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Joint Entropy and Gaussian Functions
EDUARDO PAscALI and CARLO SEmpPI *)

SUMMARY. - An old conjecture of Hirschmann’s claimed that the
absolute mazimum of the “joint entropy” functional E occurs for
the real gaussian functions; here we show that these functions are
only saddle points for the functional E.

Introduction

In an old paper [1], Hirschman showed that for every function ¢ :
R — C such that

J16@? dz =1
R
the functional

B(9) = [ 16()]* log|g(@)|? do + [ §(a)]? log (o) do
R R

has a non—positive value provided its definition has a meaning. Here
q§ is the Fourier transform of ¢. That author also conjectured that the
absolute maximum of the functional E occurs for the real gaussian
functions.

The functional F is encountered in Information Theory where it
is called “joint entropy”.

Later Leipnik [2] claimed that the maximum for E is achieved by
the complex gaussian functions

Ya,5(x) = c(a) e @+, (1)
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where a > 0 and ¢(«) is a normalization constant.
Below we show that the above claim is not true and that the real
gaussian functions

Pa(z) = c(a) e 2)

give only a saddle point for the functional E. In retrospect, one
can see that, in [2], only the stationarity of the functional E was
investigated and not its maximum properties. Moreover there is no
difference in considering the functions v, g of (1) instead of the real
gaussian functions @, since |7,,4/% = |¢o|* and |94,4* = |pa|?. Thus
the claim of [2] could have been replaced by the other one that the
absolute maximum of the functional E occurs for the real gaussian
functions (2). This would have proved Hirschman’s conjecture. How-
ever, we shall prove that this is not the case. We still do not know
which functions provide the absolute maximum of the functional E.
This remains, to the best of our knowledge, an open question.

The main result

On the measure space (R,L,\) where A is the Lebesgue measure
on the Lebesgue measurable sets £ of R, we consider the complex—
valued functions ¢ € L' N L?; these have a Fourier transform ¢ given

by .
30 = I[ $(z) € da

We recall that L? is a Hilbert space with inner product and norm
defined respectively by

(6,9) = [ $(a)P(a) do
R

and by
3 := (b, ) -

The orthogonality condition (¢, ) = 0 is equivalent to the other one

}Z%(M) dr = 0.
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Let us introduce the subset M of L' N L? defined by
M={per'nL?: g, =1},

let us denote by E(-, M) the restriction of the functional E to M and
by A the set of admissible functions, i.e. the subset of M on which
both terms in the definition of E are finite,

A:={peM:|E(P)| < +o0}.

LEMMA 1. For every sufficiently reqular ¢, € A such that (p,) =
0, let € := ||9||3 and B(t) :== 1—V1 — et2; then (1—-B(t)) p+tp € M

and

1
=0
= [ (¢@)P(@) + Fla)p(a)) log |(a)* do

R

+ [ (3@ + 31 () logld(o) do

R

Proof. We shall only consider the first term E; in the definition of
FE and exploit the symmetry between the first and the second term
of E.

It is immediate to check that, with the given expressions for e
and 3, (1 — B(t)) ¢ + t1 belongs to M. Notice that

€t 3(¢) = €
V1—et?’ (1 —et?)3/2
and hence 3(0) = #'(0) = 0 and 8"(0) =e.

Setting

h(t) == |(1—B(t) ¢+ 1> and g(t) := h(t) logh(t),
one has
h(t) = (1—B1))° 41>+ [p” + 2t (1— B(t)) R($9),
Wty = —2(1-p8(1) B'(t)|6]° + 2ty
+ (9 +w) (1-B) —t8 W),
g(t) = HK(t) (1+]logh(t))
g(0) = (¢+d) (log|g +1).

pt) =
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The condition (¢,1) = 0 implies, by the Plancherel formula (see,
e.g., [3]), (#,9) = 0; moreover, differentiating under the integral

sign
- [ da
t=0
R

= [ ($(@)¥(a) + Blayp(a)) 1og|4(z) do.
R

d

S By (1 B(t) ¢ + tap, M)

O
REMARK 1. [f ¢ =, ¢ =, ¢ =9, and 9(z) = —p(~a), then
d
S B((1- ) =2 / )) Tog é(a)|? da

in order to see this it suffices to note that, in this conditions, 1ﬁ—|—zﬁ =
0.

REMARK 2. With the previous notation we have:

W'(t) = —21g]* (8" - BB" — B?)+2 |y~ (6% + Bv) (28 +15"),
and
g"(t) =
— {210 (8" —BA" - B%) +2[0 — (¢ +d9) (28 +15")}-
- (1+logh(t))
| (2100 8 50 4 2tlpl = (99 + 9u) (1= p+16))
(1= B(t) & +tyl” '

LEMMA 2. For every pair of sufficiently reqular functions ¢, € A
such that (p,1p) =0, one has

fQE(( = B1) ¢+t M) =-2|[y|3 E($, M)+
t=0
+2 Q ()| log (o) dz + / ()] log|d(a >|2da:>
() () + Bl ¢<s>)2
+f FOk d“/ ds.

R
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Proof. We shall consider the functional F; as in the proof of Lemma,
1, from which we have

By (1= B(1)) ¢+t M)
[{2 (68 -5 168 + 2162 + (1 -5 -5}
R

SN

(¢ + @) (1 +logh(t)) do
[{2 (68 = 8) 168 + 21w+ (1 - 5~ 16}
R

(#5+69) logh(t)ds +2 [ {85~ B) Iof? + t I’} do
R

Hence
d2
B (1 - B(0) d+ty, M)
t=0
= [{-2002 (9" - 508" @) - 6°(1)) + 21} oghtt)ds|  +
t=0

P+ ) (26'(t) +t6"(t) logh(t)dz| +

t=0

_|_

t=0

R
[ (#5+49) @5
R
+ [ olt,o) 11 - B) ¢+ 1yl da
R
[ {2188 (5") - B0)6" @) — 5°(0)) + 214} do
R

t=0

where

pltx) = {2142 (8"~ BF) + 21> — (6 +46) 1 —p+10)) |
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Then

El(( B(t)) ¢+ tep, M)

B

t=

{ ~2|¢(x)? ||1/)||2+2\¢(w)|} log |$(x)|? dz+
/{ 2/p(z)|” ||¢||%+2\¢(m)|}dg;+
R

dz

($@(2) + p(@)(2))”
| Ok

= — 2[4l [ 19(@)? log |$(z)* do+
R
+2 [ @) log (o) da+

dz

R
($@(2) + $(@)(2))”
| [$(@)2

This proves the assertion. O

REMARK 3. If ¢ = ¢, = Z, =1 and ¢(z) = —¢(—x), then

R

—= E((1 =) ¢+t M) =2|pl3 (2~ E($,M))+
t=0

+2/|¢ ) tog|4(2)f dr +2 [ () g o)

We now apply the two previous lemmata to the real gaussian
functions

) a 1/4
da(z) = c(a) e  where c(a) = <27) (a>0). (2

Their Fourier transforms are
da(t) = bla) e /4 with b(a) = (2am) M4,

both ¢, and qAﬁa belong to M. An easy calculation shows that, for
every a > 0, E(¢,) = —log(em), which does not depend on the
parameter «.
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The following lemma establishes a sort of “stationarity” property
for ¢, with respect to Ei(-, M).

LEMMA 3. For every real gaussian function ¢, and for every func-
tion ¥ € M that is real, odd and sufficiently regular, one has

d
SE((1=B) b+t M)| =0,

t=0

Proof. Using the results of Lemma 1 and of Remark 1, one has
2 [ $alo) ¥(@) log|$(@)]” da
— 2 /(/)a(w)zp( ) log ( (o) 2% da
=4 log ba()P(z)dr —4 | 22 do(z) Y(z) dz
o fosnsn<]
- —tac(a) /w Y(@) e dz = 0,

R

since the integrand is odd. O

LEMMA 4. For every gaussian function ¢, and for every sufficiently
reqular real odd function ¢ € L' N L? one has

2
B (1= B() da + 14, M)
t=0 1
= 6413 — 4o [o*vi(e)do—— [4(@)da
R R

Proof. One has

5 B((1= A1) da +tv, M)
= 2[|[13 {2 — B (s M }+z/¢ ) log () da+

+2 [ 1)) log #*(a o =2 913 (3 + g + 21

=6||¢ﬁ%—4a/w V(@) /w

R
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where I stands for the expression
415 tog (@) + [ (~20a%) [y(a)* do+
R

1 A
+ 1913 10¥2(@) + 5 - [ % (@)} do.
R

We shall now need the following family of auxiliary functions

r —%(a:—{—Zm), if z € [-2m,—m],
g (z) = < %w, if z € [-m,m)],
—E(x—2m), if x € [m, 2m),
L " 0, if x ¢ [—2m, 2m),

where m and £ are strictly positive. The functions 1, ¢ are real and
odd so that to them one can apply Lemmata 3 and 4. We have

4
H'lpm,E”g = §m£2
An easy calculation yields

Aimta [2@@de s [y de= 5 agmt + X
R

15 am
R

For every a > 0, m > 0 and £ > 0, we have from Lemma 4

d2

7z B (1= B(1) ba +tYme, M) 2 ., 1

:4m§2 [Q—Eam —W .

t=0

We are now ready to prove the main result of this note.

PROPOSITION 1. For every a > 0 the real gaussian function ¢ is a
saddle point for the functional E(-, M).

Proof. One has

d2

S (1= B(0) b +thme M)

= fa,§ (m)

t=0
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with 99 .
fae(m) :==dmé* |2 — i am? — prl

For every ¢ and for every a, one has

mh_>n8+ fae(m) = —o0 and mgrfoo fa,e(m) = —o0.
Thus the functional E(-, M) cannot take its maximum value when
evaluated at the gaussian function ¢, because

dQ

pTe) <0

t=0

E((1=4(1) ¢a+ thme, M)

when m > 0 is close to 0. Furthermore the function ¢t — 2 —
(22/15)t — 1/t takes it maximum value at the point ¢y = /15/22

foe Q/g) :8\/55 (1—\/g> > 0.

Therefore there exist ¢; and ¢, with 0 < ¢; < 3 such that f, ¢(¢) > 0
for every t € [t1,t2]. As a consequence, for every a > 0 one can
choose m > 0 in such a way that

d2
5B (1= B(t) da+1tme, M)

P > 0.

t=0

What precedes shows that every real gaussian function ¢, is a saddle
point for E(-, M). O

It is now clear that Leipnik’s claim cannot be true.

Finally, we have been somewhat vague in stating the assumptions
of Lemmata of this paper in that we have requested the functions to
be “sufficiently regular”, but all the steps and results we have used
are justified for the functions to which, in the final propositions, we
have applied them.
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