]) C | J{z € E: |lzo — z0 AnA(|2))]| < 1}

n=1

obviously remains true, and so, in view of the compactness of the set
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K(U N[0, z0]), there exists some m such that
K{UN0,30)) C{z€E: |zo—z0 AmA(z|)| < 1}.
Now note that the sequence {z,}, defined inductively by

T =g A mA(|K:1:0|) and zp41 =29 A mA(|Ka:n|), n=1,2

geee g

satisfies z, € U N[0, zo] for each n. The rest of the proof remains
the same.

Thus, we can state Theorem 10.1 in the following slightly more
general form.

THEOREM 15.1. Let B: E — E be a positive operator on a Banach
lattice. Assume that there exists a positive operator S: E — E such
that

1. SB < BS (in particular, this holds if S and B commute),

2. S is quasinilpotent at some xo > 0, i.e., ||S”x0||% =0,

lim
n—oo
and

3. S dominates a non-zero AM-compact operator.

Then the operator B has a mnon-trivial closed invariant subspace.
Moreover, we can choose this invariant subspace to be the closure
of a principal ideal in E.

Similarly, one can prove the following slightly more general ver-
sions of Theorem 10.3 and Corollary 10.4.

THEOREM 15.2. Let B,S: E — E be two commuting non-zero posi-
tive operators on a Banach lattice. If one of them is quasinilpotent at
a non-zero positive vector and the other dominates a non-zero AM-
compact operator, then B and S have a common non-trivial closed
invariant ideal.

COROLLARY 15.3. Let a positive operator B: E — E on a Banach
lattice satisfy the following two conditions:

1. B is quasinilpotent at a non-zero positive vector, and
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2. Some power of B dominates a non-zero AM-compact operator.
Then the operator B has a non-trivial closed invariant ideal.

Another important class of operators to which our results can be
applied is that of Dunford—Pettis operators. Recall that an operator
T: X — X is said to be Dunford—Pettis if | Tz, || — 0 for each se-
quence {z,} in X that converges weakly to zero. For these operators
the following result is true.

THEOREM 15.4. Fvery positive Dunford—Pettis operator on a Ba-
nach lattice which is quasinilpotent at a non-zero positive vector has
a non-trivial closed invariant ideal.

Proof. Let B: E — FE be a positive Dunford—Pettis operator on a
Banach lattice which is quasinilpotent at a non-zero positive vector.
We can assume that B is strictly positive—otherwise Np is a non-
trivial closed invariant ideal. Then B carries order intervals onto
relatively weakly compact sets [14, Theorem 19.12, p. 339], and so
B? carries order intervals onto norm precompact sets. That is, B? is
a non-zero AM-compact operator. Since B commutes with B2, our
conclusion follows from Theorem 15.1. O

If by analogy with compact-friendly operators we introduce two
similar concepts by replacing in Definition 11.1 the compact opera-
tors by AM-compact operators or Dunford—Pettis operators respec-
tively, then, it seems plausible that we should be able to generalize
much of the theory described in this survey to these two new classes
of operators. We do not pursue this direction here, leaving it as a
promising open venue for future research.

The last result which we are about to formulate is not directly
related to the invariant subspace problem but, somehow, it seems
relevant to our discussion. Let again 7': X — X be a continuous
operator on a Banach space. A vector x € X is called cyclic if the
linear space generated by the orbit {z,Tz,T?z,...} of  is norm
dense in X. It is obvious that 7" has a closed non-trivial invariant
subspace if and only if there is a non-zero vector which is not cyclic.

We need two more definitions closely related to the previous one.
A vector z € X is called hypercyclic (for an operator T') if the



THE INVARIANT SUBSPACE PROBLEM 73

orbit itself {z, Tz, T?z,...} is dense in X. Similarly, € X is called
supercyclic (for an operator T') if the set {¢IT"z :c € C,n € N} is
dense in X.

An operator T': X — X is said to be cyclic (resp. hypercyclic, or
supercyclic) if there exists a cyclic (resp. hypercyclic, or supercyclic)
vector for 7.

If we look at the right shift operator S on any /,-space with
p < 00, then clearly S is a cyclic operator (for example, e; is a cyclic
vector) but the second power S? is not cyclic. A similar problem
for hypercyclic and supercyclic operators has been open for quite a
while. And only recently S. Ansari [17] has found a very elegant and
complete solution to this problem.

THEOREM 15.5 (ANSARI). If a vector x € X is hypercyclic (resp.
supercyclic) for a continuous operator T: X — X, then z is also
hypercyclic (resp. supercyclic) for T™ for every n.

Finally, we mention that all the results in this paper remain true
1 1
if we replace lim ||T"zg||» = 0 by liminf ||7"z¢||» = 0 in Defini-
n—00 n—oo
tion 4.1.

16. Open problems and remarks

For the convenience of the reader we have collected here the open
problems which were posed in the course of this work. The first
number in each reference indicates the number of the section where
this problem was mentioned. The second number if present is used
just to distinguish between the consecutive problems within the same
section.

5.1. How can we recognize by “looking at” a matrix [¢;;] defining
a positive operator T' : £, — £, if the set Q}' is non-empty?

5.2. Tt is an open problem whether or not each positive operator
on ¢; (or £, with p < co0) has an invariant subspace.

6.1. There exists a concept of a basis which is weaker than the
notion of Schauder basis. We mean the so called Markushevich basis
(see for example [56]). It would be interesting to investigate to what
extent the results of Section 7 can be generalized to positive operators
on a Banach space with some kind of a Markushevich basis.



74 Y. ABRAMOVICH, C. ALIPRANTIS, O. BURKINSHAW

6.2. Consider a quasinilpotent operator on a Banach space with
a basis. Suppose we do not assume that the operator is positive with
respect to this basis, and thus we cannot apply directly our results on
the existence of invariant subspaces of positive operators. However,
if one considers a change of basis, then the operator might very well
become positive with respect to the new basis, and therefore, it would
have a non-trivial closed invariant subspace.

When is a given quasinilpotent operator on a Banach space with
a Schauder basis (in particular, on a Hilbert space) positive with
respect to some basis?

9.1. We do not know presently if an analogue of Theorem 10.1
is true provided we replace the inequality SB < BS by the reverse
inequality SB > BS. In other words, does Theorem 10.2 remain
true if the operator S is assumed to be merely locally quasinilpotent
at a positive vector instead of being quasinilpotent?

9.2. In the present formulation, Theorem 10.1 generalizes Theo-
rem 4.1 in [4]. The difference is that here we have replaced the com-
mutativity condition SB = BS by the weaker assumption SB < BS.
It would be very interesting to investigate in which results one can
replace commutativity by some kind of inequality. In particular,
whether one can replace the commutativity assumption in Theo-
rem 11.2 by an inequality BT <TB or TB < BT.

11.1. As we have seen, both conditions in Theorem 11.2 are
imposed on the same operator, i.e., B is assumed to be both compact-
friendly and quasinilpotent at some positive vector. It is an open and
very interesting question if, in analogy with Theorem 10.3, we can
distribute these two properties between the two operators. To be
precise, let B and T be two commuting positive operators, such that
B is compact-friendly and Q}' # (. Does there exist a non-trivial
closed B-invariant subspace, or a T-invariant subspace, or even a
common invariant subspace?

11.2. Let us say that a positive operator B: E — FE on a Banach
lattice E is “good” (resp. “very good”) if there exists a non-zero
compact (resp. a non-zero positive compact) operator K which is
dominated by B.

e Is every good operator very good?

e Assume that B? is good, is then B? very good?



THE INVARIANT SUBSPACE PROBLEM 75

e Assume that B? is good, is then B (very) good?
e Assume that B? is very good, is then B (very) good?

Similar questions can also be asked if we assume that there exists a
polynomial p with non-negative coefficients such that p(B) is good
or very good.

14. Each hypercyclic vector is obviously supercyclic. It would
be interesting to find conditions on the vector and/or the operator
under which a supercyclic vector is hypercyclic.

S. Ansari’s Theorem 15.5 on hypercyclic and supercyclic vectors
is true for any Banach space. It would be interesting to investigate if
some additional specific features can be found in the case of regular
operators on Banach lattices.
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