ADDENDUM to the paper The Bounded-Open Topology and its Relatives

S. Kundu and A.B. Raha (*)

SUMMARY. - Addendum to the paper The Bounded-Open Topology and its Relatives, Rendiconti dell'Istituto di Matematica della Università di Trieste 27 (1995), 61–77.

In this short note, we would like to provide detailed clarification of a few claims and rectification of two minor errors made in the aforesaid paper cited as [1]. Throughout this note X stands for a Tychonoff space and C(X) is the set of all real-valued continuous functions on X while $C^*(X) = \{f \in C(X) : f \text{ is bounded } \}$. A subset $A \subset X$ is called bounded if f(A) is a bounded subset of $\mathbb R$ (the real line with the usual topology) for each $f \in C(X)$. Let $\mathcal G$ be a collection of some bounded subsets of X satisfying the condition: if $A, B \in \mathcal G$, there exists a set $C \in \mathcal G$ such that $A \cup B \subseteq C$ holds. To define the $\mathcal G$ -open topology on C(X), we take the subbasic open sets of the form

 $[A, V] = \{ f \in C(X) : \overline{f(A)} \subseteq V \}$ where $A \in \mathcal{G}$ and V is open in \mathbb{R} .

We denote the space C(X) with \mathcal{G} -open topology by $C_{\mathcal{G}}(X)$. At the end of the first paragraph of [1, p. 64], it has been noted that for the point-open and compact-open topologies, V can always be taken

Key words: bounded set, \mathcal{G} -open, continuum hypothesis.

^(*) Authors' addresses: S. Kundu: Department of Mathematics, Indian Institute of Technology, Delhi, New Delhi 110 016 (India). A.B. Raha: Division of Theoretical Statistics and Mathematics, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035 (India).

 $[\]textbf{1991 Mathematical Subject Classification:} \ 54\text{C}35, \ 54\text{D}60, \ 03\text{E}50.$

as a bounded open interval. In general for \mathcal{G} -open topologies this property can actually be assumed if we put a mild restriction on \mathcal{G} . First we need the following result.

LEMMA 1.1. Let $f \in [A, V]$ where $A \in \mathcal{G}$ and V is open in \mathbb{R} . Then there exist bounded subsets A_i of X and bounded open intervals W_i in \mathbb{R} $(1 \le i \le n)$ such that $f \in \bigcap_{i=1}^n [A_i, W_i] \subseteq [A, V]$.

Proof. Let $z \in \overline{f(A)}$. There exists $\epsilon_z > 0$ such that $z \in (z - \epsilon_z, z + \epsilon_z) \subseteq [z - 2\epsilon_z, z + 2\epsilon_z] \subseteq V$. Since $\overline{f(A)}$ is compact, there exist $i = 1, 2, \ldots, n$ such that $\overline{f(A)} \subseteq \bigcup_{i=1}^n (z_i - \epsilon_{z_i}, z_i + \epsilon_{z_i}) \subseteq \bigcup_{i=1}^n [z_i - 2\epsilon_{z_i}, z_i + 2\epsilon_{z_i}] \subseteq V$.

Let $V_i = (z_i - \epsilon_{z_i}, z_i + \epsilon_{z_i})$, $W_i = (z_i - 2\epsilon_{z_i}, z_i + 2\epsilon_{z_i})$ and $A_i = \operatorname{cl}_A(A \cap f^{-1}(V_i))$ for $i = 1, 2, \ldots, n$. It is routine to check that $A = \bigcup_{i=1}^n A_i$, and $f \in \bigcap_{i=1}^n [A_i, W_i] \subset [A, V]$.

A family \mathcal{G} of bounded subsets of X is said to be hereditary with respect to closed domains if it satisfies the following condition: whenever $A \in \mathcal{G}$ and B is a closed subdomain of A, then $B \in \mathcal{G}$ as well.

COROLLARY 1.2. Suppose \mathcal{G} is a family of bounded subsets of X hereditary with respect to closed domains.

Then the collection $\{[A, V] : A \in \mathcal{G}, V \text{ a bounded open interval in } \mathbb{R}\}$ forms a subbase for $C_{\mathcal{G}}(X)$.

Now we are going to give a clarification on Theorem 2.5 in [1]. The proof of this result (with a correction yet to be made) given in [1] can only work if we put a restriction on \mathcal{G} .

Theorem 1.3. Suppose \mathcal{G} is a family of bounded subsets of X hereditary with respect to closed domains. Then $C^*(X)$ is dense in $C_{\mathcal{G}}(X)$.

Proof. Let $\bigcap_{i=1}^{n}[A_i, V_i]$ be a basic open set in $C_{\mathcal{G}}(X)$ containing f where V_i 's are bounded open intervals in \mathbb{R} and $A_i \in \mathcal{G}$. Then there exists a bounded open interval (a, b) such that $\bigcup_{i=1}^{n} \overline{f(A_i)} \subseteq \bigcup_{i=1}^{n} V_i \subseteq (a, b)$. The rest of the proof is as mentioned in the proof of Theorem 2.5 in [1].

We really do not need \mathcal{G} to be hereditary with respect to the closed domain in order that $C^*(X)$ to be dense in $C_{\mathcal{G}}(X)$, but we need to change the proof.

THEOREM 1.4. For any space X, $C^*(X)$ is dense in $C_{\mathcal{G},u}(X)$. (Note $C_{\mathcal{G},u}(X)$ is the space C(X) equipped with the topology of uniform convergence on \mathcal{G}).

Proof. We show that $\langle f, A, \epsilon \rangle \cap C^*(X) \neq \emptyset$ for all $f \in C(X)$, for all $A \in \mathcal{G}$ and for all $\epsilon > 0$. Let $f \in C(X)$. Then f has a continuous extension f^{ν} from νX (Hewitt-realcompactification of X) into \mathbb{R} . Since A is bounded, $\operatorname{cl}_{\beta X} A \subseteq \nu X$ (βX is the Stone-Čech compactification of X). Let $A_1 = \operatorname{cl}_{\beta X} A$ and $f_1 = f^{\nu}|_{A_1} =$ the restriction of f^{ν} to A_1 . Note $f_1(A_1)$ is compact in \mathbb{R} and hence $f_1(A_1) \subseteq [a,b]$ for some closed bounded interval [a,b] in \mathbb{R} . Now there exists a continuous function $F: \beta X \to [a,b]$ such that $F|_{A_1} = f_1$. Let $g = F|_X$. It is easy to check that $g \in C^*(X) \cap \langle f, A, \epsilon \rangle$. \square

Since $C_{\mathcal{G}}(X) \leq C_{\mathcal{G},u}(X)$ (see [1, Theorem 3.1]), we have the following result.

COROLLARY 1.5. For any space X, $C^*(X)$ is dense in $C_{\mathcal{G}}(X)$.

Now we would like to clarify the status of Proposition 2.1 in [1]. This result should be modified to the following version.

PROPOSITION 1.6. Suppose \mathcal{G} is a family of bounded subsets of X hereditary with respect to closed domains. Then $C_{\mathcal{G}}(X)$ is completely regular. If in addition \mathcal{G} is a network, then $C_{\mathcal{G}}(X)$ is also Hausdorff.

Proof. The fact that $C_{\mathcal{G}}(X)$ is completely regular can be proved in a manner similar to the proof in [2, Lemma 5.1].

Finally we would like to make a remark on the Examples 3.14, 3.15, 3.17 of [1]. The proof of the result that $X = \beta \mathbb{N} - \{p\}$ (where p belongs to $\mathbb{N}^* = \beta \mathbb{N} - \mathbb{N}$) is not normal assumes the Continuum Hypothesis (CH). See [3] for the details. But Jack Porter has recently communicated to the authors that Sapirovskii (around 1988 but reference unknown) proved the following without Continuum Hypothesis: there exists a point p in $\beta \mathbb{N}$ such that $\beta \mathbb{N} - \{p\}$ is not normal. Consequently, it should be emphasized that in these examples the CH can be avoided.

REFERENCES

- [1] KUNDU S. and RAHA A.B., The bounded-open topology and its relatives, Rendiconti dell'Istituto di Matematica dell'Università di Trieste 27 (1995), 61–77.
- [2] McCoy R.A. and Ntantu I., Completeness properties of function spaces, Topology and its Applications 22 (1986), 191–206.
- [3] RUSSELL C. WALKER, "The Stone-Čech compactification", Springer-Verlag, 1974.

Received September 27, 1997.