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Estimates and existence theorems
for a class of nonlinear
degenerate elliptic equations

V. EsposiTo *)

SUMMARY. - Let {a;j(z,n)} be a matriz of bounded Carathéodory
functions such that a;;(z,n)&& > b(|n|)v(z)|E]? VE € R,
where b : [0,+00[— R is a positive bounded continuous function
and v € L', 1 € L' with t > 1. A priori estimates for solu-
tions of the houmogeneous Dirichlet problem related to the equa-
tion —(aij(T,u)uz;)s; = f are proved under various summability
assumptions on f. As a consequence, existence theorems are ob-
tained.

1. Introduction

Let © be an open bounded subset of R", n > 2. Let {a;;(z,n)} be a
matrix of Carathéodory functions (ie., Vi,j = 1,2...n, a;j(z,n) is
measurable with respect to x for every n € R and continuous with
respect to 7 for a.e. z € Q).

We consider the following Dirichlet problem

) { —(_aij(x,u)umj)mi =f inQ,
u=20 on 012,

under the assumptions

1) ai(e,mé& 2 b(lnl)v(z) [ ae € neR (R,

() Author’s address: Dipartimento di Matematica e Applicazioni “R. Cacciop-
poli”, Universita degli Studi di Napoli “Federico I1”, Compl. universitario Monte
S. Angelo, Via Cintia, 80126 Napoli (Italy).
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where

b : [0,4o00[— [0,+00[ is bounded and continuous,
v : Q= [0,400[ issuch that v € L'(Q)

1
and — € LY(Q), t > 1.
v

In this paper we will give some a priori estimates for weak solu-
tions of problem (I). All results in this direction will be obtained by
symmetrization techniques in the same spirit as [1] and [2].

Moreover, a priori estimates will be used to prove, by methods
analogous to those used in [5], the existence of weak solution of
problem (I) under further assumptions

(IIT) |aij(z,n)| <cv(z) forae.z€Q, neER, i,j=1,2,...,n,

where c is a constant, and

1

(IV) b(lnl) = W,

0<a<l

We assume condition (IV) only for the sake of simplicity. Most of
our results are true under more general hypotheses on the function
b (see also [2]).

We shall prove the following existence theorems.

1
THEOREM 1.1. Let € LY(Q) and f € L7 (Q) with p > g, % =141
n > 2. Under the assumptions (II), (III) and (IV), there exists
u € Wy (v) N L®(Q) such that

/aij(av,u)umjvzi dr = / fodz, Vv e WOI’2(1/) ,
Q Q

i.e. u is a weak solution of problem (I) (for the definition of Wol’s(l/)
see preliminaries).
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2n
n+2—a(n—2)

1
THEOREM 1.2. Let = € L}Q) and f € L"(Q) with
14

1 1 1
<p< g ,—=—+ el > 2. Under the assumptions (II), (III) and
p T
1—
(IV), there exists u € WOI’Q(V) NLIQ), g= LQQ), such that
n—zp

/ a5 (T, U)Ug; Vg, dT = / fvdz, Vo e Wy (v),
Q Q

i.e. u is a weak solution of problem (I).

1 s
THEOREM 1.3. Let = € LYQ), f € L(Q) and v € LD (Q), with

< 2n
p_n—l-2—a(n—2)

t>1,r>1,s>1 and

r <
n+1—a(n-—1) ’
2t np(l—a) 1
= L S )
2t —1 > ° n—p(l+a)’ p r+tn

Under the assumptions (II), (III) and (IV) there exists u € Wol’s(l/s/Q)ﬂ
1—
L1YQ), q= M , such that
n—2p

/Qaij(a:,u)uwjgowi dr = /Qfgoda:, Vo e C(R),

i.e. u is a solution of problem (I) in the sense of distributions.

1 ;
THEOREM 1.4. Let — € LY(R), f € L"(Q) and v € L' (Q) with t, t',
14

> 1 and - <p< 2n I At I
T an - < —
n+1—a(n—1) p_n+2—a(n—2)’ t t

1-— 1 1 1
%, » = + el > 2. Under the assumptions (II), (1)
and (IV) there exists u such that

/aij(xau)uwj@m dz = / fedz,  VyeCi(Q),
Q Q

!

1
u belongs to Wol’s(u) N LYQ)  for every 1+ 7 <s<
1-— 1—
wrel—a) g mp(l—a)

n—p(l+a) n—2p
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The scheme of the paper is as follows.

In Section 2 we recall some properties of the rearrangements and
some functional spaces which are useful for our a priori estimates.

In Section 3 we prove a priori estimates for weak solutions of
problem (I).

Section 4 is devoted to the proof of the existence Theorems 1.1,
1.2, 1.3 and 1.4.

2. Preliminaries

Let T be a measurable subset of R"® and let u be a real-valued mea-
surable function defined on T'. The distribution function y, of u is
defined by

pu(T) ={z €T : |u(z)| > 7}, T>0

where |T"| denotes the Lebesgue measure of set 7" C T'. The decreas-
ing rearrangement of u, denoted by u*, is the distribution function
of piy, i.e.

u (o) = {7 € [0,4+00]: py(T) > 0}
= inf{r € R : pyu(1) <o} o€ (0,|T))-

The increasing rearrangement u, of u and the symmetric rearrange-
ment u# of u are respectively defined by u.(o) = u*(|T| — o),
o€ (0,|T]),

u? (z) = u* (Cyplz|™), reT? ={zcR" : Cplz|" < |T|}

where C), is the measure of the unit ball of R”.
Recall that v and u* are equimeasurable, i.e. pi,(T) = py+ (1), 7 > 0.
As it is well known, Hardy - Littlewood inequality holds

i iy
/0 u*(0)v. (o) do < /T u(z)o(z)|dz < /0 W (o) () do (1)
:/ u#(m)v#(:c) dzx.

T#

In particular

||
|u(z)| dz < / u* (o) do, vT' CT. (2)
T 0
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Furthermore
[T

/T Pllu@))dz = [ Pt (o)) do (3)

0

for any monotone function % (see [12]).
Equality (3) and the definition of u* imply

lullp = llullzr) = l[u* Loy, 1<p<+o0.

An exhaustive treatment of theory of rearrangement can be found
for example in [4], [10], [12].

Recall that the Lorentz L(p,q) space, p > 1 and ¢ > 1, is the
collection of all real-valued measurable functions defined on T' such
that

400 dO’ 1/‘1
||u||p,q=(/ [al/pmo)]q—) <too,  g< oo
0

g

1 g
where w(o) = —/ u*(1)dr,
0

ag

lllp o0 = sup /7o) .
a>0

As it is well known L(p,p) = LP(T) (for p > 1) L(p,1) C L(p,q) C
L(p,r) C C L(p,00), forp>1, 1 <g<r < oo.

Let v be a measurable function, defined on 7. As in [1], L,(p,q)
will denote the collection of all real valued measurable functions u
defined on T and such that

+oo 1 7 do 1/p
— = \gl/rgm -
||U||p,q,l/ (/0 I/*(O') [U U(O')] o ) < +OO>

1<g< o0, 1 <p<oo.
Finally, Wol **(v) will denote the closure of C§°(T') under the norm

1/s
Il = ([ o) Dupas)

1 1

where — € L}(Q) and s > 1 + o (see [9] for more details on weighted
v

Sobolev space WOI’S(I/)).
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3. A priori estimates

As in [1, Section 2] we consider a function v(o) defined on [0, ||
such that

[ o /““(T) Lo, 0,190 (4
— = — ao, or a.e. T € |0,
0 v(o)

1
where — € L}(Q), t > 1, and u is a given measurable function defined
v

in €.
Lemma 2.2 of [1] ensures the existence of a sequence {v,,} with
the following properties:

v =", i [0,[Q[[,

m
and, if ¢t > 1,
1 1
— — = weakly in L*([0,]Q]]), (5)
Vm v
ift=1,
li o _1 d "1 d v BV Q
) @t =), e YoeBvna
(6)
For k > 0 set (see [2])
k sign (n) if [n] > &,
Ti(n) = (7)

n if |n| < k.

We will consider solutions u € WO1 1(Q) of problem (1) satisfying the
following conditions

Ty(u) € W5(v)

(8)

/ aij (@, u) Ug; (Tk (u))z; dz = / f Ty (u) dz, VEk>0.
Q Q

THEOREM 3.1. Let u be a solution of problem (1) satisfying (8).
Then we have

4 Blur(o)) < ! /0 ")

do - nzCz/nUQ_Q/”z(U)
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for a.e. o € (0,|Q]), where v satisfies (4) and B(r) is defined by
B(1) = /T b(o) do, V7 € [0, 4o00]. (10)
0

Proof. For 7, h > 0 we can use (8) with Kk = 7 and &k = 7 + h,
obtaining

/ aij (T, u)ug; ug; dz =
T<|u|<T+h

= / f(Ju| — 7) signu dz + h/ f sign udz.
T<|u|<T+h lu|>T+h

Therefore (2) implies

/ b(|u]) v(z) | Dul? dz < h/ fldze. (1)
T<|u|<T+h

|u|>T

On the other hand, Schwartz inequality implies:

/ b([u))| Duldz < (12)
T<|u|<T+h

2 o(luf) , |
2 A el
= (/T<u|gr+h llul)e =) Dul dw) </T<|UST+h v(z) ¢ )

From (11) and (12), we get

1 2
(ﬁ /T<|ugf+h b([ul) |DU|dx)
1 b(Jul) . .
= (h /T<u|57-+h v(z) d ) </u|>r |f|d ) . (13)

Passing to the limit as h goes to zero in (12) and observing that b is
continuous we have, for a.e. 7 > 0,

b(r) (—%/|H|>T\Du|dx) < (—dii /|U>Tﬁda:> /|U>T\f\da:.

(14)
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It is well known (see, e.g., (43) of [10]) that a consequence of isoperi-
metric inequality is the following one

nCY ™y (7)1 < _a / |Du| dz.
dr lu|>T

Together with (14) it gives

_/"(”IU,(T) 1 4 *
) S o (2 L)) || rrae

Replacing p,(t) by s, and using the properties of rearrangements,
we obtain (9).

COROLLARY 3.2. If u is a solution of (1) satisfying (8) and if v is
solution of the following problem

N 00, ((Calz|)Os0(x) = f# in OF
=1 (15)
v=0 on 907,

then
B(u*(0)) <v*(0), o€ (0,]9]).

Proof. Tt is sufficient to integrate between s and || both sides of (9)
and to observe that (see [1])

v(z) = _1 /QI 0_2+2)/n do /00 fr(r)dr

2
nQCn/” Chlz|m Z(O'

is solution of (15). O

COROLLARY 3.3. Let u be a solution of (1) satisfying (8). Assume
lim B(r) = +o00. If B~! denotes the inverse function of B, the

T—+00
following inequalities hold true:

T
a7

o) if f €L, (5

1
-1 .
1) , then ||u||oo < B (W ||f||n/2,1,l/)’
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1 1 1 2
b) if fELT(Q), = €LYQ) and ~+ = < =, then
v t r n
[ulloc < B™(Alflr),

1/7’

1 Q[ ol g2m—z \"
where A = ———7n / / do do’ and
’I’LQCn/n 0 a’ V*(a)
1 1
r o7

Proof. Integrating both sides of (8) and by (6) we have, for n €
(0, |2)

n2C/" v(o) 0
" oo 22 Jo vm(0) A

a
Taking into account the fact that o —2+2/" / f*(r)dr is decreasing
0

and that (i) = 1 Vm € N, we have

Um Vs

i« 1 —2+42/n 7 *
/ ——0 da/ fr(r)dr <
n Vm(a) 0

0 52/ do
< / F©0) % = o, 1.0e
0 ag

vi(o)

Together with (16) this implies

1
* < -
BrO) < — o

£l /2,1, -

Observing that B is increasing and invertible, we obtain (a). Part
(b) follows immediately using the arguments of Theorem 3.2 of [1].

COROLLARY 3.4. Under the assumptions of Corollary 3.3, we have

1 q2

< -
IB(ulls < — o 55

||f||s,k,u> (17)
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1 1 2
withl<s< o “=2_° k>1.
2'"qg s n
o1 2 11 2
If, moreover, f € L"(R), — € L'(Q), with — < —+ = <1+ — then
v n r t n
I1B([u)llq < DI £l (18)
1 1 2
where — = — 4+ — — — and D is a constant.

g r t n
Proof. If one observes that B(|u|)*(c) < B(u*(0)) VYo € [0, |Q|
(see, e.g. [12]), the Theorem can be proved as Theorems 3.3 and 3.4
in [1]. O
For the sake of simplicity, from now on, we will suppose

br)=————\) 0<a<l (19)

We observe explicitely that, under hypothesis (19), if f € L™(2) and

1 1 1 1
—e L)), - = n + =, Corollaries 3.3 and 3.4 imply that:
v P r

ﬂp>g,n22,0§a§1,mmueLw&) (20)

n n
if - 0L 1 2 21
' n+1—a(n—1)<p<2’ sa<ln>2  (2)
np(l—oa)

then u € L™ »=2 (Q).

THEOREM 3.5. Let u be a solution of (1) satisfying (8). If (19)
1 2n 1 1 1

L"(Q), ~ € L'D 4=
holds, f € L™ ( ),VE ( )andp>n+2—a(n—2)’p r+t’

then
a) p>g, n>2 0<a<l = wueW,’w)NL®)
b) 2n <p<? n>2 0<a<l —
n+2—a(n-—2) P=3 T
we W, (v) N LYQ),
1—
whereq:M.

n—2p
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Proof. As in Theorem 3.1 one can still obtain (11).
Dividing by h both sides of (11) and passing to limit as h goes to
zero, we have

d

i (T)
~d [ ) Duftdz < (14 T)a/ (0) do.
dr |u|>7 0

Then integrating between 0 and +oo we get

2 e o u(7) *
/QV(:L‘)|D’U,| d:vg/o 1+7) dT/O f*(o) do.

Hence, by the same calculation as in [2] (see Theorem 3.1), we can
write

/I/(ac) |Dul|?dx (22)
Q
1/r! +o00 ar 1/r
aron-1/r o lullg (1+7)
< I fllr (2 2" + ( p R =R :
1 1
for any ¢ > 0 and — + - = 1.
vy

On the other hand, if p > g, by (20) we have u € L*°(f2). Then,

for sufficiently large ¢, (22) gives u € Wy"*(v), and the part a) is
proved.
For part b) we have to consider only the case 0 < a < 1. We

1—
can use g = Lﬂ into (22). The summability of the function
—4p
(147 - . : .
—@-D—1) Appearing in the integral on the right hand side of (22),

can be proved by observing that, from hypotheses, we have: r > p,
g—1—a>0and

@g—-D(r—-1)—ar—1=@—-1—a)yr—(¢g—1)—1
>(@-1-app—(¢g—la=(@g-1)p-1)—-ap-1>0.

From this, from (21) and (22), part b) follows. O
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THEOREM 3.6. Under the assumption of Theorem 3.5, with r >

n 2n

1, t>1, <p< ,0<a<1
mtl)—amn-1 P> m+2)—an-2 “
and n > 2, we have

1/s _
(/Q 1/(]2)8/2 ‘Du|5dx> < +o0, forany0<s< %.

Proof. Once again we start from (11). Holder inequality implies

1
E/ b(ul)v(z)/2 | Dul* dz
T<|u|<T+h

1 1/2 1oz
o , \
S </T<|U|§7+h bllul)v(z) Dy dw) (/KMTM b(|u|)dx>
1-s/2 1/2
1
(E /F<|U|S'r+h b(|u|)> </|u|>T | f] dw) )

Passing to the limit as h goes to zero we have

_4
dr

IN

(v(x))*/? | Dul® d

|u|>7
1—5/2 pu(T) s/2
< (—p () ((1+7)“/0 f*(U)d0> :

At this point one can use the argument of the proof of Theorem 3.2
in [2]. O

THEOREM 3.7. Let u be a solution of problem (1) satisfying (8). If

1 1 ,
b(r) = ———,0< 1 L"(Q), — € LY LY (Q
(1) = G 0Sa<b fellQ), 2 eliQ), veli(Q),
n 2n
ith r, t, ¢’ > 1, < p < d
v n+1l—a(n-—1) P= n+2—an-—r) o
1 1 1
n>2 — = —+4 —, then
p r i

t'—1 np(l-—a)
' n—-p(l+a)

/ v(z)|Dul® dz < +o0, forany 0<s<
Q
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Proof. Using Schwartz - Holder inequality, by (11) we have V s €]0, 2]

1
—/ b(|u|)v(z) |Dul’ dz
h T<|u|<T+h

1 1-s/2 s/2
s(ﬁ /T<|u<7+hb('“')”(‘”)d””> </|u>7|f|dx) .

By a passage to the limit as h goes to zero in the above inequality,
we obtain

_a v(z)|Dul|® dz (23)
ar Jiu>r

s/2

1—5/2 Hu (7) N
< (—ty (1) B(pa())) ((1 +7)° /0 f*(a)da>

< U (o)) (4 7 =)

1
where, as in the definition of " v is defined on [0, |2|[ and it is such

that

b (T)
/ v(z)de = / v(o')do’, forae. T€(0,|Q,
|u|>7 0

(for the construction of 7 see e.g. [1]).
Lemma 2.2 of [1] ensures the existence of a sequence {v,,} with
vy, = v* and such that

Um — 1, weakly in L ([0,]9]),# > 1. (24)

From (23), integrating between 0 and 400, using Schwartz - Holder
inequality and taking into account of (24), we obtain

[ vt Dl ds (25)
/ “+o00 o1 172/3
5/2 7 (= (1))dr
< Il (/0 (1 4+ 1) 5 (a(r)) (=1 ))d) y

+o0 -1 5/2
0
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1-2/s

+o0 1-1/¢
< I3 (IIVII# (/0 (1+T)q(—uL(T))dT> ) X

+o0 Y1 5/2
([T @ 0 i)
0

< I Ml (11 + ] 201900275

+00 o1 5/2
x ( / (14 7)ot ai=2/s) MU(T)l—l/rdT) :
0

The integral in the right hand side of (25) can be estimated as in
Theorem 3.2 from [2]:

/0+00(1 + 1)t

t’

S2a+ tTIq(172/5)|Q|1—1/r+

tlﬁlq(l_Q/s)pu(T)lfl/’" dr (26)

! ar+q L5tr(1-2/s Hr
L (L)Y /+°° (L n)ert o
q . 7(e=D(r=1)

np(l — «)
n—2p

Now we observe that if ¢ = , 0 < a <1, then

(G- 1) —1)—ar— gL (1_§> 1

tl
r_1 2
t p(l—;>—1>0, (27)

tl

>(g—1(p-1)—ap—q

t'—1 np(l-—a)
' n—2p(l+a)
1 —
Put g = 712(_72;) into (25) and (26). From (21), (25), (26) and

for any s <

(27) we have the assertion. O

4. Existence Theorems

Proof of Theorem 1.1.
As in [5], the existence of u will be obtained by approximation. To
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this aim, let us define the following sequence of problems

0

Ap(u) = “ 8. <aij (z, Th(un)) % uh) =f in Q

u=20 on 0N}

(28)

1 2
Observe first that, if f € L7(Q) and = € L'(Q) with p > ——,

v n+2
11

1 1 1
—=-4>,n>2 then feW 12 (—) (Wﬁl’2 (—) denotes the
p r t v v
dual space of WO1 2(v)).

On the other hand, (II) and (III) imply

e Tan))egs > (@) >0 (29)

forae. z€Q,neER, [(|#0,hEN,
laij(z, Th(n))| < cv(z) Vi,j=1,2,...n, heN.

Inequalities (29) enable to deduce that, Vh € N, A, is an operator
of the calculus of variations type (in the sense of Definition (2.2)
from [8], see Section 2.5, p. 180-182) from W01’2(1/) into its dual

1
w12 (—) Then there exists uy, € WOI’Q(V) such that
14

/ aij(z, Tp(up)) m— s—dz = [ fodez, Vv e W01’2(1/) (30)
Q .

Observing that (28) is analogous to problem (I), from (20) we have
up € L®(Q) and by (b) of Corollary 3.3 the norm wup in L is
bounded by a constant independent of h. Therefore, for h large,
Th(up) = up which, together with (30), proves our assertion.

Proof of Theorem 1.2.

The assertion follows by the same method as in Theorem 1.1. In
fact, we can analogously show that there exists a weak solution up €
WOI’Q(I/) of (28), i.e. uy, satisfies (30). By (21) and by Theorem 3.5
(see in particular (18) and (22)), we have

]__
lunle <€, VYheN and g= "=
n—2p

||’u’h||W0112(,/) < Cla Vhe N,
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the constants C and C' being independent of h.
By Holder inequality we get
1/2

, t

1

14

s
2—s’

[Dunlls < llunlly2 1<s<2.

t
Then there exists a subsequence of {uy}, still denoted {uj}, and
u € Wy?(v) N LI(Q) such that up — u almost everywhere in €,
as a consequence of the Rellich Theorem, v(z)Y2Duy — v(z)/2Du
weakly in L?(Q; R").
Moreover, by Theorem 2.1 from [7], we have

1

S@)1 2 aij(z,u), strongly in L%(€).

Waij (z, Tn(upn)) —

Replacing v by ¢ € C§°(12) into (30) and then passing to the limit
as h goes to infinity, we get

/ aij(%u)uwj Pg; dz = / fopdx, Vo e C§P(RN)
Q Q

. . . _ 1
From this, since C§° is dense in WOI’Q(V), few, 12 (—) and u €
v
WO1 2(v), we obtain our assertion.

Proof of Theorem 1.3.
In the same way as in [5] we consider Vh € N the following problems

0 0 .
o (e ) mm) = oo
u=20 on 012,
1 2 11
where f, € L™(Q), — = min{i - -, —}, frn — f strongly in
m 2n, t'r
L™ and
Ifallr < I fllr,  VREN. (32)
In the case m = r obviously f, = f, Vh € N.

1 1 1
Get —=—+-,p' > _“_ Problem (31) is of the same kind of
' m n+1

P t
(28). Then there exists uy, € Wol’2(u) such that

/ aij(z, Th(up)) % g—vda: = / frvdz, Yve WOI’Q(I/) (33)
Q Zj T; Q
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By (21), (32) and by Theorem 3.6 we have

np(l — )
< =
lunle <C. VheN, q="E (34

np(l — o)

<s< —————,
n—p(l+ )

H’U/h“WOl,s(Us/Q) < C,, VheN, (35)

2t —1

the constants C, C’ being independent of h.
By Holder inequality we get

-7

1/s 1 sT/2(s—T) a
| Dupllr < (/ 1/3/2|Duh|sdx> / (—) dx
Q Q\V (36)

1/2
— Junll . e,
Wo’ (Vs/z) 14 t
ST S
t = > 1< 7 <s.

2(s—71) " 2(s—1)
From (34), (35), (36) we deduce that there exists a subsequence of
{un}, still denoted {up}, and u € WOI’S(VS/Q) N L%() such that up —
u almost everywhere in €2, as a consequence of the Rellich Theorem,
v(z)Y2Du, — v(z)Y/? Du weakly in L*(Q). Moreover, by Theo-

rem 2.1 from [7], we have aij(x, Ty, (up)) — (z,u)
v

(z)1/? V(z)i2 "
strongly in L+ 1 (Q).
From this, replacing v by ¢ € C§°(2) into (33), and passing to the

limit when A goes to infinity, we have

/Qa,-j(x, U) Ug; Pr; AT = /Qf v dz, Yo e C5O(),

and the proof is complete. O

Using (21) and Theorem 3.7, by argument analogous to that in The-
orem 1.3, we obtain Theorem 1.4.
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