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On Commutative Sums of Generators
HorsT R. THIEME *)

Pierre Grisvard in memoriam

SUMMARY. - The theorem by Da Prato and Grisvard on resolvent
commutative sums of linear m-dissipative operators is recast and
extended in the framework of integrated semigroups.

1. Introduction

In their classical paper, Da Prato and Grisvard (1975) proved the
following result among many others:

THEOREM 1.1 (Da Prato, Grisvard, Theorem 3.3). Let A and B be
m-dissipative resolvent commutative operators on a Banach space
X. If at least one of them is densely defined, then A + B (with
domain D(A) N D(B)) has an m-dissipative closure.

Using Arendt’s (1987a) characterization of m-dissipative opera-
tors in terms of L.L.c. (locally Lipschitz continuous) integrated semi-
groups, this result can be reformulated as follows:

THEOREM 1.2. Let A be the generator of a Cy-semigroup S and B
the generator of a 1.L.c. integrated semigroup ¥ such that U and S
commute. Then A+ B has a closure that generates a I.L.c. integrated
semigroup E.

In this paper we give an alternative proof of Da Prato’s and
Grisvard’s theorem 3.3 by directly constructing the 1.L.c. integrated
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semigroup = in Theorem 1.2,

=(t)z = /0 "3 (dr)S(r)z, (1.1)

and by studying its properties. The integral in (3.1) is a Stieltjes
integral. Actually we prove a more general version of Theorem 1.2
which has also the following corollary.

THEOREM 1.3. Let X be an abstract M space. Let A be the genera-
tor of a positive Cy-semigroup S and B the generator of an increasing
integrated semigroup ¥ such that ¥ and S commute. Then A + B
has a closed extension that generates an increasing integrated semi-

group.

Extending formula (1.1) we prove the following dual version of
the above theorem by Da Prato and Grisvard:

THEOREM 1.4. Let A be a densely defined m-dissipative operator
on the Banach space X and B be an m-dissipative operator on the
dual space X* such that A* and B are resolvent commutative. Then
A* + B has an m-dissipative closure.

Actually we prove the following more general result.

THEOREM 1.4. Let A and B be resolvent commutative generators
of 1.L.c. integrated semigroups on a Banach space X. Assume that
the domain of A coincides with its generalized domain (or Favard
class) and that there exists some N > 0 such that

||| < Nlimsup [AM(X— A) z|| Vze X.
A—00
Then A + B has a closure that generates a 1.L.c. semigroup.

A result concerning bounded commutative perturbations of in-
tegrated semigroups can be found in Kellermann, Hieber (1989),
Proposition 3.1.

While the paper by Da Prato and Grisvard presents applications
with A essentially being the time derivative, there has also been
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interest in applying the theory of commutative sums to evolution
equations (Cauchy problems)

(d/dt)v(t) = (A+ B)v(t) + f(t), v(0)=z. (1.2)

See Huyer (preprint), e.g. The integrated semigroup approach pro-
vides a result in this direction.

THEOREM 1.5. Let A and B be such that the assumptions of any
of the Theorems 1.1 to 1.4 are satisfied. Let x € D(B) and x, Bx €
D(A), and f : [0,00) — X be continuous such that at least one of
the following conditions is satisfied:

(i) f takes values in D(A) and Af(t) is continuous in t.

(ii) f takes values in D(B) and Bf(t) is continuous in t.

Then there exists an integral solution to (1.1), i.e., a continuous
function v : [0,00) — X such that []v(s)ds takes values in D(A) N
D(B) and

o(t) =z + (A+ B) /Otv(s)ds 4 /Otf(s)ds.

The function v is given by

o(t) = 2 (t)z + /Ot S(dr)f(t—7)

where E is the integrated semigroup whose generator extends A+ B
and the integral is a Stieltjes integral.

2. Semigroups, dual semigroups, and integrated
semigroups

In the tradition of Hille, Phillips (1957, Def. 8.3.5), a (one-paramet-
er) semigroup on a vector space X is a family of linear transforma-
tions S(t),t > 0, satisfying

S(t+r)=S(t)S(r) Vt,r>0. (2.1)
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2.1 By-semigroups

All semigroups S we are going to consider here operate on a Banach
space X and will satisfy the extra condition

limsup||S(t)z]| < oo Vz € X. (2.2)
t\0

We call these semigroups By-semigroups. It follows from the uni-
form boundedness principle and from (2.1) that any By-semigroup
is exponentially bounded, i.e., there exist M > 1,w € R such that

IS(t)|| < Me*t Vit > 0.

The (exponential) growth bound (or type) of a By-semigroup S,
w(S), is defined as the infimum of numbers w € R such that, for
some M > 1,

IS(#)|| < Met Vit > 0.

The following relation holds ( Clément, 1987):

.. 1 o1
w(8) = inf £ In SO = lim +1n SO

2.2 (Cp-semigroups

A semigroup S is called a Cy-semigroup if
IS(t)x —z|| =0, t\0,z€X. (2.3)
It is then convenient to extend S(t) to [0,00) by
S0z ==z =z€X. (2.4)

(2.1) then holds for all ¢,7 > 0 and S(¢) is strongly continuous in
t > 0. For Cy-semigroups the infinitesimal generator A is defined by

Az =lim (1/1)(S(0)z — 2) (2.5)

with D(A) consisting of all elements z € X for which this limit
exists.
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Any Cp-semigroup is a By-semigroup and so is exponentially
bounded. If S is a By-semigroup on a Banach space X, one in-
troduces the space

X, ={z € X; |S(t)z —z| — 0, t \ O} (2.6)

X, is a closed subspace of X that is invariant under S(¢) for all ¢ > 0.
The restriction of S to X, S,, is a Cy-semigroup on X,.

If S is a Cy-semigroup on X, we can consider the dual semigroup
S*(t) = (S(t))* on the dual Banach space X*. The uniform bound-
edness principle implies that S* is a By-semigroup. The space (X*),
defined by (2.6) for S* rather than S coincides with D(A*) and the
symbol X© is used:

X© = DA = (X*)o.

The restriction of the dual semigroup S* to X® is denoted by S©
and the infinitesimal generator of the Cy-semigroup S©, A®, is the
part of A* in X®. One can continue this procedure and consider
X©* and its closed subspace X©© = D(A®*) and the Cy-semigroup
SOO on X©© generated by the part of A®* in X©©, A®®, See van
Neerven (1992) for details and references.

2.3 Integrated semigroups

(Once) integrated semigroups ® are motivated by formally defining

(1) — /0 ' S(s)ds,

with a semigroup S, and discovering that

t+r t T
O(t)®(r) = ; @(s)ds—/o @(s)ds—/o f(s);is(; o

As topological property of ® one generally chooses that ®(t) is
strongly continuous in ¢ > 0, i.e., ®(¢)z is a continuous function of



426 H. R. THIEME

t > 0 for any z € X. We mention that n times integrated semigroups

have been considered (see Arendt (1987a), Neubrander (1988) for two
pioneering papers, Ahmed (1991) for a short account available in a
text-book and Hieber (thesis) for the case that n is a positive, but
not necessarily natural number). One is mainly interested in non-

degenerate integrated semigroups, i.e., ®(¢)z = 0 for all ¢ > 0 occurs
only for x = 0. The generator A of a non-degenerate integrated
semigroups is given by requiring that, for z,y € X,

t
r€D(A),y=Ar < Pd(t)r—tzx= / d(s)yds Vi>0. (2.8)
0

Notice that this definition makes sense and defines a closed op-
erator A, even if S is not an integrated semigroup. Actually one has
the following result:

THEOREM 2.1. Let ®(t),t > 0, be a non-degenerate strongly con-
tinuous family of bounded linear operators on X and let the closed
linear operator A be defined by (2.8). Then ® is an integrated semi-
group if and only if [} ®(s)ds € D(A) for all t > 0 and

¢
A/ D(s)ds = ®(t)x —tx VYVt > 0.
0

Proof. The ”only if” part follows from Thieme (1990a, Lemma 3.5).
The ”if part” part follows from the proof of Thieme (1990a, Theorem
6.2).
If ®(t) is exponentially bounded, i.e., there exist M,w > 0 such
that
1®2(2)|| < Me** Vvt >0,

one has the following useful relation between the Laplace transforms
of the integrated semigroup and the resolvent of the generator. It
follows by combining Theorem 3.1 in Arendt (1987a) and Proposition
3.10 in Thieme (1990a).

THEOREM 2.2. Let ®(t),t > 0, be a strongly continuous expo-
nentially bounded family of bounded linear operators on X and
A : D(A) — X be a linear operator in X. Then ® is a non-degenerate
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integrated semigroup and A its generator if and only if there exists
some w > 0 such that any A\ > w is contained in the resolvent set of
A and

(A—A)"L=23(N). (2.9)

Here the Laplace transform ®()) is defined pointwise: ®(\)z =
Jo8 e Nd(t)zdt. Actually formula (2.9) can be used to define the
generator A in the case of exponentially bounded integrated semi-
groups (Arendt, 1987a, p. 338; Neubrander, 1988, Definition 4.1).

A particularly interesting family of (once) integrated semigroups
are the locally Lipschitz continuous ones (Arendt, 1987a; Keller-
mann, Hieber, 1989; Lumer, 1991a,b; Thieme, 1990b, 1991, 1996,
preprint a, b).

THEOREM 2.3. The following statements (i), (ii), and (iii) are equiv-
alent for a linear closed operator A in a Banach space X:
(i) A is the generator of a non-degenerate integrated semigroup ®

that is locally Lipschitz continuous in the sense that, for any
b > 0, there exists a constant A > 0 such that

[@() = @(r)| <Alt —7[; 0<rt<b

(ii) A is the generator of a non-degenerate integrated semigroup ®
and there exist constants M > 1,w € R such that

¢
|1@(t) — (r)]| < M/ e“*ds, 0<r<t<oo.
T

(iii) A is a © operator, i.e., there exist constants M > 1,w € R such
that (w,00) is contained in the resolvent set of A and

A=A <MOA-w)™, n=12,...

The constants M,w in (ii), (iii) can be chosen to be identical.

e Moreover, if one (and then all) of (i), (ii), (iii) holds, D(A)
coincides with those x € X for which ®(t)z is continuously differ-
entiable. The derivatives S.(t) = ®'(t)z,t > 0,z € D(A), provide
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bounded linear operators So(t) from X, = D(A) into itself forming
a Cy-semigroup on X, which is generated by the part of A in X,
A,. Finally ®(t) maps X into X, and

' (r)®(t) =d(t+71)—d(r), r,t>0. (2.10)

Proof. The statements follow from combining the results by Arendt
(1987a, Theorem 4.1) with those by Kellermann, Hieber (1989, Pro-
position 2.2, Theorem 2.4, and their proofs).

©-operators have also been considered without making the ex-
plicit connection to integrated semigroups, see van Neerven (1992)
and Sinestrari (1994) for surveys and references. After equivalent
renormalization, ®-operators are quasi-m-dissipative operators that
have a rich (nonlinear) theory including the celebrated Crandall-
Liggett theorem (see Bénilan, Wittbold, 1994, for a survey and refer-
ences).

REMARK 2.4. X, = D(A) can be characterized in various ways:
X,= {zeX; M =A) 'z —z]| -0, A= oo}

= {z € X;||(1/h)®(h)z —z|| — 0, h \,0}. (2.11)
We also mention the following equalities for the spectra of A and A,
o(A) = o(A2),  apl(A) = op(Aa). (2.12)
The second equality is obvious. p(A) C p(A,) follows from the fact
that (A — A,)~! is obtained by restricting (A — A)~! to X,. p(4,) C
p(A) follows from the fact that p(A) is not empty and, if u € p(A)

and A € p(A,), we find the resolvent of A as

A=A = (=4 + (m =)A= A) (n— A7

We define

XO = {z" € X*; AN — A) "zt —2*]| 50, A > o). (2.13)
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If we want to emphasize the dependence of X® on the generator
A, we write X§. The resolvent identity implies that, for A € p(A),
(A — A)~* maps X* into X© and actually

XO =(\—A)~1xX*.
Notice that X© separates points in X and norms X,:
lzoll < M sup{|{zo,27)]; 2° € X, [2®] < 1}.

Vice versa, X, norms X®. The restriction of (A — A)™™* to X©
forms a family of pseudoresolvents that is actually the resolvent of
a closed linear operator A® in X©. Tt is easy to show that A® is
densely defined in X© and, of course, a © operator, and thus the
infinitesimal generator of a Cy-semigroup S© on X®. We have the
following relations:

X® = {z* e X*; ||(1/h)®*(h)z* —z*|| = 0, h\, 0}
¢
o*(t)z® / SO(r)z®dr, t>0,2° € X°,
0
(So(t)10,2%) = (20,5°()2®), t>0,z, € Xo,2° € X©.

(2.14)
We also mention that A acts like a dual operator for A®: If z,y € X,
then

r € D(A),Az =y <= (A%z%z) = (z®,y) Vz® € D(A®).
(2.15)
Following Section 2.2, we can consider the dual semigroup S (¢) on

X and its restriction SO (t) to XO = D(A¥). It can be shown that
the mapping

£: X" — X2, (o, bx*) = (20, 2¥), o € Xo,z" € X*, (2.16)
induces a continuous isomorphism from X onto the space X2,
259 ()z® = SO ()£z®. (2.17)

For details see Clément et al. (1989) and van Neerven (1992) where
mainly dual semigroups have been considered, but the proofs equally
work in the more general case of a 1.l.c integrated semigroup.
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We now consider the mapping

7: X = XO,
(9, 3z) = (2,2%), =z € X,z°¢€ XO. (2.18)

The last expression is defined because X® C X*. 7 maps X one-to-
one and continuously into X®*. 7X, is closed in X®*; we conjecture
that the same does not hold for 73X in general because we have the
following equivalencies.

PROPOSITION 2.5. The following statements are equivalent:
(i) jX is closed in X©*.

(ii) j: X — jX C X©* is an open mapping.

(iii) X® norms X.

(iv) There exists a subspace Y of X* and some N > 0 such that Y

norms X and

|(z,z*)| < Nlimsup|[(A(A — A) "z, z*)| Vre X,z* €Y.

A—00

(v) There exists some N > 0 such that

lz|| < Nlimsup ||A(X — A)"'z|| Vz € X.
A—00

Proof. (ii) and (iii) are obviously equivalent. (ii) obviously implies
(i) and (i) implies (ii) by the open mapping theorem. Further (iii)
=(iv) with Y = X®. We first show (iv) = (v). Since Y norms X,
then there exists some ¢ > 0 such that, for any z € X, there exist
some z* € Y, ||z*|| = 1, such that

]| < el{z, 7).
Since z* €Y,

||| < eN limsup |[(z, A\(A — A) " z*)| < eN limsup | A(A — A)7Lz||.

A— 00 A—00
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Finally we show (v) = (iii). From (v),

lz]| < limsupsup{|(A(A — A) 7'z, 2"); 2" € X*, ||| = 1}
A—00
< limsupsup{|{z, \(A — A)"*z*)|; z* € X*,||z*| = 1}.

A—00

By Theorem 2.3 (iii),

Izl < sup{|{z,y);4° € X, |y°| < M + 1}
< (M +1)sup{[(z,2%)];2° € X, ||z®|| < 1}.

DEFINITION 2.6. A ©-operator A is called norming if one (and then

all) of the five equivalent statements in Proposition 2.5 are satisfied.
In particular A is norming if and only if the quasi-norm

Iz~ = limsup ||A(A — A) "'z
A—o00
is a norm that is equivalent to the original norm || - ||.

2.4 Integrated semigroups of locally bounded
semi-variation

Let ®(t),t > 0, be a family of bounded linear operators on X. Then
the semi-variation of ® on the interval [0,7] is defined as

}

where the supremum is taken over all partitions0 =ty < --- < t, =1t
and all z; € X with ||z;|| < 1. @ is called to be of locally bounded
semi-variation if V;(®) < oo for all £ > 0. An increasing family
of bounded linear operator on an abstract M space is automatically
of locally bounded semi-variation (Diekmann, Gyllenberg, Thieme,
1995, Proposition 7.1). If f is a continuous function on [0, c0), then
the Stieltjes integral f(f ®(ds) f(s) exists. See Honig (1975) and Diek-
mann, Gyllenberg, Thieme (1993, 1995).

n

D (@(t;) — (tj-1)z;

=1

V(@) = sup {




432 H. R. THIEME

THEOREM 2.7. Let ®(t),t > 0, be an integrated semigroup that is of
locally bounded semi-variation. Let f : [0,00) — X be continuous.

Then .
1:/0 O(s)f(s)ds

is in the domain of the generator A of ® and

AT = /Otcb(ds)f(s) —/Otf(s)ds

If the ® is LL.c., then it is sufficient to assume that f is locally
Bochner integrable.

Proof. Let us first assume that f is continuously differentiable. Then

I_/<I> Vs f (t) /(/<I> dr) (s)ds.

By Theorem 2.1, I € D(A) and

AL = B0 ~t7(0) - [ (@)~ 5)(s)ds

= /OtCD(ds)f(s) — /Otf(s)ds

Our statement now follows for continuous f by approximating f by
continuously differentiable functions and using the closedness of A.

We conclude this section with the following result.

THEOREM 2.8. Let ® and f as in Theorem 2.7. Define

u(t) = /Ot@(s)f(t — 5)ds.

Then u is continuously differentiable and has its values in D(A) and

(d/dt)u(t) = Au(t) + / £(s
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Proof. By Theorem 2.7 we know that u has its values in D(A) and

:/Ot@(ds)f(t—s)—/Otf(t—s)ds

Again we first assume that f is continuously differentiable. Then
is continuously differentiable and

(d/db)u(t) = )+ / 't — s)ds = /0 " ®(ds)f(t — 9)

by using the integration by parts formula for Stieltjes integrals.
Again this formula can be extended to continuous f by approxi-
mating f by continuously differentiable functions. Notice that

[ @tas) s~
0

is a continuous function of t. See Diekmann, Gyllenberg, Thieme
(1993), Proposition 2.4.

COROLLARY 2.9. Let ® and f as in Theorem 2.7. Then

o(t) = /Ot<I>(dr)f(t—r)

—x—I—A/ d5+/

Proof. Notice that, by the proof of Theorem 2.8, v(t) = (d/dt)u(t)
with u being defined as in Theorem 2.8.

satisfies

3. Commutative sums of generators with one domain
being dense

We start with A being the generator of a Cy semigroup and B
the generator of an integrated semigroup of locally bounded semi-
variation.



434 H. R. THIEME

THEOREM 3.1. Let S(t),t > 0, be a Cy-semigroup on the Banach
space X with generator A and ¥(t),t > 0, an integrated semigroup
on X with generator B. Assume that ¥ is of locally bounded semi-
variation and that ¥ and S commute, i.e., ¥(t)S(r) = S(r)¥(t) for
allt>0,r > 0. Then

t
=(f)z = / U (dr)S(r)e (3.1)

0
defines an integrated semigroup = that is of locally bounded semi-

variation and whose generator extends A + B. E commutes with
both ¥ and S.

REMARK 3.2. Moreover we have the following relations:

a) D(A) and D(B) are invariant under Z(t) and E(¢) commutes
with A and B.

b) E(t) maps D(B) into D(A) and
AE(t)z = S(t)r —x + U (¢)S(t)Bx + E(t)Bz, =z € D(B).

Moreover, if z € D(B), E(t)z is continuously differentiable and
takes values in D(A) N D(B) and

(d/dt)E(t)z =z + (A + B)E(t)z = z + AS(t)z + 2(t) Bz

¢) [ E(s)ds maps D(A) + D(B) into D(B) N D(A) and

(1)

t t
B/ E(s)xds = E(t)xr —tr — / E(s)Azds, z € D(A),
0 0

t t
A/ E(s)xds = E(t)xr —tr — / E(s)Bzds, € D(B).
0 0

d) If = happens to be exponentially bounded, i.e., if there exist
numbers gM, ¢ > 0 such that |E(¢)|| < Mef! for all t > 0, then
the resolvent set of its generator, C, contains the ray (¢, co) and

(A—C)"'(D(4) + D(B)) C D(A)ND(B), A>¢&.
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Proof. Since ¥ is of locally bounded semi-variation and S(r)z is con-
tinuous in r, the Stieltjes integral (3.1) exists. Moreover, after some
straightforward calculations, one sees that = is of locally bounded
semi-variation. Obviously = commutes with ¥ and S.

Let us check that = is an integrated semigroup. Since ¥ and S
commute and S is a semigroup,

t)E(u /\Ildr (/\I/ds r+s))

Let z € D(A). Then, by integration by parts,

[I]

(1]

()2 (u)z = /0 "0 (ar) <\Il(u)5(r +u)— /0 " 0(s)S'(r + s)a:ds)

= [ W P@)Str + )z -

_ /0“ (/Ot O (dr)(s) S (r + 5)w> ds.

Since ¥ is an integrated semigroup, by (2.7),

t
(t)E(u)z = /0 (U(r + u) — U(r))S(r + u)zdr

_ /Ou (/Ot(‘l!("" +s)— kIJ('r))S'(T 4 s)xdr) ds

(1)

_ /()t(\Il(r+u)—\Il(r))S(r+u)wdr
_ /0 t ( / T w(s) — ﬁi(r))S'(s):z;ds) dr.

Integrating by parts again,

r—\ r—\
— —
_4 _4

/\

/ S(s)m) dr

(E(u+r) —E(r))zdr.

-
A
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Since D(A) is dense in X, this relation holds for all z € D(A) and
= is an integrated semigroup by (2.7).

Before we show that the generator of = extends A + B, we show
Remark 3.2.

Since (A — A)~! commutes with S(¢) and ¥(¢), it also commutes
with Z(¢). Hence D(A) is invariant under Z(¢) and AZ(t)z = E(t) Az
for t > 0,z € D(A). Since = commutes with U, it is immediate from
(2.8) that D(B) is invariant under E(¢t) and BE(t)z = E(t)Bz for
z € D(B).

In order to show that Z(t) maps D(B) into D(A) let z € D(B).
Since S commutes with ¥, by (2.8) applied to ¥ and B, S(r)z €
D(B) and BS(r)z = S(r)Bz, and

t
S(t)z = /0 (S(r)z + U(r)S(r) Bz)dr. (3.2)

Integrating by parts,

E(t)x = / mdr+/ (—d/dr) (/tS( )B:Cds) dr
— /S mdr+/\IJdr (/S B:vds)

Since A is the generator of S and a closed operator, =(t)z € D(A)
and

AE(W)e = Stz —x + /0 " W(dr)(S(t) — S(r) Bz
= S(t)zr —z+ ¥(t)S(t)Bx — E(t)Bz.

Further, by (3.2), E(¢)z is differentiable in ¢ and (d/dt)E(t)z =
S(t)z + ¥(t)S(t)Bx. This finishes part (b) in Remark 3.2.

Turning to part (c), let z € D(A). Then, integrating by parts,

=(t)z = U(1)S(t)x — /0 "0 (5)S(s) Awds.
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By Theorem 2.7, E(t)z — ¥(¢)S(t)z € D(B) and

BE®s — U®)SWH)s) = — [ U(ds)S(s) Az + /0 " §(s) Auds

0
= —E(t)Az+ S(t)z — =.

Since B is closed,
/0 (2(s)z — U(5)S(s)z)ds € D(B).

Using Theorem 2.7 another time, we have

u(t) = /Ot E(s)zds € D(B)

and, by (3.3),

The other statement in part (c) follows from part (b) by integration.
Part (d) follows from Remark 3.2 (c) because A and B are closed

This finishes the proof of Remark 3.2.

Finally we show that the generator of =, C, extends A + B. Let
z € D(A) N D(B). Since B commutes with Z, by Remark 3.2 (c),
we have

t t t
/ E(s)(Az + Bx)ds = / E(s)Azds + B/ E(s)ds = E(t)x — tz.
0 0 0

By (2.8), z € D(C) and Cz = Ax + Bux.

COROLLARY 3.3. Let X be an abstract M space. Let S(t),t > 0,
be a positive Cy-semigroup on X with generator A and ¥(t),t > 0,

an increasing integrated semigroup on X with generator B. Assume
that U and S commute, i.e., ¥(t)S(r) = S(r)¥(t) for allt > 0. Then

=(f)z = /0 "G (dr)S(r)s
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defines an increasing integrated semigroup = whose generator ex-
tends A+ B. = commutes with both ¥ and S. Sufficiently large
A > 0 are contained in the resolvent set of the generator of 2, C,
and (A — C)~Y(D(A) + D(B)) C D(A) N D(B).

We remark that a densely defined resolvent positive operator on
an ordered Banach space generates an increasing integrated semi-
group (Arendt, 1987b).

Proof. Increasing operator families on an abstract M space automat-
ically have locally bounded semi-variation (Diekmann, Gyllenbery,
Thieme, 1995, Proposition 7.1). Hence Theorem 3.1 applies and
(3.1) implies that E is an increasing family. An increasing integrated
semigroup is automatically exponentially bounded (Arendt, 1987b),
hence Remark 3.2 (d) applies.

COROLLARY 3.4. Let S(t),t > 0, be a Cy-semigroup on X with
generator A and ¥(t),t > 0, a LL.c. integrated semigroup on X
with generator B. Assume that ¥ and S commute, i.e., ¥(t)S(r) =
S(r)¥(t) for allt > 0,7 > 0. Then

2(t)z = /O "0 (dr)S(r)

defines a L.L.c. integrated semigroup = whose generator C extends
A+ B. E commutes with both ¥ and S. Moreover, if

1S(t)]| < Maes?
and t
1@ (t) — B (r)|| < Mp / ¢85 5.
T
then t
IE(t) = E(r)|| < MAMB/ elwntwa)s jo
T

COROLLARY 3.5 (Da Prato, Grisvard, 1975). Let A, B be resol-
vent commutative linear operators whose resolvent sets contain rays
(wa,00) and (wp, o0) respectively and
IA=A)™"| <MgA—wa)™, A>ws,n€N,
||(A—B)_n|| SMB(A—LUB)_”, A > wpg,n € N.
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Let A or B be densely defined. Then the operator A+ B with domain
D(A) N D(B) has a closure C whose resolvent set contains the ray
(we, 00) with

Wo =wa +wp

and
||()\—C)_n|| SMAMB()\—wc)_n, A > we,n € N.
Moreover (A — C)~Y(D(A) + D(B)) C D(A) N D(B) for A > wc and

C is resolvent commutative with both A and C.

Proof. By Theorem 2.3 and Corollary 3.4, the generator C of the
L.L.c. semigroup = satisfies the estimates

1= C)™|| < MaMp(A—we)™, A>we,n € N.

Since the integrated semigroup E is exponentially bounded, the
last statement in Corollary 3.5 follows from Remark 3.2 (d). The
last statement in Corollary 3.5 implies that

(A\—A - B)(D(A) N D(B)) 2 D(A) + D(B).

Hence the range of (A — A — B) is dense. Since A + B is extended
by the closed operator C, it has a closure L. Since C extends L,

2l < MaMp||(A - L)z|, =€ D(L),A> wc.
This implies that the range of A — L is X. Hence (A — L) is invertible

and the inverse coincides with (A — C)~!. Hence C = L.

4. Favard class and Favard operators

Let A be an operator from a Banach space X to a Banach space Y
with domain D(4) C X.

DEFINITION 4.1. The Favard class or generalized domain of A, de-
noted by Fav(A), consists of those elements z € X which are the

limits of a sequence z,, € D(A) with sup,cn [|[Azn|| < 0.

Obviously Fav(A) is a linear subspace of X and

D(A) € Fav(A) € D(A).



440 H. R. THIEME

4.1 The Favard class of a ©-operator

In this subsection we assume that A is a ©-operator or, equivalently,
the generator of a L.L.c. integrated semigroup. We recall that the
Yosida approximations of A, Ay, are defined by

Ay = 2N —A) =22\ —-A)1 -2, XepA). (4.1)

It turns out that the Favard class of A consists of those elements for
which the Yosida approximations are bounded.

LEMMA 4.2. z € Fav(A) if and only if limsup,_,. ||Arz| < oc.

Proof. Let £ € X and assume that the Yosida approximations are
bounded when applied to z. Define z,, = n(n — A)~'z. Then it
easily follows that z, — =, n — oo, and that the sequence (Az)
is bounded. Conversely assume that D(A) 3 z, — z and (Azy,) is
bounded. Since A is a ©-operator there exists a constant ¢ > 0 such
that

|Axzpnl| <c¢ YA>w+1,neN.

As the A) are bounded linear operators we can take the limit for
n — oo and obtain

|Axz|| <¢ VA>w+1.

Let X, = D(A) and A, the part of A in X,. One can easily check
that (A — A,) ! is the restriction of (A — A) ! to X,. As a corollary
of the previous lemma we obtain

LEMMA 4.3. Fav(A4) = Fav(4,).

4.2 The Favard class and the integrated semigroup

As in the previous subsection we assume that A is the generator of
a l.L.c. integrated semigroup ®. Recall that the strong derivatives
of ®(t), ®'(t) = So(t), exist on X,, and form a Cy-semigroup on X,
that is generated by A,.
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PROPOSITION 4.4. For any t > 0,z € X, ®(t)z € Fav(A).

Proof. Set y, = nftt

the elements

+1/m ®(r)xzdr. Then y, — ®(t)z for n — oo and

Ay, =n(®(t+ 1/n)z — O(t)z) — tz
(see Theorem 2.1) form a bounded sequence because ®(t) is locally
Lipschitz in ¢. Hence ®(t)z € Fav(A) by definition.

PROPOSITION 4.5. The following statements are equivalent for x, €
Xs:
(i) zo € Fav(A).
(ii) So(t)x, is locally Lipschitz int > 0.
(i) liminfy (1/%)]|Se(t) o — 2ol < 00

Proof. (i) = (ii) : Let D(A) 3 2, & 2, n — oo. Then, by (2.8),
So(t)zn — So(r)zn = (2(t) — @(r))Azp,

and

ISe(t)a = Solr)al = lim [[So(t)an — So(r)zal
< [|®(2) — @(r)|| lim sup || Az |,
n—oo
Hence (ii) follows from the fact that ®(t) is locally Lipschitz in the
operator norm. (ii) = (iii) is obvious. (iii) = (i): Choose a sequence

0 < t, = 0,n — oo such that
lim inf(1/£,)[|So (tn) o — o | < oco.

Then z, = (1/t,)®(ty)z0 — Zo, 1 — 00, as z, € X,, and the
elements

Azp = (1/t5)So(tn)zo — o
form a bounded sequence.

COROLLARY 4.6. The operators S,(t),t > 0, map the Favard class
of A into itself.



442 H. R. THIEME

DEFINITION 4.7. The generator A of a 1.L.c. semigroup is called
a Favard operator if its Favard class coincides with its domain, i.e.,
D(A) =Fav(A).

We close this section by an applicable condition for a ©®-operator
to be a Favard operator.

THEOREM 4.8. Let A be the generator of a 1.L.c. integrated semi-
group. Assume that there exists a total subspace 11 of X* and a
subspace I of X* such that (\— A)~"II C T for some X € p(A) and
that for all z* € I'* there exists some y € X such that

(z*,2") = (y,z*) Vz* eTl. (4.2)
Then A is a Favard operator.
Proof. Let z,, € D(A), z,, — x as n — oo, and Az, form a bounded
sequence. Then Az, can be considered elements in I'*. By the
Alaoglu-Bourbaki theorem there exists z* € I'* such that z* is the
weak™ closure of {Az,;n > m} for all m € N. By assumption there
exists some y € X satisfying (4.2). Since (A — A) *IT C T, we have
for all z* € II that

-1 *\ . _ _ —1 *
(2 MO = A)2,2%) = lim (= + A= 4) ", 07)
= nlggl()((/\ — A)7'Az,, z*)
— : o —1x%,_ %
= nlgg)(Axn,()\ A"z
= (= Ayt 2
= (- Ay,

Since II is total,
—z+ A A=Atz =(\—-A) "1y
Hence z € D(A) and Az = y.

COROLLARY 4.9. Let X be a dual Banach space and A be the dual
of a generator of a Cy-semigroup. Then A is a norming Favard
operator.

For related results and historical references see van Neerven (1992),
Chapter 3.
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5. Commutative sums of operators with both domains
non-dense

We replace the density of the domain of A by A being a norming
Favard operator. These concepts can be found in Section 2.3 and
Section 4.2.

THEOREM 5.1. Let A and B be resolvent commutative generators
of LL.c. integrated semigroups. Assume that A is a norming Favard
operator. Then A+ B has a closure C' that generates an 1.L.c. inte-
grated semigroup. Moreover (\—C)~'(D(A)+D(B)) C D(A)ND(B)
for A > wc.

REMARK 5.2. Moreover we have the following relations for the in-
tegrated semigroup E generated by C":

a) D(A) and D(B) are invariant under Z(¢) and E(¢) commutes

with A and B.
b) Let z € D(B). Then E(t)z € D(A).
Moreover, if z € D(B) and z € X,, Bz € X, = D(A), then

=(t)x is continuously differentiable and takes values in D(A) N D(B)
and

(d/dt)E(t)z = & + (A + B)E(t)z = o + AS(t)z + 2(t) Bz.

¢) [ E(s)ds maps D(A) + D(B) into D(B) N D(A) and

t ¢
B/ E(s)zds = E(t)xr —tz — / E(s)Azds, z € D(A),
0 0

¢ ¢
A/ E(s)xds = E(t)xr —tr — / E(s)Bzds, € D(B).
0 0

Proof. Let A generate the 1.L.c. integrated semigroup ® and B the
L.L.c. integrated semigroup ¥. Let X, = D(A). Then the part of
A in X,, A,, generates a Cp-semigroup S, on X,. Since ® and ¥
commute, X, is invariant under W. The restrictions of ¥(¢) to X,
U, (t), form a 1.L.c. integrated semigroup on X, which is generated
by the part of B in X,. By Corollary 3.4,

=, (t)z0 = /0 "0 (dr) S, () (5.1)
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defines a L.L.c integrated semigroup on X,.

We now proceed as in Clément et al. (1989). By Lemma 4.2,
E(t) leaves the generalized domain of A invariant because the Hille-
Yosida approximations Ay commute with X,. Since A is a Favard
operator, D(A) is invariant under Z,(¢). We define

Et)z = (A — A (A — A, A€ p(A). (5.2)

Since E,(t) and (A — A)~! commute, it follows from the resolvent

identity that this definition is independent of A\. Let X® = D(A®)
and S® the Cp-semigroup on X© generated by A®. Since U*(t)
and (A — A)™'* commute, X© is invariant under ¥*(¢). Again by
Corollary 3.4, the definition

=0 (1)2© — / "0 (dr) SO (1) (5.3)
0

provides a 1.L.c. integrated semigroup Z®(¢) on X®. Obviously
(Bo(t)Zo, 2°) = (20, E°(H)2®), =, € X,,2° € XO.
Let z© € D(A®). Then

(Et)z,2%) = (Bo(t)(h — A) 'z, (A — A®)z®)
(A — A)~'z, ZO()(A — A°)z®)
A — A)"HEO () (A — A9)z©)

A®)TIEO () (A — A)z®)

Since D(A®) is dense in X @, this relation holds for all z € X®. Now
E inherits (2.7) from . Since A is a norming operator, X® norms
X by Proposition 2.5 and Definition 2.6, and so Z(¢) inherits the
local Lipschitz continuity from Z®(¢).

Let C be the generator of = and C, the generator of =,. Since
2 commutes with (u — A) !, it follows that C and A are resolvent
commutative and C, is the part of C' in X,.



ON COMMUTATIVE SUMS OF GENERATORS 445

Let £ € D(A)ND(B). Then (A\—A)~'z € D(A,)ND(B,). Since
C, extends A, + B, by Corollary 3.4, by (2.8),

/t =o(s)(A — A)~}(Az + Ba)ds = /t Zo(5) (Ao + Bo) (A — A)"Lads
0 0
= E(t)(A — A) e — (A — A)!

Applying (A — A) yields
t
/ E(s)(Axz + Bx)ds = E(t)z — tx.
0

By (2.8), z € D(C) and Cz = Az + Bz.

The claim that (A\—C)~}(D(A)+D(B)) € D(A)ND(B)) ! (and
thus C' is the closure of A + B, see the end of the proof of Corollary
3.5) follows from Remark 5.2 (c) in the same way as in the proof of
Remark 3.2 (d). Hence we prove Remark 5.2 now. (a) (5.1), (5.2)

imply that Z(¢) commutes with the resolvents of A and B. Hence
this statement holds.

(b) Let € D(B). Then (\—A)~'z € D(B,) and B,(A—A4)~!
(A — A)"1Bz. It follows from (3.2) that

2. () (A—4)" x—/S JA—A4)" mdr—l—/ S(r)(A—A) ' Budr.

Hence, by (5.2),

(1)

)z = D)z + /0 "9 (r)®(dr) B, (5.4)

where @ is the integrated semigroup generated by A. Integrating by
parts,

E(t)xr = @(t)x + @(¢) B:c—/ O(r

Since ®(¢) maps X into X, by Theorem 2.3, we can apply S;(s) to
this equation and obtain

So(8)E(t)r = (P(t+s) — D(s))(z + ¥(t)Bx)
—/0 (®(r + 5) — ®(s))U(dr)Ba
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Since ®(t) is LL.c. in ¢, so is So(s)=(t)z in s. By Proposition 4.5
(ii), E(¢)x is in the generalized domain of A and so in the domain of
A.

If x and Bz are in X, by (5.4),

E(t)r = /Ot So(r)zdr + /Ot U(r)So(r)Bxdr

and the statement follows exactly as in the proof of Remark 3.2 (b).

(c) Since E commutes with ® and ¥, D(A) and D(B) are left
invariant. We show that [’ Z(s)ds maps D(A) into D(B). The
proof where A and B are interchanged, is similar. By Remark 3.2
(c), fg Eo(s)ds maps D(A,) into D(B,) and, for x € D(A),

t
B, / Z.(s)A—A) lads = Z()(A—A) 'z —t(hA— A) o
0
t
—/ Eo(s)(A — A) ! Axds.
0
Since E,(t) leave D(A) invariant we have, for

t
y = / = (s)(A — A) " Lads,
0

that y € D(A) N D(B) and By € D(A). Hence Ay € D(B) and
ABy = BAy. Thus [} £(s)zds € D(B) and

is a continuous function of t.

6. Integral solutions to Cauchy problems

Let the assumptions of any of the Theorems or Corollaries in Section
3 or Section 5 be satisfied. Let Z be the integrated semigroup gen-
erated by an extension C of A+ B, f : [0,00) — X continuous Let

= be of locally bounded semi-variation. Let € D(C). By Theorem
2.8,

v(#) = (d/dt)E(t)z + /0 “S(dr) f(t— 1)
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solves

—:B+C/ ds+/f

Here we are interested in conditions on f and z under which we
actually solve

w(t) = (A+B/ ds+/ £ 6.1)

i.e., under which we have

/Otv(s)ds € D(A)ND(B) and z € D(O).

As for z, Remark 5.2 (b) tells that z € D(B) and z,Bx € D(A)

guarantees that Z(¢)z is continuously differentiable, hence z € D(C)
by Theorem 2.3. From the proof of Theorem 2.8 we know that

t
/v( s =E(t x—i—/ f(t —r)dr.
0

Let us assume that f is continuous and takes values in D(A) and
that Af(t) is also a continuous function of t. We first assume that f
is continuously differentiable and that the derivative of f also takes
values in D(A) and that Af'(t) is also a continuous function of ¢ and

(d/dt)Af(t) = Af'(t). Then

/OtE(r)f(t—r)dr:/Ot(/o ()d) t—rdr+/ $)dsf(0

By Remark 3.2 (c) or Remark 5.2 (c) we have that

/OtE(r)f(t —r)dr € D(B)
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(6.2)
Now assume that f is continuous, takes values in D(A) and that
Af(t) is continuous. Set

/n
fat)=n [ ps)ds,

Then f, satisfies all the extra assumptions we made before and
fu(t) = f(t), Afn(t) — Af(t) as n — oo, locally uniformly on [0, co).
For

t t
wz/EMhWJanwz/EWﬂFﬂw
0 0

we see from (6.2) that w,,(t) € D(B), wy,(t) — w(t) and that Bw,,(t)
also converges as n — oco. Hence w(t) € D(B) because B is closed.
An analogous statement holds if f takes values in D(B) and Bf(t)
is continuous. So we have shown the following:

THEOREM 6.1. Let the assumptions of any of the theorems or corol-
laries in Sections 3 or 5 hold. Assume that © € D(B) and that
z,Bx € D(A). Further assume that f : [0,00) — X is continuous
and at least one of the following holds:
(i) f takes values in D(A) and Af(t) is a continuous function of t.
(ii) f takes values in D(B) and Bf(t) is a continuous function of t.
Then there exists a continuous solution v of (6.1).
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