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SUMMARY. - We seek a non-destructive testing method to detect a
radial surface breaking crack in a two-dimensional circular disk.
The detection method utilizes steady-state electrical boundary mea-
surements. A nonlinear function which characterizes the size and
the location of a radial surface crack is constructed based on the
knowledge of two data readings of the boundary voltage intensity
corresponding to a current flux of dipole pattern. Based on this
output function, we can detect the presence of a radial surface
crack from two data readings of voltage intensity measurement
on the boundary. And two convergent algorithms are derived in-
dividually to locate and then determine the size of the crack.
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1. Introduction

It is our purpose in this paper to explore a new Non-destructive
Testing (NDT) procedure for crack detection by utilizing steady-
state electrical field. The problem is approached through “parame-
terization”. Namely, we assume the reference conductivity is known
and parameterize “the unknown” in terms of the shapes, sizes, lo-
cations, and orientations of flaws. The term ”parameterization” we
are using here is adopted from many engineering references, e.g.,
[5, 13, 20]. Among the applications of Inverse Problems to flaw
detection, the concept of parameterization was first introduced by
Friedman and Vogelius to determine an interior crack imbedded in
a two-dimensional bounded domain [12]. Their idea was further ex-
tended to the case of multiple cracks [8]. Andrieux and Ben Abda
later proposed a new reconstruction method for 2D or 3D domains
to identify the plane which contains linear cracks [3]. Some computa-
tional algorithms have been proposed for flaw detection through pa-
rameterization approach. Based on a variation of Newton’s method,
Santosa and Vogelius constructed a computational algorithm to de-
termine the location and the size of a linear crack which is imbedded
in the interior of a two-dimensional, electrically conducting medium
[18]. This method was extended in [9] to the case of multiple cracks.
Their algorithms were further tested using lab data [16, 7]. These
numerical studies all focused on detection of interior cracks. The
case of surface breaking cracks was studied in [10, 10, 3]. All the
works using parameterization approach so far assumed the shapes of
probed cracks are priorly known.

We consider a two-dimensional geometry such that an inspected
region is a circular disk with an accessible circumference, and a linear
crack may tear from the circumference. We assume that the conduc-
tivity of the flawless disk is constant. For simplicity, the crack is
further assumed to have the radial orientation. The current flux we
shall apply to the probed region is a dipole pattern. To produce
currents of dipole patterns, we attach a pair of source electrodes to
the circumference in a way that the electrodes are placed at the end-
points of a diameter. DC currents (or AC currents at low frequency)
are imported into the circular region through one of the electrodes
and flow out of the area through the other electrode. For data collec-
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tion, we measure and record the corresponding voltage field intensity
along the circumference at the midpoints between the current source
electrodes. In other words, each step of output measurement consists
of two data readings from the corresponding voltage field intensity.
We vary the locations of two input current electrodes around the
circumference in the manner describe below so that each time the
uncertainty of the location is reduced by half. Assume the reference
conductivity is known, the goal is to determine whether a radial
surface breaking crack exists in a circular region, and if it does, to
reconstruct the crack from a finite number of boundary measure-
ments.
Our reconstruction method comprises three stages:

(1) Identify a 2D damaged circular body from the flawless one.

(2) Locate the emerging tip of a surface breaking crack on the
boundary.

(3) Determine the length of a surface breaking crack.

We will show that with the simple geometry of our model, it is
possible to determine the length of a radial crack from only one single
step of boundary measurement (which consists of two data readings
of voltage field intensity) after the exterior crack tip is located. The
work we present in this paper is the first part of our proposal of a fast
and stable reconstruction method. Here we focus on the framework
of the reconstruction method, including the ideas and the proofs
for convergence of the algorithms. We will give detailed discussion
about effectiveness and the the sensitivity property of the method in
a forthcoming paper [6] (and also [19]).

Elcrat, Isakov, and Neculoiu proposed a computational method
based on Schwartz-Christoffel transforms to detect one single surface
breaking crack mainly in a polygonal domain [11]. The algorithm
was extended to inspect collections of interior and surface breaking
cracks in polygonal and doubly connected domains [10], where cracks
simulated are also allowed to be piecewise linear and self intersecting.
Our initial approach is similar to that used in [11, 10]. That is, we
will employ an analytic transform to calculate voltage potential field
in a flawed circular domain. However unlike the works in [11, 10],
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the detection algorithms we propose have nothing at all to do with
the computation of an analytic transform. We explicitly calculated
voltage potential field by formulating an analytic mapping for our
simpler geometry. The analytic mapping is used to observe and
analyze only the boundary behavior of a voltage potential field in a
flawed circular domain. Moreover, we will show that our numerical
algorithms are convergent.

The method utilizes a nonlinear transcendental function of the
crack parameters (location and length), which is constructed in terms
of two data readings from voltage intensity measurement, and proved
to be an increasing function of crack length. Based on this condi-
tion, we will show that the presence of a radial surface breaking
crack is detectable by one single set of output measurements which
consists of two data readings of the voltage field intensity corre-
sponding to the same input current. The procedure to locate the
emerging tip of a radial surface crack is based on the radial sym-
metry of our probed domains. It can be generalized to any radially
symmetric geometry (e.g., annular cross section in the application
to pipeline leakage). The algorithm to determine crack length in-
volves solving the transcendental output equation for length param-
eter. We construct two iterative functions: one is used to create a
sequence of the lower bounds for crack length, the other is used to
a sequence of the upper bounds for the crack length. And we will
show that the sequence of the upper bounds converges to the exact
length of a radial surface crack. A different approach was also pro-
posed to reconstruct a surface breaking crack [3]. Although their
method provides a direct inversion formula and applies directly to
more general geometry, they assumed the emerging tip of a surface
breaking crack was a priori known. The results given in [3, 11, 10]
all rely on the basic assumption that current and the corresponding
voltage data are available on the entire boundary or a continuous
part of the boundary (overspecified data). As we have mentioned
in the preceding paragraph, we need only two data readings of the
voltage intensity measurement corresponding to a current of dipole
pattern to determine crack length in our case. In most of practical
applications to probe a surface crack, we can always explicitly find
conformal mappings to transform crack domains of more complicate



DETERMINING A SURFACE BREAKING CRACK etc. 67

shapes to our model domain. Therefore, all the data measured in
the original geometry can be transferred to the model of a circu-
lar disk via a suitable conformal mapping and processed using our
algorithms. Therefore, one can set up an off-line table for an in-
spector to check up and compare real data with the corresponding
measurements processed in the model of a circular disk. As implied
by [11, 10], the computational cost for a conformal mapping is low.
Due to the high speed and stability of our low-cost convergent algo-
rithms (see [6, 19]), it is still worthy to apply our method to more
complicated domains.

For other mathematical studies related to flaw detection, we refer
the reader to [1, 2, 4, 14, 15].

The authors would like to thank the referee for many valuable
suggestions of the paper.

2. The problem

Let @ = {z € R?|0 < |z| < r} represent a circular conductor of
radius r occupies and € stand for its circumference. A crack will
be denoted by o. Under the assumptions of our model problem,
o is characterized by two parameters only: the angular location of
o, denoted by 0., and the crack length, denoted by £,. Consider
the background medium is homogeneous except that the crack site
is perfectly insulating. Without loss of generality, we assume the
conductivity is equal to 1. Let P and @ stand for the locations of
a pair of current electrodes. Then the steady-state voltage potential
field, u, caused by a constant flux of dipole pattern , satisfies

0 in 2\ o,
ou
Ay = g—o on o, (1)
(2
$:6P_6Q ODBQ,

where % denotes the unit outward normal derivative, and ¢, is the
Dirac distribution which has concentrated intensity at the point z €
0Q.

We denote by 3% the counterclockwise tangential derivative along
09Q. The voltage potential, u, modeled by (1) is not unique. It is
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unique up to some constant. However, if we solve the direct problem
(1) for u and calculate % along 02, we always obtain the unique
presentation of the boundary measurement, %. Let f represent the
distribution of g—’; along 01, i.e.,

ou

— = on JN. 2

g &
In the context of physics, the measurement, f, simply represents the
corresponding voltage field intensity along 0. If ¢ # &, then the
extended line of ¢ divides the domain  into two half disks, say, 1
and 9. Let g represent the boundary measurement of the voltage
potential associated with (1). Then

ulaa = (H1 + Ha)g,

where H; and H, are functions of Heaviside-type defined on 052 so
that, for j = 1,2,

. 1, ifze an
Hy(z) = { 0, elsewhere.

Even though H; + Hy = 1 almost everywhere, but at the crack tip
there is a discontinuity of the first kind. When we consider the weak
derivative of the function (H; + Hs)g with respect the 7 variable,
there will produce a § function at the crack tip. It follows that the
function f consists a § term at the crack tip. From a theoretical
aspect, it is not surprising that the tangential voltage field intensity
across the exterior crack tip is mathematically characterized by the
singularity due to a Dirac delta distribution. Hence, if one locates
this singularity, then the exterior crack tip is identified. From the
practical point of view, if the data of f is measured and collected
near by the exterior crack tip, then when a probing head (designed
to collect the data readings of f) moves across the crack, the pres-
ence of the singularity attributed to the ¢ term in f gives rise to
a drastic fluctuation in the readings from a measuring device. And
this fluctuation reflected on the data readings of f suffices to tell a
crack investigator about the location of the exterior crack tip. While
the preceding scenario in which f is measured close to the exterior
crack tip is not quite troublesome and of particular interest to a
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practical application, the major difficulty arises when the location of
a surface breaking crack is unknown and the data of f happens to
be collected away from the exterior crack tip. The question such as
what should be the step to follow for next boundary measurement
has been an open question in NDT subject for engineers. It is there-
fore worthwhile to explore an efficient and stable algorithm to locate
a neighborhood which is close to the exterior crack tip even that the
method does not serve as a closed formula to identify the singularity
of the resulting voltage potential. Our effort in this paper to locate
a surface breaking crack is firmly based on this standpoint. It is also
for this reason that in our work, we always assume that the data of
f are to be measured and collected away from the exterior crack tip
in the presence of a surface breaking crack.

Given an input current flux of dipole pattern, we assume the
data of f measured on the boundary are accessible. Each single set
of output measurements will contain two data readings of f. When-
ever a surface breaking crack is present in (2, the source electrodes
at P and @ always divide 92 into two arcs (assuming P and @ are
located away from o) : one arc is flawless and the other represents
the damaged part where o penetrates 9€2. Denote by M the mid-
point between P and () on the flawless arc and by M, the other
midpoint on the damaged part. In case the probed region is perfect
without any defect, symbolically we replace the notation, My, for
M,. In particular, we choose P and @) to be at the endpoints of
some diameter of 2. The diameter joining P and @ will be referred
to as the “current diameter” (Fig. 1). In the following paragraphs,
if an upper case letter represents a point, then the corresponding
lower case letter denotes the angular location of the point (e.g., the
angular location of P will be denoted by p, and the angular location
of M, will be denoted by m,, etc.).

3. The main results

3.1 Determining the presence of a surface breaking crack

We give a simple condition to determine whether a radial surface
breaking crack exists in . We first transform the crack domain
2\ o into the unit disk via an explicit analytic mapping. Then we
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Fig. 1

solve the corresponding equations to the PDEs (1) for the voltage
potential field on the unit disk. In this way we can formulate f
in terms of crack parameters (£,, 6,) and the locations for voltage
boundary measurements. Fig. 2 and Fig. 3 show that the global
distribution of f along 0N of a damaged domain is different from
that of a flawless domain. We will show that the presence of such a
crack is detectable by two data readings of the voltage field intensity
corresponding to the same input current.

We first construct an output function in terms of the boundary

measurement of voltage field intensity. Let s be the ratio of the crack
length 4, to the radius r of 2. That is

§= —, (3)

We call s the relative crack length. Thus, s = 0 if the probed con-
ductor is flawless. We take the ratio of voltage field intensity at M
to that at M,. This ratio is proved to be increasing with the rela-
tive crack length, s, for an arbitrarily fixed current diameter. So we
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Fig. 2: The electrical field intensity along the circumference of a flawless disk.
The horizontal axis displays the angular location (in degrees) of the boundary
measurement. P is located at 180°, and () is located at 0°.

define

fat M 1
To-0,(8) = ma p— 0, #nm, (n+ 5)7T, n € Z, (4)
where the subscripts p — 0, indicates that the ratio function depends
on p—6,, the angle between the current diameter and the crack. We
have the following result.

THEOREM 3.1. Suppose p—8, # n, (7’L+%)7T, n € Z. Then yp_g,(s)
is an increasing function of s for 0 < s < 2. Moreover,

’Yp_ao' (3) = ]‘ + 7713—90 (3) ) S’ 0 S s < 2’ (5)

where ny_g,(s) > 0, is a continuous function of s for 0 < s < 2. The
subscript p — 0, indicates n,_g, depends on the value of p —60,. We
also have the following estimate for n,_g, (s):

s
Tp—6, (5) < o cap_g,(sp), for 0<s<sy <2 (6)

S

where ap_g, is given in (39), Appendiz.
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Fig. 3: The electrical field intensity along the circumference of a damaged disk.
The horizontal axis displays the angular location (in degrees) of the boundary
measurement. The crack penetrates the boundary at 45°.

Proof. Without loss of generality, we assume {2 = the unit disk =
{z € C| |2| < 1}. Hence £, = s by (3). First, we prove the case that
o lies on the positive real axis. Let

ho(2) = ‘o ((2%)2 _ (%)2)1/2’
i+ ((ﬁ)Q _ (%)2) /

where we consider the branch {z € C| 0 < arg(z) < 27} whenever
the square root is involved. Then hy(z) is a one-to-one analytic
mapping from Q \ o onto {z € C| |z| < 1}. To solve the boundary
value problem (1), we need consider a topological extension of ki (z)
to the closure of 2\ 0. So let us define

ot = QnR,
0" = QnR?,
ot = BQOR?F, and 00~ =00NR2.

Regarding o as a double-edged slit, the upper edge is denoted by ai
and the lower part by 0. Thus 0 = ot Uo . Define hy : Q\ 0 — Q
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to be
by (2) for z€Q\o,
: 7 +Ugt
ho(z) = Q+191511—>z lj,,(zn) for z€0QT U™,
lim hy(z,) for z€0Q Uo™.
Q= 3zp—2

Then h, is a topological map of k, extended to the closure of Q \o.

The above calculation is based on the assumption that 8, = 0. To
calculate an analytic mapping h, for the case 6, # 0, we first rotate
2\ o clockwise through an angle of ,, so that o lies on the positive
real axis. The effect of this rotation on h, is equivalent to transla-
tion by —0, units on the factor K throughout the entire course of
calculations (The expression of K is given in (33), Appendix).

Let G(-,-) represent the Green’s function for the Neumann Prob-
lem in the unit disk. Since the Green’s function for the Laplacian is
conformally invariant, hence the solution to (1) can be written as

u(z) = G (he(P), ho(2)) — G (he(Q), ho(2)), z€N\o.

By definition (4) and in polar coordinates, we can express v, g, (s) in
terms of the angular locations of boundary data (represented by the
input-output parameters p, ¢, m, and m,) and the crack parameters
(represented by the variables 6, and s. See (32), Appendix).

We decompose the expression of y,_g_(s) into the product of the
following factors,

Vo6, (8) = Ap—0,(8) - Bp—g,(8) - Cp—g,(3) - Dp—s,, (7)

where A,_g_(s), Bp—g,(s), Cp_g,(s), and D,_g_ are defined in (34)
— (37), Appendix. Since y,_g,(0) = 1, the results (5) and (6) follows
by plugging into (7) Taylor’s expansions of A,_g_(s), Bp—g, (s), and
Cp—s, (s) around 0. O

REMARK 3.2. According to the discussion in the paragraph after
equation (2), one should understand that it is not in the authors’
concern to define as well as interpret the v function given in (4) sup-
pose the point M, happens to be z,, the exterior crack tip (in which
p—0, = (n+1/2)7). We also realized that Fig. 3 does not completely
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represent the distribution of the voltage intensity along the boundary
of a crack domain, mainly because of the limitation to the graphic
tool we used prohibited to plot a blow-up phenomenon at a single
point. Nevertheless, we still present this plot since it demonstrates
obviously unequal distributions of the boundary voltage intensity in
two half disks divided by a crack.

The increasing phenomenon of 7,_g, with crack length is demon-
strated in Fig. 4 for a particular case. Different angles between a cur-
rent diameter and the probed crack determine different variations of
the curve for v, 4 (Fig. 5). Since (5) implies that vy, (s) = 1 if
s = 0 and 7y,—g,(s) > 1 if s > 0, by definition (4), we obtain the
following result.

N
o

w
o
T

[
o
T

ganma (ratio function of voltage intensity)
N
o

o
T

0 0.5 1 2
s (relative crack depth)

Fig. 4: 7yp_s, (s) increases with s when p — 6, = 60°.

THEOREM 3.3. (Determining the presence of a radial surface break-
ing crack). Arbitrarily choose a current diameter and build up a
current loop between the endpoints (P and Q) of the diameter. Then

(1) the wvoltage field intensities at M and M, are equal if there is
no crack in §, otherwise,

(2) the wvoltage field intensity at M is larger than that at My if a
radial surface breaking crack is present in Q.
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Fig. 5: The curves of v,—¢, (s) associated with different angles between the cur-
rent diameter and the crack. The number appended to the curve indicate the
associated value of p — 6, which is measured in degrees. 7,—g, (s) is increasing
with s.

REMARK 3.4. The preceding considerations are all based on the
assumption (4) that p—0, # nm, (n + %) 7. Here the authors applied
the topological extension of an analytic map from the crack domain
onto a unit disk to calculate the resulting voltage potential field in the
crack domain. In these calculations, the crack domain is considered
as a Riemann surface with a cut (or a double-edged slit). As long
as one electrode (say P) is placed on z, in the sense that P — z,
from either side of the crack (this could happen in a real application
when the electrode is not riding across the crack and hence not in
contact with two sides of the surface around the crack at the same
time), the resulting measurements are never the same as those in
the flawless case. This is confirmed in the more detailed calculations
of f (see [19]). Suppose one input electrode (say P) is riding over
2z (in practice with the electrode touching the surface on two sides
of the crack), then ,_9, = 1 due to the symmetry of the reference
geometry. If this condition occurs, an inspector can always move the
electrodes a little bit away from the original locations and take one
more measurement. The new action should be sufficient to determine
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the presence of a radial surface breaking crack. Again from the
practical point of view, the situation in which one electrode happens
to be riding over z, does not give rise to a mysterious scenario.
Therefore, we will not be bothered to analyze this case. Instead, the
authors are more interested in the cases that the input electrodes are
placed away from the crack and hence always assume that p — 6, #
nm.

3.2 Determining the flaw site

Theorem 3.3 enables us to distinguish a damaged domain from a
flawless domain. To locate the flaw site, we introduce a procedure
called trapping strategy. The idea is to generate a sequence of search-
ing regions, all of which contain the crack. The searching region gets
smaller and smaller until eventually trap the crack at tie right loca-
tion. The principle we apply rests on Theorem 3.3 (2).

We start with the entire domain, 2. When o # &, any arbitrarily
chosen current diameter divides €2 into two half disks : one of the half
disks is flawless and the other contains o. Let us denote the damaged
half disk by Dy (Fig. 6, 5 = 1). Theorem 3.3 (2) implies that D
must be the half disk containing M, at which the smaller voltage
field intensity is measured. Thus, we narrow down searching region
from the entire domain to the half disk, D;. For the second step of
measurement, we rotate the current diameter so that it divides D,
into two quarters of 2. Let Dy stand for the damaged quarter so that
o € Dy (Fig. 6, 7 = 2). How do we distinguish Dy from the other
flawless quarter 7 Note that the new current diameter also divides 2
into one flawless half disk and the other damaged half, say D1’. So
o € Dy'. Similarly, D;’ can be determined by applying Theorem 3.3
(2). We observe that (Fig. 6, j = 2)

Dy =D, N D,

Therefore, we have further narrowed down searching region from the
half disk D; to the quarter disk Ds. To obtain a even smaller search-
ing region than Dy, we rotate the current diameter to a position so
that it equally divides D2 into two sectors: one s flawless and the
other, say D3, contains o (Fig. 6, j = 3). Applying Theorem 3.3
(2), we can similarly locate D3. If we continue with this format of
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Fig. 6: Demonstration of trapping strategy.

bisecting process, we will obtain a sequence of flaw regions : D1, Do,
D3, ---. The sequence has the following nesting relation:

Dy D>DDyD>D3D---Do.
Moreover, we can estimate the exact size of each of these flaw regions:
1 .
The area of D; = % of Q, 7=12,3,---.

The physics for each step of measurement is modeled by the following
PDEs associated with a set of different dipole locations, {P;,Q;}
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which are away from o:

Aw; = 0 in Q\o,
% =0 on o, (8)
w; .
E 5Pj_6Qj on 89, ]:1,2, ,
and let
8’11)_7' .
§= = =1,2,---.
f] 67’ 6Qa J )<y (9)

For each j, let R; denote the midpoint of P;();, which stands for the
curve that one traverses from P to ) along 0f) counterclockwise.

And let N; denote the midpoint of @;P;. The algorithm will quan-
titize the rotational angle of the current diameter, m, for each
step of measurement. It also provides a simple rule of rotation in
terms of clockwise or counterclockwise direction without regard to
the location of each searching region D;.

THEOREM 3.5. (A convergent algorithm to locate exterior crack tip).
Let z, denote the location of the exterior crack tip. A pair of dipole
locations, {Py, Qu}, are arbitrarily chosen so that |pg — qo| = . For
J=0,1,2,..., P; and Q) are determined by the following conditions:

(1) If ‘fj(rj)| > ‘fj(nj)|, then rotate P; and Q; counterclockwise
along 0$) through an angle of 57 to obtain Pjy1 and Qji1
respectively.

(2) If|fj(rj)‘ < ‘fj(nj)|, then rotate Pj and Q; clockwise along 0
through an angle of 5% to obtain Pji1 and Q11 respectively.

Then

Qj = 2o, as j — oo.
Moreowver,
T .
éQjOzo-Sg, Vi=0,1,2,---,

where O is the center of Q and LAWY Z stands for the acute angular
measurement of an angle /WY Z.

Proof. By induction. O
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3.3 Determining crack length

By solving the direct problem (1), we have expressed 7, g, (s) in
terms of the angular locations of boundary data (represented by the
parameters p, g, m, and m,), and the crack parameters (represented
by the variables 6, and s). Under the restriction 0° < p — 6, < 90°,
we obtain a nonlinear equation

voltage field intensity at M

= = — . ].
measured data voltage field intensity at M, T 0(5)- (10)

The expression of v, g, (s) is lengthy, so we present it in the ap-
pendix.

After locating the emerging tip of a crack, all the variables in
(10) are known except for s. There is no obvious way to solve (10)
for s in terms of a closed formula. For that reason, we introduce
an iterative algorithm to estimate s. The idea is to employ radial
damage size growth limit (see [17] for the definition) or any possible
upper bound of exact crack length as an initial guess, and create
a sequence of length estimates so that the sequence of the length
estimates converges to the actual crack length.

First, we would like to point out that given an priori upper bound
of s, it is always possible to find a lower bound for s in terms of the
output measurement, y,_g_(s). The statement is presented in the
following lemma.

LEMMA 3.6. (Finding a lower bound of s from an existing upper
bound). Suppose 0 < s < sp < 2. Then

_ —1 _ -1

ap_ao' (Sb) ap_ao' (Sb)
for 0 < p—0, < /2, where the expression of apy_g, (-) is given in
(39), Appendiz.

Proof. Substituting (6) into (5) and solving the resulting inequal-
ity for s, the first inequality follows. The second inequality follows
immediately since y,_g, (s) > 1 by (5). O
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Based on the foregoing lemma, we now construct a lower bound
function for relative crack length as follows

e, (1) =2 [ /<1+,/”””(‘)1> (12)

It is easy to show that A,_g_(-) is decreasing on [0, 2) for any fixed p
and 0,.

Next step of our approach is to show that with the knowledge of
an upper bound and also a lower bound of s, we can find a smaller
upper bound for s in terms of the output measurement, y,_g_(s). To
this point, we recall that A, g_(s), Bp_g,(s), Cp_g,(s), and D, _g,
have been defined in (34) - (37). ¢;p—0, (z,y) (j =1,2,3) is given in
(40) (Appendix). Let s;, and s, be two positive numbers such that
sip < 8 < sp. Denote

and let
(pj = ¢j,p—0¢, (Slbasb)a .] = 17273'

The following two lemmas hold under the condition s; < s < sp.

LEMMA 3.7. Assume 0 <p—6, < m/2, and 0 < s, <1. Then

Yp—6,(36) — Vp—0,(8)

§ < Sp—
Bp—6, (Sip5 Sb)
zfs>ma.x{3b A ,Sp — B ,Sp — CI(;; .

Proof. Take Taylor’s expansions of A,_g_(s), Bp—g,(s), and Cp_g,_(s)
around sp. The rest of the argument is slightly different but similar
to the proof of the estimate (6). O

LEMMA 3.8. Bp_g,(-,-) is defined in (41). Let sy and sy be two
positive numbers so that s < s < sp. Assume 0 < p—0, < /2 and
1< sy <2. Then
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(1) for s > sp—1,

_ Yp—0,(35) — 1p—0, (s)
Bp—o, (b, 3b)

s < 8

I

. A B C 3, — —
ZfS Z max{sb—a,sb—a,sb—gs}, where Sip — max(slb,sb
1), and

D = bjp-o, (5, 5), =123
(2) for s <sp—1,
s<min (s —1,¢ VY05 (sp) — Yp—0o (s) '
Bp—o, (b, 5b)

. A B C
zstmax{sb—<ITI,31,—<IT2,31)—<T3 .

Proof. Analogous to the proof of Lemma 3.7. O

Based on Lemma 3.7 and Lemma 3.8, we obtain the following
result.

LEMMA 3.9. (Finding a smaller upper bound for s from an existing
pair of lower bound and an upper bound). Assume 0 < p—6, < /2.
Let s and sp be two positive numbers so that sy < s < sp. Then

s < wyp—g, (S, sp) < Sp (13)

if Yp0,(8) = Ypo0, (wWop0,(50:5)) or wap g, (s1,55) < 0, where
w1 p—g, ond wep_g, , defined in (42) - (43) (Appendiz), are con-
structed from the output measurement, yp—g,(s), and all the known
parameters.

The principle behind the construction of the length algorithm
rests on Lemma 3.6 and Lemma 3.9. With the knowledge of an
upper bound, s, as an initial guess for s, Lemma 3.6 implies that
we can find a nonzero lower bound, s;, so that s is trapped in the
interval [sp, sp]. Then applying Lemma 3.9, we further reduce the
upper bound from s, to the value given by wi p—g, (S, 5) under
a specific condition given in the lemma. If we update the assumed
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upper bound of s to be wy ,_g, (15, Sp), by applying Lemma 3.6 again,
we then generate a new lower bound for s. It is our hope that
the new lower bound is larger than the former lower bound, sp, so
that we obtain a smaller trapping interval for s. We also hope that
by recursively applying Lemma 3.9 and Lemma 3.6, we are able to
generate an increasing sequence of lower bounds and a decreasing
sequence of upper bounds for s.

Now, we come to the main body of our length reconstruction
algorithm. For any particular choice of the location on the circum-
ference to import a current flux, or say, given any fixed value of p,
we construct two iterative functions as follows:

Yyt (5) — 1 /<1+ Wp—e,(S)—1>’ 14

ap—g,(y) ap—g,(y)

where the expression for a, g (y) is given in (39) (see Appendix).
Yp—6, (s) has to be replaced by the boundary data measured from
the corresponding voltage field intensity (10). Also

wip-0,(2,Y); i Vp—o, (8) = Y-, (w208, (,7))
Wp—0, (-’L', y) = or wy p_g, (.’L‘, y) <0,
wap—g, (z,y), otherwise.
(15)

where the expression for a,_g, (y) is given in (39) (see Appendix),
Yp—0, (s) has to be replaced by the boundary data measured from
the corresponding voltage field intensity (see (10)) and, the functions
w1 p-9,(2,y) and wep g, (z,y) are defined in (42) and (43) respec-
tively (Appendix). The subscript, p — 8,, of all the above functions
indicates that the expressions of these functions change with the an-
gle between the input current diameter and the flaw site. Note that
Ap—o, (+) is a lower-bound generator by Lemmal0. w,_g,(-,-) is an
upper-bound generator due to Lemma 14. Also, it is easy to show
that A\,_g, (y) is decreasing with y on the interval [0,2) for any fixed
p and 6,.

The formulas (33)-(43) given in the appendix have to be stored
in the algorithm before performing iteration. These formulas are
algebraic functions without any integral expression involved. So the
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computations of these functions are elementary and therefore the
computational cost is low. Now, we state the iteration procedure to
determine crack length.

Length algorithm (r = the radius of Q, s = ZT") :

( radial damage size growth limit
Set  so = or any

possible uppe? bound of s

) to = Ap—0, (50)- L (16)
For j=0,1,2,3,...,

8j+1 = Wp—0, (tj: 55),

{ b1 = Ap—g,(85+1)- )

Terminate the iterations when |s; —sj_1| is within the required toler-
ance for some j. Let Ly, denote the approzimate crack length. Then
take

ﬁapp =7 XSsj.

The following result simply states that the above numerical it-
eration is convergent. This major feature of our length algorithm
ensures the accuracy of an approximation to crack length within a
required precision.

THEOREM 3.10. (Convergence of the length determination algorithm).
Two sequences {s;}52; and {t;}32, are constructed by the algorithm
(16). Then

O0<ty<ti <ta<-+-<8§<---< 89 <81 < 8, (17)
and
s8j—>s as j—»oo. (18)

The proofs of Theorem 3.10 will be divided into two stages. That is,
we will verify (17) and (18) separately.
Proof of (17) we first claim that

0<t;<s<sj<sp, Vi=0,1,2,... (19)
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This can be justified by induction. When j = 0, it is trivial from the
length algorithm that s < sg = sp . Applying Lemma 3.6, we have

/(” e )1)

therefore (19) holds for j = 0. Assume (19) is valid for j < k. That
is,

0<ty <s<si < 8p-
Then by Lemma 3.9,

s < wip—g, (tr, sk) < Sk (20)

if Yp—0,(8) > Yp—o, (wap—6, (tks k) OF wop_g, (tk,sk) < 0. Other-
wise,

s < wop_g, (tk, k) < sk (21)

if w2ap_00 (tk,Sk) Z O a'nd 7?-00 (8) < ’Yp_eo' (w2!p_00' (tk’sk))’ Since
Yp—o, (+) is increasing on [0, 2). The second inequality in (21) is trivial
from the definition of wy,_g,. (20) and (21) simply means

s < wp—g, (0o, tk, sk) < Sk- (22)

~”

Sk+4+1

Applying Lemma 3.6 under the condition (22) with the new upper
bound sk for s, it follows that

Tp—b,(5) —1 /1+ T—0,(8) — 1
ap—g, (Sk+1) p—, (Sk+1) (23)
—0, (8k41) = tgy1 > 0.
Coupling (22) and (23) together, we obtain (19) for j = k + 1.
Therefore by induction, we have shown that (19) holds for all j =
0,1,2,....
At the same time, we have also proved that (22) is true for all

k=0,1,2,...,1e

§< < 89 < 81 < 89 = Spe (24)
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To complete the proof of (17), it remains to argue that {t;}7°, is
an increasing sequence. Since A,_g,_(-) is decreasing on [0,2) and
{85152 is a decreasing sequence, (by (24)), we end up with

Ap—0, (k) < Xp—g, (sks1), YVE=0,1,2,...,

or equivalently,
tr < Tg+1, Vk=0,1,2,...
So {t;}32, is an increasing sequence and (17) follows immediately.
O
To complete the proof of Theorem 3.10, we need the following

Lemma.

LEMMA 3.11.

Wp—g, (tj,85) = wip—g,(tj,55), Vj>mno for someng e N.
Proof. Suppose this is not true, then from the definition of w,_g_
given in (15), there must exist a subsequence {ji};2,, such that

Wp—0, (tjrs Sjr) = W2 p—6, (L, Sj), VE=1,2,....

Since {t;} and {s;} are monotone bounded sequences, hence 3 t*
and s*, such that

t* = lim t; =supt;, and s*= lim s; =infs;. (25)
Jj—00 j Jj—00 J
Also we have
Sjp+1 — 8§ = W2p—0, (tjk’sjk) — 8= (sjk - 5) +
Ap—o,(s5;) Bp—o,(sj;) Cp—0,(8j;) }
Prp—0, (s S3) " P20, (s S31) " P3,p—0, (Ejis Sii)
(26)

— min

Note that A,_g_(-), Bp—g,(:), and Cp_g,(-) are continuous on [0, 2).
Each ¢jp—g,(-,-) ( = 1,2,3) is continuous on [0,2) x [0,2). (25)
implies limy_,, s5, = s* and limy_, ¢, = t*, passing limits on both
sides of (26) as k — oo, we obtain

S — 8=

(s* — s) —min{

Ap_eo' (8*) Bpfeo' (8*) CP*QU (S*) }
¢1,p70a (t*, 3*) ’ ¢2,p79¢7 (t*a 3*) ’ ¢3,p700 (t*a 3*)
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Therefore from the above equation, it follows that

— min Ap-o,(s") By, (s") Cp—0,(s") }
0= {¢1,p—90 (t*,5*) dap—o,(t*,s*) d3p_g,(t*,s*) ) 27)

However, we have shown that

Vp_eo' (8*) = Ap_eo' (S*) ) Bp_ao' (8*) ) Cp_eo' (8*) ) ‘Dp_aa' Z ]'7 (28)

and this implies that all of A,_g_(s*), Bp—g, (s*) and Cp_g, (s*) must
be greater than 0. Since each ¢ ,_g_(t*,s*) is nonnegative, we must
have

0< min{ Ap 0. (57) - Bpoor () Cp,(s*) }

¢15p_00' (t*7 S*) ’ ¢21p_0o' (t*’ S*) , ¢37p_60' (t*7 8*)

But the last inequality contradicts (27). Therefore, there must exist
an ng € N so that

wWp—g, (tj,85) = w1 p—g,(tj,8), Vj>ng for some ng € N.

O

Finally, we show that the upper-bound sequence {s;} converges
to the relative crack length, s. Then the proof for Theorem 3.10 is
complete.

Proof of (18) By Lemma 3.11 and applying the formula (15), there
must exist an ng € N so that, Vj > ng

Sj+1 = 8 = Wp—g, (L, 87) =8 = wip—g, (tj;5j) =

< (sj — 8) — min { Vo=0,(83) — Vo0, (3) : T/VP—% (s5) = -6, () }

Bp—0,(tj,5;) Bp—0, (j ;)

Since y,—g, (-) is continuous on [0,2) and F,—g, (-,-) is continuous on
[0,2) x [0,2), taking limits as j — oo on both sides of the above
inequality and applying (25), we obtain

s*—s<

% ) Y05 (8¥) =6, (5) Y05 (8*)—Vp—05(5)
(s* —s) — mln{ P Gﬂp_gg(t*”;f) ,f/ P aﬁp_ga(t*ljs*a) }
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Therefore,

. Yo—6, (3*) — Yp—0, (3) 3| Yp—b, (3*) — Yp—b, (3)
0> mln{ 8,0 (&> 5%) , \/ By g. (& 5%) } (29)

Moreover, (17) and (25) implies 0 < t* < s < s* < 2 and it follows
that

Vo0, (8") — Yp—0,(s) >0 (30)

because 7,_g, (-) is increasing on [0,2). But (29) and (30) also gives
us the following result,

Yp—bo (s) — Yp—0, (s)=0 (31)

since f,_g, (t*,5*) > 0. Due to monotonicity of v,_g,, we conclude
that s = s* from (31). That is, lim; ,o, s; = s. We have verified
(18). O

REMARK 3.12. In this section, we assume that 0° < p — 6, < 90°
in our algorithm to determine the crack length £,. This is exactly
to avoid the extremal cases, i.e., p = 0, or p — 6, = 90°. As we
have mentioned at the Remark 3.4, once we know the exact location
of the exterior crack tip, we just need to fix a tiny angle ¢ so that
|p — 65| = ¢ and go through the numerical experiment to determine
£y. See [6] for details.

4. Summary

We developed a reconstruction model to determine a surface crack
from steady-state voltage boundary measurements. The shape of
the crack is assumed to be linear. The detection method we pro-
posed here was developed in the case of a planar circular domain .
Employing the concept that we can transform any simply connected
domain to the crack domain of our model via an analytic mapping,
the method is also applicable to determine a surface crack in a 2D
region of more complicate geometry. Our algorithms have the fol-
lowing merits:

(1) The method relies on only a finite number of boundary data.
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(2)

(3)

(4)
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We can locate the exterior tip of a surface crack on the bound-
ary.

All the numerical algorithms in our detection procedure are
easy to follow. They consist of only algebraic functions. So
the computerized operations are elementary.

The detection algorithms are convergent in determining the
location and the length of a surface crack. The numerical re-
sults in [6, 19] indicate that our method is fast, stable and at
low-cost for practice.

To test the algorithms, we conduct tremendous amount of numerical
experiments. The reader is referred to another paper [6], where we

also

have detailed discussion about the sensitivity property of the

method.

5. Appendix

In this section we provide a list of functions which have to be stored
in the length algorithm. All these functions are algebraic and ele-
mentary. Hence the computational cost for these functions is lower
compared with that for integral formulas.

Yp—05 (s) =
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for 0° < p — 6, < 90°. where p, ¢, m, my, and 6, in the above
expression are measured in radiants rather than in degrees.

K,(z) := [(2i8>2+tan2 (g)]m. (33)

Apfaa (y) = ‘Ky(ma - 0(7) ) [Ky(ma - 00) - Ky(q - 00)”5 (34)

K o— 0 )+K (p_aa)
N e e N
C = ! 36
”““”“K = 0Ky —0,) Ky 6] 9
Ko(m — 0,)[KZ(m — 0,) +1]
Do0 = R (g — 60 K2 g — 00) + 1] G0
( [Ko(q— 0) — Ko(my — )]
PY1p-0,(T) = Ko (my —0)Kalg—0)
ba o (4] = K, (m, — 6) + K,(p — 0)
§ T R =0 Ky la = 0)
| Ky(mg ~OK(p—0)  Kulm—0)Kelg—0)
Ya-0:5) = Tgton K, o - )
(38)
g, (y) = 2522 % [By_g,(0) Cpp, (0) 91,0, (0) +
+ Ap9,(0) Cpg,(0) o, (0,) +
+ A, 4,(0) B, ()ws,pa()]Jr

+ W Pecte [ Cp—0, (0) 1,55, (0) 2,0, (0, ) +

+ Ap_6,(0) Y2,p-0,(0,y) ¥3p—9,(0) +

+ By, (0) 9155, (0) P30, (0)] +

+ 8Pt X 1, (0) a0, (0,4) s s, (0).
(39)
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D1p—6, (z,y) = (23—?;)3 X P1p-6, (z),
¢2,p—0¢, (:C, y) = (23—15{/)3 X ¢2,p—00 ('7"7 y)’ (40)
$3p—0,(T,y) = (23—1;)3 X P3,p—0, (T),

Bp—9,(x,y) = Dp_g, [Bp-o,y) Cp—s,y) ¢1p-0,(x,y) +
+ Ap_0, () Cp—0,(y) d2p-0,(x,y)+
+ Ap6,(y) Bpo, (y) d3p6, (7, y) +

+ ¢1,p790 (‘T, y) ¢2,p70g (‘T, y) ¢3,p700 (‘Ta y)] .
(41)

W1,p—6, ($a y) =
=0, (Y) — W0, (s) y— ot (1) — 1p—0, (s) }
ﬂp—ﬂa (:I"a ?l) ’ ﬂp—aa (i‘a y) ’

min<{ y — _ 3 Yp—0, (Y) — Vp—0,(8)
{y o= }}

(42)

max { min {y

wW2.p—0, ("Ea y) =
Ap_9,(y) y— By, (y) y— Cp—0,(y) }
¢1,p790 (',Ba y) ’ ¢2,p790 (iL', y) ’ ¢3,p79g (.’E, y) ’
(43)

max{y —

where £ = max(z,y — 1), vp—, (y) is calculated using the formula,
(32), and 7p,_g, (s) is to be substituted by the boundary data (12).
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