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Solvability of a Three—Point
Boundary Value Problem below the

First Eigenvalue
FRANIC IKECHUKWU NJoku *)

SUMMARY. - Assuming only asymptotic conditions on the potential
function, we prove the existence of solutions for third order equa-
tions whose nonlinearity stays below the first eigenvalue of the
associated linear problem.

In this paper, we are concerned with the solvability of the non-
linear differential equation

u" + f(u) = p(t,u,u) (1)
with the boundary condition
u(a) = u'(a) = u(b) =0, (2)

or

u(a) = u(b) = u'(b) =0, (3)

where f : IR — IR and p : [a,b] x IR? — IR are continuous functions.

In the literature, the usual assumptions for the study of the ex-
istence of solutions for third order boundary value problems involve
conditions on the nonlinearity f like monotonicity or sign conditions
or growth restrictions involving the ratio f(s)/s. (See for instance,
[1-2, 9-10, 12-13]). The purpose of this paper is to obtain existence
results for problems (1)-(2) and (1)-(3) which do not require any of
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such conditions on f. Our results are based on a sign assumption on
the potential

F(u) ::/ f(s)ds.
0
By using topological degree, we shall prove the following

THEOREM 1. Assume that p is bounded and

.. F(s) 2
B <oy W

where F(u) := [’ f(s)ds. Then, problem (1)-(2) has a solution.

THEOREM 2. Assume that p is bounded and that condition (4) holds.
Then, problem (1)-(3) has a solution.

The rather weak hypothesis (4) concerning the inferior limits of
F(s)/s? was first introduced in [3]. It was also used in [4-5] for the
existence of periodic solutions of second order differential equations,
in [6] for elliptic problems and in [11] for parabolic problems. How-
ever, the above quoted papers do not include our case which gives
a nonresonance result for a non-symmetric problem. We also stress
the fact that our proof is not an adaptation of those in [3-6, 11] and
indeed, even if the condition (4) is the same like in these papers, we
use a different argument.

It is shown in [7-8] that

"+ du=0

together with the boundary condition (2) or (3) has a sequence of
positive real eigenvalues

71'2

A A e ith A —.
1< A < w1 1>(b—a)3
Therefore, condition (4) means that the nonlinearity is below the
first eigenvalue.
Proof of Theorem 1. Tt is well known that problem (1)-(2) can be

written as a Hammerstein equation of the form

) = [ G,Olp(E,u(e), ' (©) ~ w(e]de = (Ku)()
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with G a suitable Green function. We can also prove that K is
completely continuous as an operator in C?([a, b]) and fixed points of
K are solutions of the original boundary value problem. Using Leray-
Schauder degree theory, we consider the homotopic equation u =
AKu for 0 < A < 1, which corresponds to the differential equation

u" + A f(u) = Mp(tu,u’), 0<A<1 (1)

with the associated boundary conditions and find an open bounded
subset ) of the space C2([a,b]) containing 0, whose boundary does
not contain any solutions of (1,)-(2). For this, we claim that there
exist two positive constants A, B such that there are no solutions of
problem (1,)-(2) with max u = B or minu = —A forall A € ]0,1].
This then implies that problem (1)-(2) has at least one solution in

Q= {u € C%[a,b]) : —A < u(t) < B, [u'(t)| + [u"(t)] < C,Vt}, (5)

where C is a constant that will be fixed at the end of the proof.
In view of the previous section, it suffices for us to obtain a priori
bounds for solutions of the parameterized problem

u" + Mf(u) = Mp(t,u,v'), 0<A<1 (6)
u(a) = 0,u'(a) = 0,u(b) = 0.

Assume that u is any solution of problem (6) such that u #0 and let
t* € Ja,b] and |u(t*)| = max |u(t)|-

We first prove the existence of a constant B independent of v and A
such that |u(t*)| # B. Multiplying the differential equation in (6) by
u' and integrating over [a,t*], we get

t* t*
_ / [ (£)]2dt + AF (u(t*)) = A / Dt u, o'y di

which gives

.
AF(u(t*)) = / [ (£)? + Ap(t, u, o) (£)]dt.

So,

* *

w02t [ It e )@l (7

a

AP@u(t) 2 [

a
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But by Poincaré’s inequality

t* o ¢ b t*
\/ / W ()2dt < \/ (E =2 / w(t)2dt < 2 =2 / ()24t
a T a Vis a

Hence,

b—a
T

[ wapas 20 [T ®)

Using Schwarz’s inequality, we get that

p(t,u,u')Zdt) ’ (/t* u'(t)th> 5.

-

- /at* Ip(t, u, u')||u (2)|dt > — </at

Therefore by (8),

*

t*
— [ pud 0
a

> — b ; %) </abp(t,u,u')2dt> : (/at* u"(t)th>%

Hence,

t* b—a t
- [ttt <D |
a a

Substituting (9) in (7), we get

D=

*

u"(t)Zdt> . (9

AF(u(t)) > / Tz — O L < / ; u"(t)th> ’

a ™

Since y? — ay > cy? —d provided 0 < ¢ < 1 and d = o?/4(1 — ¢), we
deduce that for all 0 < ¢ < 1 there is a constant d > 0 such that
t*

AP (u(t?)) > ¢ / o (8)2dt — d,

a
that is,
a " 2 A * d
/ u"(8)2dt < SF(u(t?)) + (10)
a C C
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for all solutions u of (1)). Now we choose 0 < ¢ < 1 such that

cm? F(s)
(b — a)3 > lslin—ﬁgj g2

and fix € such that

lslgn—&olcf S (b — a)3 )

By hypothesis (4), there is R,, — oo such that
F(R,) <eR:} (n>1). (11)

We claim the existence of n such that u(t*) # R, for every solution
u(t) of (1) — (2). If not, for all n, there is a solution wu,(¢) such that
un(t}) = R, where ), =t} (uy). Using

P 2
fun ()] = [ / uw)dt]

and applying the Schwarz’s inequality on the right hand side of the
above, we have

t*
[un ()2 < (¢ = a) [ un (et

a

which by the Poincaré’s inequality gives

e < 2 [ piopar 12

We then have from (10), (11) and (12) respectively that

[Tuter < Araa)+

%e[u <t*>]2 +2

A,
< / [ult 2dt+
C

IN
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Hence,

/ "t < %s(b;ig“)g) / "l )2t + g. (13)

Since,

e(b—a)?

c w2

£
<1and / ! (£)]2dt — oo,
a

inequality (13) is false for large n. Hence, we have proved that there
is n such that max u # R, and we take B = R,,. In a completely
similar manner, using (4), we find a sequence S,, = —oo such that
AF(S,) < €S2 and prove that min u # S, for n sufficiently large.
Hence, we have a constant A > 0 such that min u # —A, for any
solution of (6). Finally, define

p =max{|f(s)]: —A<s< B}
and, from (6) we have that
|[u"||z2 < pvb—a+ |lp||z2-

By Rolle’s theorem, we know that there is # €]a, t*[ such that u" (f) =
0, and using the fact that

() = u"(F) + /t " (s)ds

we see that ||u”||s is bounded. It follows that ||u/||o is bounded too
and therefore, there is a constant C' > 0 (independent of X and )
such that

W/ (t)] + |u"(t) < C, forall tel[a,bl.

Thus, taking Q as in (5), we have that (6) has no solutions on 9.
Then, Leray—Schauder theorem gives the conclusion. O

Proof of Theorem 2. The proof of Theorem 2 follows similar argu-
ments as that of Theorem 1 with the necessary modifications, so it
is omitted.
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