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On the Tensor Product
of Sections of Vector Bundles
on an Algebraic Curve

M. BAiesi and E. BArpico )

SUMMARY. - Here we study several properties of spanned vector bun-
dles on an algebraic curve X. In particular we study the multi-
plication map H°(X,E) ® H'(X,F) - H'(X,E® F).

1. Fix a smooth complete algebraic curve X and let E, F' be vector
bundleson X. Set r := rank(E), s := rank(S). Take linear subspaces
V C H(X,E), W C H°(X, F) and consider the multiplication map
m(V,M): VW — HY(X,EQF). Set m(V,W) := dim(m(V, W)).
Assume that V generically spans E and that W generically spans F'.
In [9] and [3] it was proved that

m(V,W) > r(dim(W)) + s(dim(V')) — rs. (1)

Here we continue the program started in [4] and [3] and study sev-
eral geometric properties of the multiplication map. A preliminary
version of part of this paper is contained in [2]. In Section 2 we will
give an extension of most of [9] to the positive characteristic case.
In Section 3 we study a geometric property (see Definition 1.2) of a
vector space of sections of a rank r > 1 vector bundle.

We will use the following convention.

DEFINITION 1.1. Fix a variety X, a vector bundle E over X and
a finite dimensional vector space V C H°(X, E). The pair (E,V)
is said to be a spanned pair (resp. a generically spanned pair) if V
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spans E (resp. if there is a Zariski dense open subset U of X such
that V spans E|U).

Now we introduce the following definition which seems to have a
geometric meaning and which is the key for the results of Section 3.

DEFINITION 1.2. Let X be a variety and (E, V) a generically span-
ned pair with r := rank(F) > 2. Fix an integer ¢ with 2 <t <.
The pair (E,V) is called t-generic if every t-dimensional subspace of
V spans a rank t subsheaf of E.

In Section 4 we improve with elementary methods the results on
the multiplication map of [9] and [3]. However, most of the results
hold only for line bundles. Here is the statement of our main result.

THEOREM 1.3. Let X be a smooth curve of genus g(X) > 7. Let
(L, V) and (M,W) be spanned pairs on X. Set v := dim(V) and
w = dim(W). Assume v > 2, w > 3, deg(M) > 3v + 2w — 3
and that the morphisms induced by |V| and |W| are birational and
different. Then m(V,W) > 2w + 2v — 4.

In Section 5 we study the multiplication map on a multiple cover
f + X — C of smooth curves focusing on the cases “f unramified”
and “f Galois”. Then in Section 6 we use the theory of mock cov-
ers (see [6]) to study when h°(X, f*(A4)) > h°(C, A) with A vector
bundle on C. Here C is fixed and we take X and f general. In the
last section we consider (with a few examples) when a given vector
bundle F on X is of the form u*(E') with E' vector bundle on a
lower genus smooth curve C' and u : X — C finite map.

2. Recall the following results proved by R. Re ([9, Th. 1 and 2]).

THEOREM 2.1. ( [9, Th. 1 and Th. 2] ) Assume characteristic 0.
Let X be a smooth projective variety. Let (E,V) and (F,W) be
generically spanned pairs on X. Then

m(V,W) > dim(V)rank(F') + dim(W)rank(E) — rank(E)rank(F).
Furthermore, if X is a smooth curve, (E,V) and (F,W) are spanned
pairs and

m(V,W)) = dim(V)rank(F') + dim(W)rank(E) — rank(E)rank(F),
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then there exist a morphism f : X — P! and vector bundles E', F'
on P' with E = f*(E'), F = f*(F"), V = f*(H°(P,E')) and
W = f*(HO(P', F")).

To make a more complete picture in this section we will show why
the proofs of Theorem 1 and Theorem 2 (over a smooth curve) of
[9] work in positive characteristic. We will show also that the proof
of Theorem 1 in [9] can be extended easily to the case in which the
variety is not locally Cohen - Macaulay.

PROPOSITION 2.2. The statement of Theorem 2.1 holds in arbitrary
characteristic. The first assertion of Theorem 2.1 holds for any re-
duced and irreducible projective variety X.

For the proof of the first assertion of Theorem 2.1 for curves it
is sufficient to use the fact that, even in positive characteristic, the
dimensional part of the classical Bertini theorem holds (see [8] or
[7]). For the extension to the case dim(X) > 1, X not locally Cohen
- Macaulay, just note that in the proof in [9] it was used only the
fact that if £ is a vector bundle on X and H a very ample divisor on
X, we have H/(X,E ® Ox(—nH)) =0 for t = 0 and 1 and for very
large n. This is equivalent to the condition that Ox has everywhere
at least depth 1 (again by the original proof of Serre in F.A.C.).
However, to apply the fact that the evaluation and multiplication
maps commute with restriction, it is sufficient to have the injectivity
at the level of global sections, i.e. Serre vanishing in the case ¢t = 0.
This is true if X has no embedded points. In particular it is true for
reduced X. The general divisor in a very ample linear system will
be again reduced and we conclude inductively for all integral X, as
wanted. Now we consider the extension to positive characteristic of
the last assertion of Theorem 2.1. Note that the proof of the classical
case of line bundles on smooth curves ([9], first and second part of
the proof of Prop. 1) holds in positive characteristic. Then note that
over a smooth curve the induction on the rank of the vector bundles
([9], lemmata 1 and 2) works verbatim.
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3. Here we show how to use Definition 1.2.

PROPOSITION 3.1. Let X be a smooth curve and E a rank r vector
bundle on X generically spanned by V. C H°(X,E). Assume that
(E,V) is r-generic. Then h%(X,det(E)) > r(v—r)+1.

Proof. By definition every r-dimensional linear subspace of V in-
duces an injection of rOx into E. Such an injection drops rank on
a divisor in the projective space P := P(H°(X,det(E)))*. Hence
we have an everywhere defined morphism f : G(r,v) — P. We may
assume v > r. Fix a general P € X. There are linearly independent
s(j) eV, 1<j<r+1, with s(i)(P), 1 <i < r, spanning the fiber
of E at P, but with s(r + 1)(P) depending on s(j)(P), 1 < j < r.
Thus f is not constant. Hence we have f*(Op(1)) = Og(,v)(a) with
a > 0. Since Og(,y)(a) is ample, f does not contract any subvariety
of G(r,v) and in particular dim(P) > r(v —r). O

COROLLARY 3.2. Let X be a smooth curve and E a rank r vector
bundle on X generically spanned by V C H°(X,E). Assume that
(E,V) is r-generic and that det(E) is special. Thenr(v—r)+1<g
and 2r(v — r) < deg(E). Furthermore, if h'(X,det(E)) > 2, then
deg(E)—2r(v—r) > Clif f(X), where Clif f(X) is the Clifford index
of X.

Proof. By Proposition 3.1 the second inequality is Clifford theorem
([1]), while the “furthermore” part is just the definition of Clifford
index of X. O

PROPOSITION 3.3. Let X be a projective variety and E a rank r
vector bundle on X generically spanned by V C H°(X, E). Assume
that (E,V) is t-generic. Let A be a spanned vector bundle. Then:

(a) for every t-dimensional linear subspace U of H°(X, A) the mul-
tiplication map m(V,U) is injective.

(b) for every linear subspace U of H°(X,A) we have m(V,U) >
t(v + dim(U) — t).

Proof. First we assume rank(A) = 1. To prove part (a) note that
every element of m(V,U) is of the form a; ® by + ... + a; ® b;. By
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definition of ¢t-generic if ay, ..., a; are linearly independent they gen-
erate a rank ¢ subsheaf of E. Hence part (a) follows. Part (b) follows
from part (a) and [5, Prop.1.3], i.e. from the notion of ¢-generic vec-
tor space of matrices in the sense of [5]. Now assume rank(A4) > 1.
Take a sufficiently positive quotient line bundle A" of A such that
the induced map W — H?(X, A) is injective. Apply parts (a) and
(b) to A'. 0

LEMMA 3.4. Let X be a projective variety and E a rank r vector
bundle on X generically spanned by V C H°(X,E). Assume the ex-
istence of a subbundle A of E such that V' := VN H°(X, A) generi-
cally spans A. Then for every generically spanned pair (F,W) on X
we have m(V,W) = m(V', W)+ m(V/V',W).

Proof. We have a commutative diagram of evaluation maps induced
by the exact sequences:

0 - VW — VW — (V/VY@W — 0

¢ ! ! (2)
0 - AQF —» E®F — E/A®F — 0.

Although the global section functor is only left exact, we still have
the equality and not only the inequality m(V,W) < m(V', W) +
m(V/V',W) because by 2 the image m(V/V’, W) of the evaluation
map of (V/V') ® W is contained in the image of H*(X,E® F). O

The same proof by induction on r gives the following result.

PROPOSITION 3.5. Let E be a rank r vector bundle generically span-
ned by V.C HYX,E). Let {E;}, 0 < i < r, be an increasing
filtration of E by subbundles with L; := E;+1/E; of rank 1, Ey = 0.
Set V; := V N HY(X,E;) and v; := dim(V;). Assume v; < v;y1 for
every i > 0. Then for every generically spanned pair (F,W) we have
m(Va W) = Zz m(‘/i-H/Via W)

Motivated by Proposition 3.5 we introduce the following defini-
tion.

DEFINITION 3.6. Let X be a projective variety and E a rank r vector
bundle generically spanned by V C H°(X, E). Let {Ei}, 0 <i <,
be an increasing filtration of E by subbundles with L; := E;,1/E; of
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rank 1, Eg = 0. Set V; := VN H°(X, E;) and v; := dim(V;). Assume
v; < vij41 for every i > 0. Then the filtration {E;} of E will be called
a spanning filtration.

PROPOSITION 3.7. Let X be a projective variety and (E,V) and
(F,W) be generically spanned pairs on X admitting a spanning fil-
tration. Set r := rank(E), s := rank(F). Assume m(V,W) >
rw+ sv —rs. Then m(V,W) > rw + sv — rs + min(r, s).

Proof. Let E;,V;,v; (resp. Fj,Wj,w;) be the data associated to a
spanning filtration of (E, V') (resp. (F,W)). By 3.2 and the assump-
tion on m(V, W) there is at least a pair (¢, 7) with m(Vi41/V;, Wit
W;) > dim(V;11/V;) + dim(W;41/W;) — 1. By 3.6 it is sufficient to
prove that there are at least min(r, s) such pairs (4, ). By [9, Th. 2],
if this inequality fails for a pair (a,b) there is a map fq : X — P*
inducing the corresponding rank 1 spanned pairs. Note that if we
have such maps fi2, fo1 and foo, we have also the map f1;. Hence
we conclude easily. O

4. In the first part of this section we prove Theorem 1.3 and a
few related results, i.e. we improve with elementary methods the
results on the multiplication map in the case of line bundles over a
smooth projective curve X of genus g(X) > 2. In the second part
of this section we will extend the methods and proofs to cover the
higher rank case. In this section we assume characteristic 0. We
fix two line bundles L, M on X and vector spaces V C H°(X, L),
W C HY(X, M) without base points. Set v := dim(V), w := dim(W)
and let |V|, |W| be the associated projective spaces. Let m|V,W| =
|m(V, W)| be the span of the image of the multiplication map in the
complete linear system |L ® M| associated to L ® M. Note that
m(V, W) < vw. For any linear system |U| on X and any P € X, set
|U—P|:=|U(=P)|:={D € |U|: P € Dyeq}-

Proof of Theorem 1.3. The proof is divided into 4 steps labelled 4.1,
4.2, 4.3 and 4.4. The bounds on deg(M) and g(X) assumed in the
statement of 1.3 are very rough. For better bounds, see 4.2, 4.3, 4.4
and the proof of 4.3.
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PART 4.1. If v = w = 2 and |V| and |W| are not composed with the
same pencil, then by [9, Prop. 1], we have m(V,W) = 4.

PART 4.2. Assume v = 2, w = 3 and |W| not composed with a
rational involution. We claim that m(V, W) = 6. Assume by contra-
diction m(V,W) = 5. Let t : X — C C P? be the morphism induced
by [W|, Y the normalization of C'and ¢’ : X — Y the map induced by
t. For a general P € X we have 3 < m(V,W — P) < 4. First assume
that for a general P we have m(V,W — P) = 3. By [9, Prop. 1], |V|
and |W — P| are composed with the same rational pencil. In partic-
ular M (—P) and M (—P’) are linearly equivalent for general P, P’ in
X, contradiction. Hence we may assume m(V, W —P) = 4 for general
P. Thus m|V, W — P| is the hyperplane | m(V, W) — P| of |m(V, W)].
Since |W| is not composed with a rational pencil, we see that for a
general point P there is P’ € |V — P| with |W — P — P'| # |W — P|.
Note that the image Z C |m(V, W)| = P* of |V| x |W| is a hypersur-
face with a 1-dimensional ruling by planes {D + |W| with D € |V|}
and a 2-dimensional family of lines {|V |+ D with D € W}. Thus the
line bundle associated to the morphism |V| x |W| — |m(V, W)| has
bidegree (1,1). Thus an easy computation gives deg(Z) = 3. Note
that the plane |m(V, W)|(—P — P') intersects Z at least in the family
of lines {|V|+ P" with P" € |W(—P — P')|}. Thus deg(M) < 5. As-
sume deg(M) = 5. Since 5 is prime, we see that the map induced by
|W| is birational. Hence g(X) < 6. Now assume deg(M) = 4. If the
map induced by |W| is birational, then g(X) < 3. If the map induced
by M is not birational, then X is hyperelliptic and |W| = 2¢3.

PART 4.3. Now assume v = 2, w > 4, deg(M) > (3w/2) and that
the morphism induced by |W/| is birational. Then m(V,W) > 2w.
Assume by contradiction m(V,W) < 2w — 1. By induction on w
we may assume m(V,W) = 2w — 1 and that for a general P € X
m(V,W — P) = 2w — 2. Let Z C P>~ 2 be the image of |V| x |W]|.
As in 4.2 we see that deg(Z) = w. By assumption for general points
P; e X,1<j<w-—1, the space m(V,W)|(—P1—... - P,_1) has
dimension w—1 and intersects Z in at least deg(M) —w+1 lines D;.
By the birationality assumption and the fact that in characteristic 0
the monodromy group of a general hyperplane section of an integral
projective curve is the full symmetric group ([1, Ch. II}), there are
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integers a2 and a1 such that the linear span of any ¢ of the lines D;’s
has dimension 2t — 1 if 2 < t < ay, dimension 2ay + (t —a1) = as + ¢
if as < t < aq1+as, dimension 2w —2 if t > a1 +a9. Hence 2as+a; =
2w — 2. Furthermore, since any line is contained in the span of any
two of its points, two different sets of as lines D;’s span \m(V, W)|.
Hence 4ay — 1 > 2w — 2, i.e. 2ag > w. Thus if deg(M) > w + (w/2),
lm(V,W)|(—P1—...— P,_1)| N Z contains at least 1 + (w/2) lines
Dj’s, contradiction.

PART 4.4. Now assume 3 < v < w and that the morphisms induced
by |V| and |W| are birational and different. We want to prove The-
orem 1.3. Assume by contradiction m(V,W) < 2w + 2v — 4. By
4.3 and induction on v, we may assume m(V,W) = 2w + 2v — 4
and that for a general P € X we have m(V — P,W) = 2w +
2v — 5. We follow the proof of 4.3 reversing the roles of |V| and
|[W|. Now we have integers a;, 1 < j < w, such that a; > 0,
ay > 0, Yi<cjcwia = 2w + 2v — 3 for general Pj, 1 < j < ¢
with, say, ay + a1+ ... +aip1 < t < ay + ay—1 + .- + a,
the linear span of the subspaces {P;} x |W| of |m(V,W)| has di-
mension 3,41 <jcy ja; — 1+ i(t — ay + ay—1 + ... + aj+1). Now
deg(Z) = (v+w—2)!/((v—1)!(w—1)!). Taking v — 1 general points
P;’s we find a contradiction as in 4.4 when deg(M) — v + 1 is large,
e.g. if deg(M) > 2w + 3v — 3. O

REMARK 4.5. If we do not assume that the morphism induced by
|V| is birational, the proof of Theorem 1.3 (see in particular 4.3 and
4.4) gives m(V, W) > 2w + v — 2 if deg(M) > 2v + 2w — 3.

REMARK 4.6. Let (E,V) and (F, W) generically spanned pairs with
rank(E) = r and rank(F) = s. Assume that these pairs have a
spanning filtrations such that the associated rank 1 graded pieces
induce birational morphisms. The proof of the inequality (1) given
in [3] (i.e. in particular the proof of [3, Prop. 1.2]) and the proof
of Theorem 1.3 and Remark 4.5 give a better bound on m(V, W)
(roughly twice the naive one given by (1)).

THEOREM 4.7. Let (E,V) be a generically spanned pair and (M, W)
a spanned line bundle with |M| birational, w > 3 and deg(M) >
(Bw/2). Then m(V,W)> (r+1)w+v—r+3.
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Proof. By [3, Prop. 1.2] we reduce to the case E = (r — 1)Ox @
det(E), V = (r — 1)K & V' with the direct sum of V corresponding
to the direct sum of E, dim(V') = v —r + 3. Hence m(V,W) >
(r —)w +m(V',W). Now apply 4.3. O

REMARK 4.8. Note that we have m(V' @ V' W) = m(V',W) +
m(V", W) for all (generically) spanned pairs (E', V'), (E",V") and
(F,W). Fix a generically spanned pair (E,V) with invariants r,v
on the smooth curve X. In the proof of [3, Prop. 1.2], we gave a
degeneration of the pair (E, V) to the pair ((r—1) Ox @ det(E), (r —
K @ V') for some V'. Let S™(V)~ be the image of S™(V) into
S™(E). Hence by semicontinuity, with obvious notations for any
other generically spanned pair (F,W), we have m(S™"(V)=,W) >
S i<icn STV, W)+ ((n+7—1)!/(n!(r—1))w. A similar result
holds for every other Schur functor in any number of variables (e.g.
tensor products).

REMARK 4.9. We may combine Remark 4.8 with the proof of Theo-
rem 1.3 (in particular with part 4.3) and with [3, Prop. 1.2]. Assume
that X has no map of degree > 1 to a curve of genus > 0. Fix
R € Pic(X) and U C H(X, R); let B be the base locus of U and set
U':=U(—B) 2 U. Note that |U’| induces a birational morphism if
U' = H°(X, R(—B)) and h°(X, R(—B)) does not divide deg(R(—B))
because a rational normal curve in P™ has degree m. For the same
reason, if we assume that |U’| factors through a curve of geomet-
ric genus 1, then either h%(X, R(—B)) or h’(X, R(—B)) + 1 divides
deg((R(—B)). And so on. If there is no assumption on U’ but X
does not map to a curve of genus > 0, at least we know that the
morphism induced by U’ is birational if either deg(R(—B)) is prime
or deg(R(—B)) < k2, with k the gonality of X.

The following lemma may be used to give weak extensions of Theo-
rem 4.7 to the case r > 2.

LEMMA 4.10. Let (E,V), (F,W) be generically spanned pairs with
nvariants T, s,v,w on the smooth curve X. Fiz v —1 — 1 general
points Q(1),...,Q(v—r—1) of X and v—r+1 sections s(1),...,s(v—
r+ 1) € V such that for all i,j we have s(§)(Q(i)) = 0 if 1 # 7,
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s(1)(Q(2)) # 0. Fiz a vector subspace V', dim(V') = r + 1, which is
a complement of the subspace V" of V spanned by the sections s(j)'s
and which generically spans E. Then m(V,W) > m(V', W) + s(v —
r—1).

Proof. Take s sections a(1),...,a(s) € W such that their evaluation
on each fiber F'|A(7) induces a base of the vector space F|A(z). Then
evaluate at each point A(i) every linear relation between m(V', W)
and m(V" W) to show that their linear span in H%(X, E ® F) con-
tains m(V’, W) as a subspace of codimension > s(v —r — 1). O

5. In this section we study the multiplication map on a curve X
which is a multiple cover. Let f : X — C be a finite separable map
with X smooth genus g curve and C smooth curve. Let Y —+ X — C
be the Galois extension determined by f; let G be its Galois group,
H C G the subgroup corresponding to ¥ — X; we will always
assume either characteristic zero or that card(G) is not divisible by
the characteristic of the algebraically closed base field. Set t :=
deg(f) and q := po(C) > 0. Fix a spanned pair (E,V) on X. Set
r:=rank(E), v := dim(V).

PROPOSITION 5.1. Assume f unramified. Let (E,V) be a spanned
pair with invariants (r,v). Then there is a spanned pair (E',V')
on C with invariants v' := r(card(G)), v' := v(card(G)) such that
for every spanned pair (F',W') on C with invariants (s, w) we have
m(V,W) =m(V',W')/card(G), where F := f*(F'), W := f*(W").

Proof. (a) First, we check that Y — C is unramified. Let H' be the
subgroup of G generated by all stabilizers of the points of Y. Since
f is unramified, we have H' C H. Since H' is normal and Y — C is
the minimal Galois extension of f, H' is trivial, as wanted.

(b) Let (E",V") be the pull-back on Y of the pair (E,V). Set
A= @yeq 9" (E") and B := @ e g*(V"). The spanned pair (4, B)
is G-invariant. Since Y — C is étale, by descent theory (A, B) is the
pull-back of a spanned pair (E', V') on C. Let (F',W') be a spanned
pair on C with invariants (s,w) and let (F,W) (resp. (F",W"))
its pull-back to X (resp. Y). By construction we have m(V,W) =
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m(V",W") = m(A,W")/card(G) = m(V',W') /card(G), as wanted.
O

PROPOSITION 5.2. Assume f unramified. Let (E,V) be a spanned
pair with invariants (r,v). Then there is a spanned pair (E',V') on
C with invariants v’ := r(card(QG)), v' := v(card(G)) such that for
every spanned pair (F,W) on X with invariants (s,w) there is a
spanned pair (M,N) on C with invariants (s(card(G),w(card(G))
such that m(V,W) = m(V', N) /card(G)?, where F := f*(F'), W :=
(W),

Proof. Apply to the pair (F, W) the construction in the proof of 5.1
(pull-back to Y and then averaging with respect to the action of G).
O

5.3. In this subsection we assume that f : X — C is a Galois
extension. For every ramification point P € X of f let Gp C G be
the stabilizer subgroup and A|{P} the fiber of any vector bundle on
X. Let B be the set of ramification points. Note that if h*(A) =
A for every h € G, then Gp acts on A|{P} (P € B). For this
action of Gp the restriction map A — A|{P} is Gp-equivariant. Let
A|{P} — A(P) the G p-equivariant projection into the subspace of
A|{P} on which Gp does not act trivially. Let A(G) be the subsheaf
of A which is the intersection of all the kernels of the surjections
A — A(P), P € B. Since X is a smooth curve, A(G) is a locally
free subsheaf of A with rank(A(G)) = rank(A). By construction
h*(A(G)) =2 A(G) for every h € G and Gp acts trivially on A(G)|{P}
for every P € B. Hence by descent theory there is a vector bundle A’
on C such that f*(A") = A(G). If W spans A and G acts on W, set
W(G) .= Wn H°(X, A(G)) and G(W) := dim(W) — dim(W (G));
we will say that (A,W) is a G-spanned pair. Note that there is
W' C HO(C, A") with f*(W') = W(G) (but of course we may even
have W(G) = {0}).

PROPOSITION 5.3. Let (E,V) be a G-spanned pair. Then for every
spanned pair (M, N) on C, we have

m(V, f*(N)) = m(V(G), f*(N)) + G(V)dim(N).
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Proof. Note that for every P € B, G acts on E® f*(M)|{P} and for
this action V(G) ® f*(N) is the part on which G acts trivially. O

REMARK 5.4. If we have another G-spanned pair, say (M"”, N") in-
stead of (f*(M), f*(N)) as in 5.3 we may still have a decomposition
of the fibers of E® M"|{P}, P € G, in terms of the action of Gp on
E|{P} and M"|{P} and still apply the method of 5.3 (if the decom-
position is known). If (F, W) is any spanned pair, we may apply the
averaging method of 5.3 to obtain a G-spanned pair.

6. Fix a smooth genus ¢ curve C, ¢ > 0 and a vector bundle M on
C. Let f: X — C be a finite cover with X smooth genus g curve.
Set k := deg(f). The general question is when A°(X, f*(M)) >
RO(C, M), i.e. although the vector bundle f*(M) is induced by the
cover f, it has sections which are not induced by the cover. This
question may have a meaningful partial answer in term of ¢, g, k and
numerical invariants of M, plus if necessary assumptions on C (if
g > 0), and on f (e.g. f general with C fixed, or f general with
C general or f cyclic or f Galois). Here we consider the case in
which C is fixed, f is a Galois extension and f is general. The
main tool is the theory of mock covers introduced in [6]. In this
section we assume characteristic 0. Fix C and a finite group G.
Fix a finite set B C C. There is a generalized Hurwitz scheme
Hurw(C, G, B) parameterizing Galois covers of C with group G and
which are unramified outside B. On the boundary of Hurw(C, G, B)
there are the mock covers introduced and studied in [6, Section 2
and Section 3|. Recall that a mock cover with respect to C, B and G
is a reduced curve Y with a finite map 7 : Y — C with the following
properties. Y has card(G) irreducible components {C(g)}4eq, each
of them mapped isomorphically by m onto C. G permutes these
components (i.e. h € G sends C(g) into C(gh)), Y is seminormal, i.e.
uniquely determined by the gluing data of the components {C(g)}.
The gluing data of these components are given in terms of generators
for the stabilizer subgroup Hp of each ramification point P € B (i.e.
the sheets C(h), with h € Hp are glued together at the point P).

PROPOSITION 6.1. Let w : Y — C a mock cover with Galois group
G and ramification set B. Fiz a spanned pair (E,V) on C. Set
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r := rank(E), v := dim(V), t := v/r. Assume that t is an integer
and that for k general points Py, ..., P of C we have V(=P —...—
P):=VNHYC,E(~P, —...— P;)) = 0. Assume that there is an
ordering C{1},...,C{card(G)} of the components of Y such that for
every i > 1 C{i} N (U1<j<; C{j}) contains at least t general points
of C{i}. Then for a general cover f: X — C in Hurw(C,G, B) we
have h%(X, f*(E)) = h%(C, E).

Proof. Let (i) be the restriction of  to U;<;; C{j}. First, using
induction on ¢ we see that for every ¢ > 1 we have

(U C{i}, ()" (E)) = tr = K°(C, E).
1<j<i

Then we apply [6] to show that this mock cover is the flat limit of
covers from smooth irreducible Riemann Surfaces. O

Consider the following Remarks 6.2 and 6.3 related to the as-
sumptions of Proposition 6.1 for r = 2 and v = 4.

REMARK 6.2. Assume that G is generated by the stabilizers Hp
with P € B. Then for every mock cover we may find an order of the
sheets with card(C{i} N (U1<;<; C{j})) > 2 for every i and we may
find such a mock cover such that (for fixed E) C{i} N (Ui<;<; C{5})
contains two sufficiently general points of C(7). A smooth Galois
cover f : X — (C satisfies the condition on the stabilizers Hp, P € B,
if and only if f does not factor through an étale cover of degree > 1.

LEMMA 6.3. Fiz a spanned pair (E, V) on the smooth curve C with
rank(E) = 2, dim(V') = 4. Either E = O¢ @ J for a line bundle J
with dim(V N HY(C, J)) = 3 or for general points P, Q of C we have
V(-P—-Q):=H(C,E(—P - Q))NV =0.

Proof. Since V spans E, for every P we have dim(V(—P)) = 2. If
the thesis of the lemma fails, we see that V(—P) spans a rank 1
subsheaf of E(—P); let Lp be its saturation and Mp := E(—P)/L.
By assumption the image of V(—P) into L vanishes. If dim(V N
H°(C,Lp(P))) = 3 for some P, then Mp(P) is spanned by one
section. Hence Mp(P) is trivial. Since, up to a sign, the image
of the constant section 1 of H°(C, O¢) into H'(C, Lp(P)*) is the
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extension class of the extension induced by Lp(P) and Mp(P) is
spanned by V, this extension splits and F = O¢ ® J for some J. If
for general P, we have Lp(P) = Lg(Q) as subsheaves of E, then
V(-Q) N HY(C,Lp(P))) = 2, dim(V N H°(C, Lp(P))) = 3 and we
conclude. If for general P,Q) we have Lp(P) # Lg(Q), then the
image of Lp(P) into Mg(QR) vanishes and we see that too many
sections of V' have 0 as images into Mg(Q). O

7. In this section we consider the following problem which is classical
and important in the rank 1 case. Fix a smooth genus g curve
X, a vector bundle E on X and a vector space V C H%(X,E).
When there exist a smooth curve C, a finite map v : X — C,
deg(u) > 1, and a pair (E',V’) on C inducing (E,V), i.e. with
E = y*(E') and V = u*(V') (with the identification given by the
previous isomorphism) 7 From our point of view this problem seems
to be reasonable only if V spans E (as it was in the classical rank
1 case). The following observation shows that the problem for the
higher rank case has some specific flavour.

REMARK 7.1. Assume that X is not a covering of a curve of genus
> (0 and let E be a spanned rank r vector bundle on X. If the map
f:X — G(r,h°(X, E)) induced by H°(X, E) is not birational, the
image must be a rational (perhaps singular) curve Y and f factors
through the normalization P' of Y. Hence E is a direct sum of
r line bundles. Similarly, if X covers non trivially only curves of
genus < 1, F is indecomposable and f is not birational, then the
normalization of the image is an elliptic curve. Hence by Atiyah’s
classification of vector bundles on elliptic curves, E is semi-stable
and if r and deg(F) are not coprime, E cannot be stable. Thus on
“most” curves, spanned stable vector bundles do not factor in a non
trivial way.

We need the following well-known result.

LEMMA 7.2. If a spanned vector bundle F' on an integral complete
variety Y has Oy as quotient, then it has Oy as direct factor.

Proof. Since F' is spanned we have a surjection O?it — FE which
induces a surjection wu : O??t — Oy. Since Y has only the constants
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as global sections, the surjection u splits and induces a splitting of
the surjection £ — Oy. O

We will consider here only the case V := H°(X, E) and set v :=
RO(X,E), r := rank(E), L := det(E) and d := deg(L) = deg(E).
For all integers n,y with n > 2, y > n, we define the integer p,(n,y)
in the following way. Set y —1=m(n—1)+ewith 0 <e <n —2.
Then p,(n,y) := (n —1)m(m —1)/2 + me. By classical Castelnuovo
theory (see e.g. [1, ch. II]) p,(n,y) is the maximal arithmetic genus
of an integral non degenerate degree y curve in P".

PROPOSITION 7.3. Setz := h°(X,L). Assume E spanned and x > 3
(e.g. assume E non trivial, r > 2 and g > 2). Assume g > pg(x —
1,d). Then there is a smooth curve C, a vector bundle E' on C
and a degree > 1 finite map v : X — C with E = u*(E') and
W(X, E) = hO(C, E').

Proof. Note that we may split off from FE any trivial factor O without
changing z and d. Thus we may assume h?(X, E*) = 0. Take a
general V C H(X, E) with dim(V) = r + 1. Since E is spanned by
V', we obtain an exact sequence

0—-L*"-V®O0—E—O. (3)

Since h?(X, E*) = 0, we have V* C H°(X, L). Thus (L, V*) induces
a morphism u(V) : X — P(V*) which is a projection of the mor-
phism u(L) induced by (L, H°(X, L)). Since g > pq(z — 1,d), u(L)
is not birational and factors in a non trivial way with a degree > 1
finite map u : X — C. Thus u(V) factors through u. By 3 the
pair (E,V) factors through u and we obtain (E’,V’) on C induc-
ing (E,V). Since u is the same for all general V, we obtain that
(E,H°(X,E)) is induced by (E', H°(C, E")), as wanted. O

Since as datum for E it is much more natural to take v :=
hO(X, E), rather than z := h%(X,det(L)), we would like to obtain
good lower bounds of z in terms of v. For a related result, see Propo-
sition 3.1. We have the following results.

LEMMA 7.4. If E is spanned, then z > v —1r + 1.
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Proof. Since E is spanned, taking r — 1 general sections of E we
obtain
0—(r—-1)0—-E—L—0, (4)

and we conclude. O

REMARK 7.5. In general the bound z > v — r + 1 just given is
optimal as shown by all spanned vector bundles on P! and hence by
the bundles coming from P!, at least in suitable ranges.

LEMMA 7.6. If E has no trivial factor, then x > r + 1.

Proof. Since E has no trivial factor, h%(X, E*) = 0 and hence by 3
V* C HY(X, L) with dim(V*) = r + 1. -

Motivated by Proposition 7.3 we will give a few cases in which
better lower bounds for z are available (under the assumption that
E has no trivial factor). By Remark 7.1 the case of curves with
low genus is particularly interesting, even assuming that on the low
genus curve the bundle induces a birational map.

REMARK 7.7. If h}(E) = 0, by Riemann-Roch we have z > v+ (r —
(g - 1).

REMARK 7.8. If X has genus 1 and E has no trivial factor by
Atiyah’s classification of bundles on elliptic curves we have v = z.

REMARK 7.9. Assume that X has genus 2, h!'(E) # 0 and that E
has no trivial factor. Hence we may find a non zero section vanishing
at a general P € X. Let A := O(D) be the saturation of the
corresponding subsheaf of E. If r = 2, we have E/A = L(—D).
Since D # () and L is spanned, we find = > v if h%(A) = 1. This is
the case if D = {P}, i.e. if the morphism induced by E is birational.
Assume hO(X, A) > 2. Since X has genus 2 we have either A & Kx
or deg(A) > 3. In both cases we find h°(X,L(—D)) < h%(L) —
2. Hence we get the same bound x > v unless h%(X,A) > 3. If
RO(X,A) > 3, we have h' (X, A) = 0. Since E has not O as a factor
by Lemma 7.2, we have deg(L(—D)) > 0. Since h'(X,E) # 0 we
have h'(X, L(—D)) # 0. Since L(—D) is spanned we have L(—D) =
Kx. In particular F is not semi-stable. If F is indecomposable, then
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either deg(A) = 3 or deg(A) = 4 and A = K?. Now assume r > 2.
If E/A has not O as a factor, we may obtain by induction on r the
inequality z > v. If E/A has O as factor, O is a quotient of E. Since
FE is spanned, this implies that O is a factor of £ by Lemma 7.2.
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