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Periodic Points
of Small Periods
of mappings of B-spaces

A. TOMINAGA (¥

SUMMARY. - B-spaces are a class of uniquely arcwise connected gen-
eralized continua, containing trees. In this paper, it is shown that
a main result obtained by several authors for existence of periodic
points of small periods of mappings of trees is also true for B-
spaces.

1. Introduction

A family of subsets of a set is called a chain if it is linearly ordered
by inclusion. In the following an arc means a metric arc. A B-space
X is an arcwise connected Hausdorff space such that every chain
of arcs of X is contained in an arc of X. Obviously it is uniquely
arcwise connected, i.e., for every pair {z,y} of distinct points of X
there exists a unique arc [z,y] from z to y. The “B-space” named
by Holsztynski derives from Borsuk-Young arcwise connected space
[3].

Let S be a space and f : S — S a mapping (= a continuous
function) of S into itself. A point p € S is called a periodic point of
f of period k if p = f*(p) and p # fi(p) for 1 < i < k. The orbit of
p denoted by Orb(p) is the set {f*(p) :i=0,1,2,...}.

For n points x1,%9,...,2, (n > 3) of a B-space, the notation
(1 2 ...x,) means that if x; = z,, then z; = 29 = --- = z,, and
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if £1 # zp, then z; € [z1,2,] (1 <4 < n) and there exists a homeo-
morphism h of [z, z,] onto [0,1] such that h(z;) = 0, h(z,) =1 and
h(z1) < h(zg) < -+ < h(z,). Therefore (z1 x2 x3) is equivalent to
that z1 = 9 = z3 or x5 € [11,x3].

In this paper we shall prove the following theorem which general-
izes a main result for periodic points on trees in [1, 2, 4] to B-spaces.

THEOREM 1.1. Let X be a B-space and let f be a mapping of X
into itself. If there exist w € X with f(w) # w and positive integers
r,s such that (f"(w) w f%(w)), then f has a periodic point of period
< max{r, s}.

2. Trees

A tree T is a compact, arcwise connected Hausdorff space in which
every pair {z,y} of distinct points is separated by a third point z,
i.e., there are disjoint open sets M, N such that x € M, y € N and
T\ {z} € MUN. A space S is called locally arcwise connected if it
has a basis consisting of arcwise connected open sets. Equivalently,
S is locally arcwise connected if for every point £ € S and any
neighborhood U of x there exists a neighborhood V of x such that
any y € V' \ {z} can be joined to z by an arc in U.

LEMMA 2.1. Every tree T is uniquely arcwise connected.
LEMMA 2.2. Every tree T is locally arcwise connected.
LEMMA 2.3. Every tree T' is a B-space.

Since a tree is hereditarily unicoherent (e.g., [7, Theorem 9.1]), it
is a B-space by [3, Proposition 1.12]. (We owe to the referee this
argument.)

PROPOSITION 2.4. A space X is a tree if and only if it is a compact,
locally connected B-space.

Proof. (=) This follows at once from Lemmas 2.2 and 2.3.

(<) Let z,y be distinct points of X and z € [z,y] \ {z,y}. Let
M be the component of X \ {z} containing z and N the union of
the other components of X \ {z}. Then M, N are open and y € N,
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since X \ {z} is open and X is locally arcwise connected. Obviously
X\{z}=MUN and M NN = (. Hence z separates z and y. O

REMARK 2.5. Countable comb and Cantor’s teepee are B-spaces
but not trees.

A point e of a tree T is called an end point of T if e is an end point
of every arc of T' containing e. A tree in the sense of Nadler [5] is an
acyclic graph, i.e., a continuum (= nonempty, compact, connected
metric space) which is the union of finitely many arcs, any two of
which are either disjoint or intersect only in one or both of their end
points, and which contains no simple closed curve.

LEMMA 2.6. A tree T is a tree in the sense of Nadler if and only if
T has finitely many end points.

Proof. (=) This is obvious.

(«) Since T is a B-space, it is acyclic. Suppose that T has end
points e1,...,ex. Then T = Ule[el,ei]. For if not, there exists a
point p € T'\ U, [e1, ei]. Let A be the family of arcs one of whose
end points is e; and containing [e;,p]. Then ordering by inclusion
in A is a partial ordering. Fach chain in 4 has an upper bound,
since T is a B-space. Therefore by Zorn’s Lemma A has at least
one maximal element [e1, ] and ¢ is an end point of T' different from
e; (1 <14 < k), a contradiction. By a straightforward induction
argument on the number of end points, we can easily show that T is
a graph. O

3. Main Lemma

In this section Y is a locally arcwise connected B-space.

LEMMA 3.1. Let a,b,c,d be points in a B-space X. If (a bc), (bcd)
and b # ¢, then (a bcd).

Proof. See [2, IV, p. 36 and Proposition 3.2, p. 37].

LEMMA 3.2. If (z z y) for three distinct points z,y,z of Y, then z
separates T and y in'Y .
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MAIN LEMMA. Let f be a mapping of Y into itself. If there ex-
ist w € Y with f(w) # w and positive integers T, s such that
(f"(w) w f*(w)), then f has a periodic point of period < max{r,s}.

Proof. The idea of our proof is similar to [2, Theorem 5.1]. When
fM(w) = w or f*(w) = w, the point w is a periodic point of period
< min{r, s}, since f(w) # w.

Suppose that f"(w) # w # f%(w). Then w separates f"(w) and
f*(w) in Y by Lemma 3.2. Hence Orb(w) \ {w} is not contained in
a single component of Y \ {w}. Let C be the component of Y\ {w}
containing f(w). Since Y is locally connected by our hypothesis, C
is open in Y. Let j be the positive integer such that fi(w) € C
for each i (1 <4 < j) and f/(w) € Y \ C. Let Z denote the set
{teY\C: (fi(t)wt fi(t)) for each i (1 <i < j)}. Clearly w € Z.

We prove that Z is closed. If this is not true, then there exists
x € Z\Z. Clearly z # wand z € Y \C. Furthermore f/(z) # w. For
if not, there exist disjoint open sets U,V such that w € U, z € V,
f7(V) C U and U is arcwise connected. Since z € Z, there is a
point t € VN Z. Then we can join w to ¢t by two different arcs
in UU [w,t] U [t, f/(t)]. This is impossible, because Y is uniquely
arcwise connected. We show (f*(z) w z) for each i (1 < i < j).
Suppose on the contrary that this is not true. Then w ¢ [fi(z), z]
for some i. There exist arcwise connected open sets U,V such that
reU, fi(zx)eV,w¢UUV and f{(U) CV. Let t € UN Z. From
t € Z it follows that (f(t) wt f7(t)) and hence (f*(t) w t). Then by
uniquely arcwise connectedness of B-space, [f(t),t] C VU[f!(z), z]U
U and hence w ¢ [f*(t),t], contrary to (f*(t) w t). Similarly we have
(w z fi(z)). Hence (fi(z) w = f/(x)) by Lemma 2.6 and = € Z,
which contradicts z € Z \ Z. Thus Z is closed.

Now let A be the collection of arcs of Z with common end point
w. We must show A # 0. To do this let V be an arcwise connected
neighborhood of fJ(w) with w ¢ V and let U; (1 < i < j) be a
neighborhood of w such that U;NV = 0, f{(U;) C C and fI(U;) C V.
Let ¢ be a point different from w such that [w,#] C (V= Ui) N
[w, f7(w)]. Then [w,t] € A.

The order by inclusion in A is a partial order. We show that A
has a maximal element. By definition of B-space, every chain {a)}
of A is contained in an arc « of Y. Therefore |J, a is a subarc of «,
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one of whose end points is w. It is contained in Z since Z is closed.
Consequently it belongs to A and is an upper bound of the chain
{ax}. Thus by Zorn’s Lemma A has a maximal element .

Let e be the end point of 8 different from w. Then we have
f7(e) = e. To show this, suppose on the contrary that f7(e) # e. As
B C Z, eis a point of Z and hence (f*(e) w e fi(e)) (1 <i < j). For
each i (1 <14 < j), we can find mutually exclusive open sets U, V, W
such that e e U C Y\ C, fi(e) € V C C, fi(e) € W, f{(U) C V,
fI(U) ¢ W and both of V and W are arcwise connected. Then let
t € U be a point different from e such that [e,t] C U N [e, f/(e)]-
For every u € [e,t], we have fi(u) € V, fi(u) € W, [f*(u),u] C V U
[fi(e),u] and [u, f(u)] C [u, f7(e)] UW. Accordingly it follows that
(fi(u) wu) and (w u f7(u)). Since w # u, we have (f(u) wu f7(u))
by Lemma 3.1. Since u € Y \ C, u € Z and hence [w,t] € A as u is
an arbitrary point of [e, t], which contradicts that [w, €] is a maximal
element of A. Thus we conclude that f7(e) = e.

Since e € Z, (fi(e) w e f(e)) holds. Therefore f(e) # e. For if
not, we have fi(e) = f/(e) = e and w = e, a contradiction. Thus e
is a periodic point of f of period < j.

It remains to show that j < max{r, s}. Suppose on the contrary
that {f"(w), f*(w)} C C. Since C is arcwise connected, [f"(w),
f%(w)] € C. This contradicts that w separates f"(w) and f*(w).
Therefore we have only to consider three cases: (1) {f"(w), f*(w)} C
Y\C, (2) f(w) € C, f*(w) € Y\ C and (3) f*(w) € C, f"(w) €
Y \ C. For every case we see j < max{r, s} by the definition of j. O

4. Proof of Theorem 1.1 and Corollary 4.1

Proof of Theorem 1.1. An arc component of a space S is a maximal
arcwise connected subset of S. Young’s arc topology [8] is the topol-
ogy with the arc components of open sets of the given topology as a
basis.

Let 7 be the topology of X in the theorem and let A be Young’s
arc topology on X. Then (X, ) is a locally arcwise connected B-
space.

Moreover f: (X,A) — (X, 7) is continuous, since A is finer than
7. Since (X, 7) is Hausdorff, the image of any arcwise connected
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subset under f : (X,\) — (X,7) is arcwise connected. Hence f :
(X,A) — (X, ) is continuous.

According to the Main Lemma, f : (X, \) — (X, A\) has a periodic
point of period < max{r, s}, which is also a periodic point of f :
(X,7) — (X, 7) of the same period. O

COROLLARY 4.1. ([1, 4]) Let T be a tree with m end points and let
f be a mapping of T into itself. If f has a periodic point u of period
n > m, then it has a periodic point of period < m.

Proof. Put S = UUEOI‘b(u) [u,v]. Then it is a subtree of T each of

whose end points belongs to Orb(u). The number of end points of any
subtree of T' does not exceed m. Therefore there exists w € Orb(u)
which is not an end point of S. Then since w is a cut point of S, we
can find two end points p, ¢ of S belonging to different components
of S\ {w}. Hence we have (p w ¢q). We can easily see that there
exist integers 7,s such that 0 < r <n, 0 < s < n, p= f"(w) and
q = f*(w). Thus according to the theorem, f has a periodic point
of period < n.

Inductively we may continue this process up to get our assertion.

a
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