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On the Construction
of Compatible Data
for Hyperbolic-Parabolic

Initial-Boundary Value Problems
A. MiLANT ®)

SUMMARY. - We study various questions related to compatibility con-
ditions for a class of hyperbolic-parabolic initial-boundary value
problems.

1. Introduction

1.1. In our paper [10] we considered global existence and comparison
results for solutions of the quasilinear dissipative hyperbolic initial
value problem

{ EUL + Ut — ZZj:l azJ(Vu)azaju = f(x,t), (1)
w(@,0) = uo(z),  w(0) =w(z),

for small £ > 0, and those of the formal limit parabolic initial value
problem corresponding to € = 0, i.e.

vy — ZZ -, a;;(Vv)0;0,v = g(z, 1),
{ v(z,0) :] vi)(x]). ’ 2)

We considered smooth solutions in the sense of Sobolev-Kato (as de-
scribed in Sections 3 and 4 below), corresponding to data {f, ug,u1}
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(respectively {g,vo}), of arbitrary size: in this case, blow up of solu-
tions in finite time may be expected for both problems, but in [10]
we were able to show that, roughly speaking, global solvability of
problem (1) and that of (2) are equivalent, in the sense that problem
(2) is solvable on an arbitrary time interval [0, 7] for arbitrary data if
and only if the same is true for problem (1) and ¢ is sufficiently small.
(Local in time solvability of both problems (1) and (2) for arbitrary
data follows from Kato, [4]; if the data are “sufficiently small”, a
direct application of Matsumura’s technique of [7] shows that both
problems (1) and (2) are globally solvable).

1.2. We recall that, in [10], the “if” part is proven by controlling
a singular convergence process as € — 0, while the “only if” part is
proven by introducing the change of variable y = u—wv, and applying
to the problem satisfied by y the aforementioned global existence
result of Matsumura. To carry out this procedure, the first step in
both cases consists in the construction of a suitable set of data for
the type of problem we assume we can solve globally, starting with
the given data of the problem we wish to solve globally; for the pure
initial value problems (1) and (2), this essentially amounts to the
choice of a suitable approximation of the data that are given.

It is of course natural to ask to what extent we can follow an
analogous procedure when we consider problems (1) and (2) in a
bounded domain Q C R", with appropriate boundary conditions. In
this case, the question is complicated by the requirement of compat-
ibility conditions on the data at the boundary 0f2 for ¢ = 0, which
are necessary for the solvability of either problem: we have then to
deal with both the order and the type of the compatibility condi-
tions. The latter depends of course on the problem we consider (we
shall indeed speak of “hyperbolic compatibility conditions”, HCC in
short, for problem (1), and of “parabolic compatibility conditions”,
PCC in short, for problem (2)), while the order depends, for either
problem, on the regularity desired of the solution. Both these ques-
tions arise naturally if we try to follow the approximation procedure
of [10]: indeed, if we want to approximate a given set of data (of ei-
ther problem) by a sequence of smoother data, we must ensure that
these satisfy the higher order compatibility conditions of the proper
type. In addition, if we want to construct a suitable set of data for
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one type of problem, starting with the given data of the other prob-
lem, we must also be able to do so respecting the corresponding type
of compatibility conditions.

1.3. These are precisely the questions we investigate in this paper,
in preparation for the extension of our equivalency result of [10] to
initial-boundary value problems, which we shall pursue in a follow-
ing paper. In this respect, we remark that the fact that problems (1)
and (2) are quasilinear does not play any essential role; indeed, in
the sequel we shall only deal for simplicity with the linear problems,
and will indicate the necessary modifications for the quasilinear case
when appropriate. Finally, again for simplicity, we shall only con-
sider homogeneous Dirichlet boundary conditions at the boundary;
we believe that other types of boundary conditions can be treated in
a similar way.

This paper is organized as follows: in Section 2 we introduce no-
tations and prepare several technical results needed in the sequel;
in Section 3 we consider the hyperbolic problem and, given data
{f, uo,u1} satisfying the HCC of a certain order, we show how to con-
struct approximating smooth data {f?, ug, ul} satisfying the HCC of
higher order; in Section 4 we do the same for the parabolic problem;
finally, in Section 5 we show how to suitably construct one set of
data, satisfying the HCC or the PCC, from given data satisfying the
other type of conditions, i.e. the PCC or HCC.

2. Preliminaries

2.1. In the sequel, 2 C R” is a bounded open domain with smooth
boundary 0. For integer m > 1 we denote by |[|.||,, the norm in
the Sobolev space H™((2), and set H(Q) = H™(Q) N H{(Q). We
also set L2(2) = H°(Q), and denote by ||.|| its norm; finally, we set
H*®(Q) = Np>oH™(£2). The following density result can be proven
exactly as in [12], where only the case m = 1 was considered:

PROPOSITION 2.1. For all m > 1, H®(Q) N H}(Q) is dense in
H™(Q).

Given T' > 0 and 7 € (0,7), we set Q@ = Q x (7,7T), and will
abbreviate Q = Qo = Q2% (0,T). If u = u(z,t) is defined in Q, we de-
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note space derivatives by dju = 0u/dz;, and set Vu = {01,...,0n };
time differentiation is denoted by dyu = du/0t, and we write u; and
uy instead of d;u and 8,52u

In the sequel we shall need the following modification of a result
by Shibata and Kikuchi, [14]:

PROPOSITION 2.2. For 0 < j <m, let uj € H™ J(Q). There exists
a function u € NTL C7(R; H™ 7 (R)), such that

for 0 <j<m, (0ju)(+,0) = u (3)

fr0<j<m, supl(@fu)(Dllmy < OD lhualbre (4)
€ _

T C m
vre@D), [ lertueolta < 23 lulkho,
T k=0

with C > 0 independent of u, T and T.

Proof. We adapt the argument of [14], Theorem Ap5. After extend-
ing the functions u; to v; € H™ 7/ (R"), we set

m

P(¢ 1) :Z (exp{(i — 1)1 + 1)(1 + [€%) 2t} g (1 + [€]%) 77724, (6),
(6)

where i = v/—1, © denotes the Fourier Transform of v, and the (m +
1)2 numbers gji are defined as the solutions of the linear algebraic
system

Z;’;O((Z -1+ 1))ijl = Ok (7)
7,k=0,...,m
(5gk = 11if j = k, = 0 otherwise). It is then easy to verify that

(8? ¥)(-,0) = v; for 0 < j < m; defining then v(z,t) by 9(§,t) =
P(&, 1) and calling u = u(z,t) the restriction of v to 2, we easily see
by Parseval’s formula that v has the desired properties. In particular,
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(5) follows from the estimates

T
/ 1@ 1) ) 2dt
<o [ @aieRymiep
x/ exp{—2(1 + |¢[2)/2¢}dt de
<€ Z/ (L -+ €)™ 3+1/2]0;(€)? exp{—2(1 + [¢[) 27} de,

(8)
and from the inequality
sup (1-+ %)% exp{—2(1 + |¢) 27} < 9)
£ERN 67'
O

REMARK. In a similar way, we can prove that if v; € H™%(Q)
for 0 < j < [%], there is a function v € HEZ{)Q]CJ'([O,T];HW*ZJ' (Q))
such that (8]v)(-,0) = v; and

T C [m/2]
[ beolEade< 2 S Il Ve @), (o)
T ]:0

[m/2]

T
/0 1@ o) IR < C S llogllZ o i m=2r+1, (11)
§=0
T [m/2]
/0 @) () Baydt <C 3 gty i m=2r, (12)
§=0

we shall use estimates (3), (4) and (5) in Section 3 on the hyper-
bolic problem, and estimates (10), (11) and (12) in Section 4 on the
parabolic problem.
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3. Hyperbolic Compatibility Conditions

3.1. In this section we consider the linear hyperbolic initial boundary
value problem

eur +ur — Yo7 g @i (T, 1)0;05u = f(z,1),
u(z,0) = uo(z), ut(0) = uy(7), (13)
u('at)|ag =0,

with € > 0, f given in @, and ug, u; given in Q. Following Kato, [5],
we consider solutions of (13) in the spaces

Xim(0,T) = N7LoCY ([0, T]; H™ 7 ($2)

for sufficiently large integer m (at least so that such solutions are also
classical ones, by Sobolev’s imbedding theorems). We shall assume
that the coefficients a;; in (13) are smooth and symmetric (i.e. a;; =
aji), and satisfy the uniformly strong ellipticity condition

n
Jv>0V(z,t) €Q, VgeR", Z aij(ac,t)qiqj > vlg?. (14)
ij—=1

From Kato, [5] (Theorem 12.1), we have

THEOREM 3.1. Let s €N, s > [%] + 2, and assume that

HAl) a;; € 0871(6): f € Xs_l(O,T), aff € L2(Q)7 Up € H:+1(Q);
u; € Hf(Q),

HA2) the coefficients {ai;} and the data {f,uo,u1} satisfy the HCC
of order s described below.

There ezists then a unique u € Xs11(0,T), solution of (13) (also in
the classical sense).

3.2. We recall the definition of HCC of order s: following Kato, [5],
we introduce the operator

n

Lt)u= )" ai(-,t)0;05u (15)

i,j=1
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and, given smooth data {f,uo,u1} and coeflicients {a;;}, starting
with ug and u; we generate a sequence of functions {uy} on Q by
the recursive definition

eupra = (OF )(-,0) — ups1 + Agluo, ..., ux), k>0,  (16)
where
Eoan
IR o (J) GIT) Ok 5 (17)
=0
i.e., for instance,
eup = £(,0) —ur + Y ag;(-,0)0;;u0, (18)
2,7=1
eus = fr(-,0) —u2 + Z a;j(-,0)0;05u1 + (19)
ij=1
+ ) (Braij) (-, 0)0;0;u0,
2,7=1

etc. The following result is easily proven by induction on k, recalling
that H* 1(£2) is an algebra under pointwise multiplication if, as we
assume, s > g + 1:

PROPOSITION 3.2. Let s € N, s > [%] + 2. Under assumptions
(HA1) of Theorem 3.1 (with 8; f € L*(Q) not required), the functions
{ug} are well defined at least for 0 < k < s+1, with u, € H*F17F(Q);
moreover, for 2 < k < s+ 1 there exists Cy > 0 independent of the
data {f,uo,u1} such that

k—2

k—1
||uklls+1-k < Ci {Z 1B ) 0ls—1-r + Y ||ur||s+1—r} - (20)
r=0

r=0

Proposition 3.2 allows us to introduce the following

DEFINITION 3.3. In the same assumptions of Proposition 3.2, we
say that the coefficients {a;;} and the data {f,uo,u1} of (13) satisfy
the Hyperbolic Compatibility Conditions (HCC) of order s at O for
t=0

up € HT17F(Q) for 0 <k <s. (21)
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We remark that in the sequence {uy} defined by (16) we also have
a well defined function us,; € L?(2). The HCC (21) are necessary
for the solvability of (13) in X1(0,7), for if u € X;541(0,7") solves
(13), then in fact u, = (fu)(-,0) € HH1k(Q) for 0 < k < s+1, s0
its trace on 02 is defined at least for 0 < k < s, and must therefore
vanishes.

3.3. This last remark allows us to define the HCC also for the initial
boundary value problem for the quasilinear equation

n
e+ ur— »_ bij(x,t,u, Vu,u)0;0u = f(=,1), (22)
ij=1

for smooth, symmetric coefficients b;; = b;j(z,t,p,q1,..-,qn,7) :
R?"+3 _ R Indeed, assuming that such problem has a local solu-
tion u € X541(0,7) for some 7 € (0,7 (as provided e.g. by Theorem
14.3 of Kato, [5]), we can set

a;j(z,t) = bij(z,t,u(z,t), Vu(z, t), u (z, 1))

and proceed to compute the functions {ux} as in (16); we realize
then that this sequence {ug} is completely determined by the data
{f,uo,u1}, and does not require the actual existence of a solution
to (22). For example, introducing the vector function (y = (p(z) €
R?"*+3 on Q by (o = {-,0,uq, Vug,u1}, (18) and (19) now take the
form

n
eup = f(-,0) —ur + Y bi;(Co)Bidjuo,
ij=1

n
guz = fi(-,0) —ug + Z bij(C0)0i05u1 + Us,
ij=1

where
Us = > {(8ubi) (o) + (Fpbis) (Co)ua + (Vgbis) (Go) - Vur +

ij=1
+ (Orbij) (Co)u2}0;0;u0.



ON THE CONSTRUCTION etc. 175

We can also show that a corresponding version of Proposition 3.2
still holds if the coefficients {b;;} are at least of class C*~!(R?"T3),
so that Definition 3.3 again makes sense.

3.4. We now come to the main question of this section, that is,
the construction of more regular data for problem (13) that not only
approximate the given data {f,ug,u1}, but also satisfy the HCC of
higher order. As a motivation, other that the applications we de-
scribe in Section 5, we mention that this question most commonly
occurs when existence results like Theorem 3.1 are proven by energy
methods, first establishing a priori estimates on more regular solu-
tions (which it is possible to differentiate), and then resorting to a
density argument. The problem of constructing compatible regular-
ising data was partially addressed in [12], where we showed how to
construct data satisfying HCC of order 2 from data satisfying HCC
of order 1; here, we generalize the technique presented in [12], to
obtain data satisfying HCC of arbitrary order. We claim:

THEOREM 3.4. Under the same assumptions of Theorem 3.1, there
exist sequences {agj}, {f%} c C=®([0,T); H*(Q)) and {ul}, {u}
C H*®(2) N H(Q) such that {afj} and {f°,ud,

ul} satisfy the HCC of order s + 1, and

HC1) afj — a;j in C*~1(Q),

HC2) &f°—olf in C(0,T]; H"'77(Q)), 0<j<s—1,
HC3) 05f° — 0¢f in L*(Q,) V7 e (0,T),
HC4) ud — ug in H5t1(Q),

HC5) uf — u in H*(Q).

(23)

Moreover, if u® solves equation (13) with coefficients {a?j} and data
{f‘s,ug,u‘{}, then for all T € (0,T),

W = u in X,(0,7)N Xep1(7,T) as d — 0. (24)

Proof. Following Tkawa, [2], we select sequences {afj} and {h%} from
C>([0,T; H*°(2)) such that

afj — G, R — f in X, 1(0,7) NL%(Q). (25)
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By Proposition 2.1 we can also choose, for 0 < j < s + 1, sequences
{ul} € H®(Q) N H () such that

ug — u; in  HTI(Q) (26)

(for j = s + 1 we simply use the density of C§°(€2) in L%(12)). We
define then for 0 < j < s — 1 the functions )\5 )\5( ) on Q by

X = OB C,0) = wf + Affud, ) —eufy (20)

where Ag[. ..] is defined as in (17), with L(¢) replaced by

n

L‘s(t)’u, = Z a?j(-,t)aiaju.

i,j=1

Obviously, )\35- € C*°(); hence, by Proposition 2.2 we can choose
functions ® = ¢°(z,t) such that

@) (,0) =28 for  0<j<s—1: (28)
recalling (6), we see that ¢® € C®°(R; H*®(Q)). To conclude, we set
fo=h" -y (29)

then, (HC1) follows by Ascoli-Arzela’s Theorem, and to verify (HC2)
and (HC3), by (29) and the second of (25) it is sufficient to show that

o’ -0 in C(O,THH(Q), 0<j<s—1, (30)
¢’ -0 in  L*Q,), 7€ (0,T). (31)

To this end, we recall estimates (4) and (5) of Proposition 2.2, ac-
cording to which

s—1
sup [|(8] ") (5 )l[s-1-5 < C Y 11X lls-1-5 (32)

0<t<T =0

for 0 < j <s—1,and, for 7 € (0,7),

T
/II(BEW) t)||*dt < — ZIIXSHH], (33)
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next, we see that, by (27), (25) and (26),
X = (8] (- 0) — wjpr + Ajfuo, - -, uj] — eujo

in H5~177(Q) as § — 0. By the assumed HCC of order s, (16) implies
that A — 0 in H*~'77(Q2), so that (30) and (31) follow from (32) and
(33). Next, (HC4) and (HC5) are true by construction, and to verify
that {a%} and {f°,ud,u]} satisfy the HCC of order s+ 1, according
to (16) we define functions {z,‘z} for 0 < k < s+ 2 recursively, setting
zg:ug, z‘f:u‘ls and, for 0 < k <s—1,

240 = (OF FO)(,0) — 24y + Ap[20, . .., 2p). (34)

We verify then, by induction on k, that z,‘z = ui for 0<k<s+2:
indeed, this is true for £k = 0 and k = 1; then, by (34), the induction
assumption, (29), (28) and (27) we have

ez = (OFRO)(-,0) — (0F0)(-,0) — 2p 41 + AQ[2D, ..., 2p) =
= (8fh6)(‘,0) - /\i - “24-1 + Ai[ug, e 1“’2] = 5“2+2-

Consequently, since ug\ oo = 0 by construction, the HCC of order
s + 1 are satisfied. Finally, (24) follows from known results on the
strong well-posedness of hyperbolic initial boundary value problems
(see e.g. Kato, [5], Chapter 1.5, for the linear problem, and [13] for
the quasilinear one). Theorem 3.4 is thus completely proven. O

To conclude this section, it is sufficient to remark that a repeated
application of Theorem 3.4 will allow the construction of data satis-
fying HCC of arbitrary order.

4. Parabolic Compatibility Conditions

4.1. In this section we consider the linear parabolic initial boundary
value problem

v — Y i =1 @i (7,1)0;050 = g(, 1),
v(z,0) = uo(z), (35)
U("ﬂ'aﬂ = Oa
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for given data ¢ in @ and vy in . Following [11], we consider solu-
tions of (35) in the spaces

HZ(Q) = {ue H™™(Q) | 0" u e C(0,T); H" "1 (@)) },

with m’ = [Z1] ([2] denoting the integer part of z), and m a
sufficiently large integer. We recall from Lions-Magenes, [6], Ch. 4,
that

H™™2(Q) = L2(0,T; H™(Q) N H™?(0, 75 L°(Q)),  (36)

and that, setting

H™(Q) = {w € L2(0,T; H™ () | 7" w € L2(0, 75 H™ ™" (@)},

with m” = [mTH], by imbedding and trace theorems we have in fact
that 3
H™Q) = HMQ) =H™™*Q)  ifmeven,  (37)

A™Q) = HMQ) =~ H™™?(Q)  if modd. (38)

Assuming again the uniformly strong ellipticity condition (14), from
[11] we have

THEOREM 4.1. Let s €N, s > [%] + 2, and assume that
PA1) a;, g € HJ(Q), vo € HIT(Q),

PA2) the coefficients {a;;} and the data {g,vo} satisfy the PCC of
order s described below.

There exists then a unique v € HT2(Q), solution of (35).
Again, v is also a classical solution, because of the embedding

H:P2(Q) — CHelta/2(Q), a = s —1—2 > 0 (see e.g. Mazja, [8],
or a direct proof in [3], Proposition 3.8, via the imbeddings

HZ?(Q) — {u € L*(0,T; H*(Q)) | un € L*(0, T; H*7*() }
N 02+a,1+a/2(§))'
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4.2. The definition of PCC of order s in Theorem 4.1 is similar
to that of the hyperbolic case: namely, we recall the definition (15)
of L(t) and, given smooth data {g,vo} and coefficients {a;;}, start-
ing with vy we generate a sequence of functions {v} on Q by the
recursive definition

vgr1 = (0Fg)(-,0) + Ag[vo, -, vx], k>0, (39)
We can then prove by induction

PROPOSITION 4.2. Let s € N, s > [%] + 2. Under assumptions
(PA1) of Theorem 4.1, the functions {vi} are well defined at least for
0 <k < [£H], with v, € H*T172%(Q); moreover, for 1 <k < [£5]
there exists Cy, > 0 independent of the data {g,vo} such that

k-1 k—1
l[vk|ls+1-2k < Ck {Z 1107 9) (-, 0)[|s—1-2r + Z ||UTHS+1—2T} .
r=0 r=0

(40)

Proposition 4.2 allows us to introduce the following

DEFINITION 4.3. In the same assumptions of Proposition 4.2, we
say that the coefficients {a;;} and the data {g,vo} of (35) satisfy the
Parabolic Compatibility Conditions (PCC) of order s at 9 fort =0
if

vy € HH1=2R(Q) for 0 <k < [g] . (41)

We remark that if s = 2r+ 1 is odd, in the sequence {vy} defined
by (39) we also have a well defined function v, 11 € L?(2). The actual
number of conditions in (41) is determined by the requirement that
s+ 1 — 2k > 1, which translates into [342'—2] conditions. As in the
hyperbolic case, the PCC (41) are necessary for the solvability of
(35); they can be defined in a similar way for the initial boundary
value problem for the quasilinear equation

n
Ut — Z bij(xatava V'U)azajv = g(ﬂ),t), (42)
ij=1

with a corresponding version of Proposition 4.2 still holding.
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4.3. As for the hyperbolic case, we now show how to construct more
regular data for problem (35) that not only approximate the given
data {g, v}, but also satisfy the PCC of higher order. We claim:

THEOREM 4.4. Under the same assumptions of Theorem 4.1, there
exist sequences {afj}, {g°} € C®([0,T); H*(Q)) and {v]} C H>®(Q)
NHE(Q) such that {agj} and {g°,vQ} satisfy the PCC of order s +1,
and PCl) af; —a;; in H*(Q),
PC2) 957—>g in H%(Q), (43)
PC3) v§ —wy in HT(Q).

Moreover, if v° solves equation (35) with coefficients {afj} and data
{g°, v}, then for all T € (0,T),
s v in H2(Q,) asd—0. (44)

Proof. The proof is analogous to that of Theorem 3.4; we shall only

report the relevant changes. Again, we select sequences {a?j}, {h} C
C*([0, T); H*(Q)) and, for 0 < j < [#5L], {09} € H>(Q) N H(Q)
such that afj — a;; in H3(Q), B’ — g in H}(Q), and ’UJJ' — vj in
HsH1=21(Q) (if s = 2r + 1, for j = r + 1 we invoke the density of
C§°(Q) in L%(Q)). We define then for 0 < j < [$5]

X = (9R0)(,0) 4+ Al o] — o, (45)
so that /\g € C*(Q), and, by Proposition 2.2, we determine {¢°} C
C*(R; H*(€)) such that
) —1
@0 =% wrosi< PR ao)

Finally, we set g° = h® — %, and verify the conclusions of Theorem
4.4 in the same way as for Theorem 3.4. The only non trivial step is
to verify that

¢ =0 in H(Q), T€(0T), (47)
which, recalling (37) and (38), we prove by showing that in fact

© =0 in HQ,). (48)
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This requires showing that

@ =0 in L7, T; H*(Q)), (49)
g’ -0 in L*(r,T; L*(Q) if s=2r, (50)
I -0 in LY, T;H Q) if s=2r4+1: (51)

this is done recalling estimates (10), (11) and (12), with m = s — 1,
and that, for 0 < j < [551], [[A][s-12; — 0 as § — 0, because of
the assumed PCC of order s. Finally, (44) follows from the strong
well-posedness of parabolic initial-boundary value problems in the
spaces HZ(Q), which can be proven as in [9] (Theorem 3). Theorem
4.4 is therefore completely proven. O

To conclude this section, it is sufficient to observe that repeated
application of Theorem 4.4 allows us to construct approximating
data satisfying PCC of arbitrary order.

5. Perturbation of Compatibility Conditions

5.1. In this last section we come to the results that will allow
us to show, as mentioned in the Introduction, the equivalency be-
tween the global solvability of the initial-boundary value problems
for the quasilinear parabolic equation (42) and for its hyperbolic
perturbation (22), with coefficients b;; not depending on u;, and €
small. Namely, given a set of data, i.e. either the “hyperbolic” data
{f,up,u1} or the “parabolic” ones {g, vy}, satisfying the correspond-
ing compatibility conditions, we show how to construct a set of data
of the other type (i.e. respectively parabolic or hyperbolic), which
not only satisfy the corresponding compatibility conditions, but also
approximate the given data, as € — 0, in a suitable sense that takes
into account the initial layer at ¢ = 0, due to the loss of the initial
condition on u;. Again, we will only consider the linear problems;
however, it turns out that to carry out these constructions in a way
that will be convenient in the quasilinear case, we need to consider
more regular data satisfying higher order compatibility conditions:
this is an additional application of the results of Theorems 3.4 and
4.4. Still, to avoid unnecessary complications, we shall consider more
regular coefficients for both problems (13) and (35), assuming that
ai; € C=([0, T); H*(%).
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5.2. We first consider smooth hyperbolic data {f,ug,u1} satisfying
the HCC of higher order s + 1; thus, without loss of generality (be-
cause of Theorem 3.4), we assume that f € C*°([0,T]; H*(Q2)) and
that, if the sequence {uy} is defined recursively by (16),

uj € H(Q) NH(Q)  for 0<j<s+2. (52)
We claim:

THEOREM b5.1. There ezist functions g € C*®([0,T]; H*(Q)) and
vo € H®(Q) N HE(Q) such that {g,vo} satisfy the PCC of order
2s+2, and for all T € (0,T) there exist M > 0 and g9 > 0 such that
for all € € (0,e0],

I = 9llx. sy +110(f = 92,y < Me. (53)

Proof. By Proposition 2.2, we can choose ¢ € C®(R; H*® (2)) such
that

B]$)(-,0) =& lujp,  for 0<j<s; (54)
we set then vy = ug and
t
ofe.0) = 2.0~ (2.2), (55)
and define the functions {vy,...,vs+1} recursively by (39), i.e.
Uj+1 = (agg)(a()) +Aj[U05'-',Uj], 0<j<s. (56)
We shall show that
vj = Uj for 0<j<s+1, (57)

and therefore, since each u; vanishes on 012, the data {g,vo} satisfy
the PCC of order s + 2 (which, recalling the remark after Definition

Est2)12| — 5 4 2 conditions, as in (57)). We
prove (57) as usual, by induction on j: for 57 = 0, (57) is true by
construction; then, recalling (56), (16), (55) and (54), we have

4.3, calls exactly for [

vji1 = B1F)0) — 5 (D18)(0) + Agfuos -] =

= EUjqg T Ujy1 — EUj42 = Ujql-
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Finally, estimate (53) is proven as estimates (4) and (5) of Proposition
2.2; indeed, we shall prove that

sup [|(8]¢)(-,t/e)lls—1—j < Ce* e ™, 0<j<s—1,(58)
T<t<T

T
/ 1@26)(- t/e)|Pdt < €32 =271, (59)

with C independent of ¢; hence, to prove (53) it is sufficient to take
¢ so small that, for instance, €% e~7/¢ < 1. To prove (58), recalling
(54) and the proof of Proposition 2.2 it is sufficient to estimate

sup ||(0/9)(,t/e)l3_1_;
T<t<T

<O sup Z/ 4 ey ke 2 A2 ()

T<t<T

k,1=0
-exp{—2(l +1)(1 + |E|2)1/2t/5}d5
s—1
<Ce it Z 212K |ug 21y,
k=0

whence (58) follows, recalling that 5 < s — 1. Similarly, to show (59)
we estimate

I = Z/ / 1 + |£| S —k —25+2k‘+2|u (£)|Qe_2(1+|§|2)1/2t/5d§dt

<oZ / (14 [EP) iy (€) P2 2431+ [g2) 12

—201+[E)! /e ge

<C sup (1+ ‘§| )1/2 —2(1+|¢|? )1/27/5}26—25+2k+3||uk+2||5 o 1-
EER™ k=0
Setting r = (14 [¢[>)*/2 > 1 and a(r) = r e~ "7/%, we see that « has
a maximum at ro = o; thus, if € is sufficiently small, we can have
ro < 1 and therefore a(r) < a(1) = e 27/¢.
proceed with

Consequently, we can

s—1
I<Ce /e e 2R3y || ,_g_y < Cr ¥ 2e T/F,
k=0
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from which (59) follows, ending the proof of Proposition 5.1. O

We remark that if the smooth data {f,ug,u;} are in fact from a
sequence {f°, ug, ul} as in Theorem 3.4, the proof of Proposition 5.1
shows that the constant M in (53) can be chosen independent of §.
Moreover, the writing of (55) as f(z,t) = g(z,t) + ¢ (=, g) exhibits
the well known and expected phenomenon of the splitting of the time
variable in the hyperbolic problem (13) into a slow scale variable ¢
and a fast scale variable 2 This is due to the loss, in the singular
limit problem (35), of the initial condition on u;, which gives rise to
an initial layer at ¢ = 0: this is indeed described by estimates (58) and
(59). (For more details on this aspect of the singular perturbation,
se e.g. Chang-Howles, [1]).

5.3. We now consider smooth parabolic data {g, v} satisfying the
PCC of higher order 2s + 2; thus, without loss of generality (because
of Theorem 4.4), we assume that g € C*°([0,T]; H>*(2)) and that,
if the sequence {vy} is defined recursively by (39),

vi € H°(Q)NHQ) for 0<j<s+1. (60)
We claim:

THEOREM 5.2. There ezist functions f € C*®([0,T]; H*(Q)) and
ug, u1 € H®(Q) N H(Q) such that {f,ug,u1} satisfy the HCC of
order s + 1, and

f = gllx,_r ) O (f — 9L, < Me, (61)
with M > 0 independent of € and 7 € (0,T).

Proof. Again by Proposition 2.2, we can choose ¢ € C®°(R; H* (2))
such that

(8g¢)(-,0) = Vj42 for 0<j<s-—1; (62)

we set then f = g + ¢, ug = vy, u1 = v1, and define the functions
{ug,...,usy2} recursively by (16), i.e.

EUjt2 = (6ff)(,0) —Uj+1 + Aj[u(b R ,Uj], 0<j<s—1 (63)
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It is then easy to show, again by induction, that
uj = v; for 0<j<s+1, (64)

and, therefore, that the data { f, ug, u1 } satisfy the HCC of order s+1.
Finally, estimate (61) follows from estimates (4) and (5), according
to which, by (62), we have

_ T
sup (1040l 15+ [ @0 Pt

0<t<T
1 251
<C (1 + ;) > llevkrall3-i (65)
k=0

1 2 s+1
— 20 (1+ ;> > vkl 241
k=2
|

We remark that, contrary to the previous case, if the smoother
data {g,v9} come in fact from a sequence {g°,v} as in Theorem
4.4, estimate (65) shows that we can no longer guarantee that the
constant M in (61) be bounded independently of § as § — 0; in fact,
in general we have that M = M(J), with M(§) — 400 as § — 0.

5.4. As a last application, we confirm that the choice of parabolic
data {g,vo} provided by Theorem 5.1 is exactly the one that would
allow us to try and extend the “only if” part of our equivalency
result of [10] to the initial-boundary value problem for the quasi-
linear equations (1) and (2) with homogeneous Dirichlet boundary
conditions on 0% (of course, Theorem 5.2 would take similar care
of the “if” part). Thus, we assume that the initial-boundary value
parabolic problem (2), with the boundary condition V0on = 0, can

be solved in H{*2(Qr), s > [%] + 2, for arbitrary T > 0 and data
{g,v0} satisfying the PCC of order s and, given arbitrary hyperbolic
data {f,ug,u;1} satisfying the HCC of order s, we wish to solve the
corresponding problem (1) in X;41(0,7). By Theorem 3.4, we can
assume {f,ug,u1} to be smooth, and to satisfy the HCC of higher
order s + 1; by Theorem 5.1, we select then suitable parabolic data
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{g, vy} satisfying the PCC of order 2s+2. If v € H2*+4(QQ) is the cor-
responding global solution of the parabolic problem, we let y = u—wv:
y would then solve the hyperbolic problem

ey + Yt — Y j=1 @i (Vo + Vy) 30y = @

= f—g+ 31100 (Vo + Vy) — a;(V0)]0,05v — e vy,
y(.’E,O) = Oa yt(O) = Oa
y('at)|3Q =0,

(66)
where the stated initial conditions are taken according to (57). Since
the initial-boundary value hyperbolic problem is solvable at least
locally, i.e. in X41(0, 7) for some 7 € (0,7, so is (66) and, therefore,
its data {®, 0,0} must satisfy the HCC of order s; indeed, given (57),
we expect that, in fact, {®,0,0} satisfy the HCC of higher order
s+ 1, because

ye = (Of (u—))(-,0) = up —vp = 0 (67)

in Qfor 0 < k < s+ 1. We want now to show that, naturally,
conditions (67) hold independently of the actual existence of even a
local solution to (66), that is, when the functions {y;} are defined
recursively as in (16). Indeed, since obviously

Béc ([aij(Vv + Vy) — az-j(Vv)]aié)jv + aij(Vv)aiajv)
= 8,{“ (aij(VU + Vy)aiaj (v+y) — aij(V’U)aiajv) ,

in accord with (16) and (66) we define the functions {yx} recursively,
setting yo = 0, y1 = 0 (in accord with (57)), and, for k£ > 0,

eyrt2 = (OF ) (- 0) — (8F9)(-,0) — Yrt1 — eVkp2+ (68)
+Ak[U0 +Y0,---,Vk +yk] —Ak[’l)(),...,’l)k] :
it is then immediate to check, by induction on k, that
Yk = Up — Vg for 2<k<s+1 (69)

and, therefore, y, = 0 by (57), showing the asserted consistency with
(67). Indeed, assuming that (69) holds for 2 < k < r+1 < s, so that
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Yk = up — vx = 0, recalling (55) we have from (68) that

1
EYkt2 = 67(3{¢)(',0) —0—cvy +
+ A;fvo +0,...,v + 0] — Ay [vo, . .., vr]

= EUr42 — €V,

recalling (54).
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