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Well-Posedness of Difference Elliptic
Equation

PAVEL E. SOBOLEVSKII (*)

SUMMARY. - [t is considered the difference analog of Poisson equa-
tion on the plane and it is established the exact with respect of
step h coercive inequality in the C"-norm for its solutions.

0 Introduction

0.1 Well-Posedness of difference elliptic equation
The partial differential equation
—(8%0/0a% + 0%0/03) +v = f (0.1)

on the plane R? of points z = (1, z2) is considered. It is naturally to
call the function v(z) = v(z1,z2) the (classical) solution of equation
(0.1), if it has the continuous and bounded derivatives till the second
order and if it satisfies the equation (0.1). We will consider the partial
differential equation (0.1) as the operator equation in the Banach
space C' = C(R?) of the continuous and bounded (scalar) functions
P(x) = 1P(z1,z2) with the norm

[¥llc = sup (). 02
TER?
For the existence of such solution of equation (0.1), evidently, it is
necessary, that
fec. (0.3)
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We will say, that equation (0.1) is well-posed in C, if the following

two conditions are fulfilled:

(a1) The unique solution v(z) = v(x; f) of equation (0.1) in C exists
for any f € C. It means, that formula

[v(F)](x) = v(; f) (0.4)
defines the homogeneous and additive operator, acting from C in the
Banach space C? = C%(R?) of (scalar) functions v (z) = (z1,3),
having continuous and bounded partial derivatives till the second
order, with the norm

2 2
[bllce = l1lle + D 109 /0zillc + Y [|0%)/0xidzjlc.  (0.5)

i=1 ij=1

(ag) The operator v(f), as the operator in C, is continuous. This
property is, evidently, equivalent to inequality

lo(lle <M -|Ifllc (0.6)

with some 1 < M < +00, does not depending on f € C.

It turns out, that property (a;) leads to the essentially more
stronger inequality. In fact, the acting in C' with domain C? opera-
tors

(A)(z) = [0z} (0.7)

evidently, are closed. Then from properties (a;) and (ag) it follows,
that operators

[Aiv())(z) = —0%v(; f)/ 0z} (0-8)

are the closed operators defined on the whole Banach space. There-
fore, in virtue of Banach’s theorem, the operators (0.8) are bounded.
This leads to the coercive inequality

[vllc2 < M| flle (0.9)

for the solution in C of problem (0.1) with some 1 < M < 400, does
not depending on f € C. However, it is well known, equation (0.1)
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is not well-posed in C. The corresponded counter-example can be
given by formula

vo(z) = (22 — 23) - In® zllmz (0 < z? + 23 <1/9)

2_|_ 2
va(z) =0 (4/9 < z? + 23 and 2; = 29 = 0)
vy € C? (1/10 < z? + 22).
(0.10)
It means, that v, € C1(R?), and for 0 < z? + 3 < 1/9
1
0%v,/0z = 2-In® ——— , T2),
Vo /O0x] n 2+ a2 + aq,1 (21, 72)
1
0?0, /0z2 = —2-In*——— , 0.11
Va/ 0z n 22 + a2 + a2 (21, 72) (0.11)

for some continuous functions a;(z1,22),4 = 1,2. Therefore, ev-
idently, equation (0.1) is not well-posed in C, and the coercive in-
equality (0.9) is not true for the any solution in C of this equation.

0.2 Well-Posedness of difference equation

We will consider now the difference analog of differential equation
(0.1), namely difference equation, (%,j = —o0, +00),

—[(Wit15 = 205 +vi1g) - A2

i 0.12
+(vig41 — 2005 +vig1) b+ i = fi (012

for some 0 < h < 1. We will consider equation (0.12) as operator
equation

—[D?’Q'uh +Dg,2vh] +oh = fh (0.13)
in the Banach space C" of bounded (scalar) grid functions
1/)/1, = (Qpi,j; 1, = —00, +OO) (014)
with norm
[ llcn = sup |apil. (0.15)

i,j:—OO,+OO

Here operators D,’;’2(k = 1,2) are defined by formulas

D%’?"" = [(hiij — 29 + hi-15) - h 24,5 = =00, 7] (0.16)
Dy, = [(ij41 — 2tij + i j—1) - K™%, 5 = =00, +00)].
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For any f" € C" equation (0.13) has the unique solution v" € C",
and the difference coercive inequality

h, h,
IDP 0" | + 1 D5 0" lon + 0" |lon < Mo(R) - If*len (0.17)

takes place with some 1 < M¢(h) < +oo, does not depending on
f" € Ch. In fact, let us consider more general, than (0.13), operator
equation with parameter A > 0

—(D"h + DY2P) + 2P = P (0.18)
or (infinite) system of linear algebraic equations, (i,j = —o0, +00),

~[(vig15 = 200 +vi1g) BT+
+ (Vi1 — 205 +vij1) - B2+ dviy = fiy. (0.19)

Since, evidently, operators (0.16) are bounded (for fixed h), then,
in virtue of contraction mapping principle, equation (0.18) for any
f* € C" has a unique solution v € C?, if A > 0 is sufficiently
large. Further we apply the maximum principle [to system (0.19)]
and obtain estimate

" lgn < A7H- 1 lgn- (0.20)

Therefore equation (0.18) has the unique solution v? € C" for any
f" € C" and X > 0, i.e. operator A\ — (Df’Q-l-Dg’Q) has the bounded
inverse for any A > 0, and estimate

M = (D2 + DY) Hlenon < A7 (0.21)

is true. Since DZ’2(k = 1,2) are bounded operators (for fixed h),
then coercive inequality (0.17) takes place. The value M (h) in this
inequality must tend to 400, when h — 40, since the differential
coercive inequality (0.9) is not true. It is the consequence of ill-
posedness in C of differential equation (0.1). From inequality (0.21)
and from formulas (0.16), evidently, it follows, that we can put in
inequality (0.17)

Mg(h) =M - b2 (0.22)

with some 1 < M < 400, does not depending on f*» € C* and
0 < h < 1. It turns out that essentially more exact result takes
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place. Namely for the solution v” of equation (0.13) in C? coercive
inequality (0.17) is true with

Mc(h) =My -Inl/h, (0<h<1/2) (0.23)

with some 1 < My < +o0, does not depending on h. It is in particu-
lar the consequence of theory of difference equation, which is devoted
this paper. Formula (0.23) means, that

sup [||D1 2ot on 1Dy "o o] 1Ml gh < Mo-In1/h. (0.24)
fheCh, fh£0

It turns out, that (0.24) is the exact with respect to order of h — +0
estimate. In fact, let [see formula (0.10)]

vij = vi(z1, 22) (21 = th, 39 = jh;i, j = —o0 + o0). (0.25)
Then from formulas (0.11) it follows, that (0 < z? + z2 < 1/9)

(Uz—}-l] 2 Vi + Vi 1,]) h™2

= 21 h dztd
/y{/[ n $1+hyz) g + a1 (z1 + hyz, z)|dz}dy,

('U'L;]‘i‘l 2 ’Uz]+’UZ] 1) h 2

1
= /y{/[ 2.-1n 2T (o2 1 hyo)? + a1 2(21, 22 + hyz)|dz}dy.

(0.26)
Therefore for some ag > 0 and sufficiently small A > 0 estimates o
from below

(W15 — 2035 + vir1g) - B2 [(vig1 — 2055 + 1) - h 72 >

>8-(1—ag-h) -Inl/h
(0.27)
are true. Finally, from (0.10) and (0.26) it follows, that estimates

figl Smo, fij = —[(Witrg —vij +vie1) b2+
+ (Wijt1 — 200+ vij1) h7 4 iy
(0.28)
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take place for some 0 < my < +oc0, does not depending on h. There-
fore from (0.27) and (0.28) it follows, that estimate from below

h,2 h,2_ h h h|—
sup  [|Dy 0" |on + 1Dy " o + 0" llon] - 1 i >
frech, fho
8—a0h

mo

>

‘Inl/h

(0.29)
holds for sufficiently small ~ > 0.
Let v be the solution in C of equation (0.1), having the continuous
and bounded partial derivatives till the fourth order. Let further
v;,(4,j = —00, +00) be the solution of system (0.12) for

fig = f(ih, jh). (0.30)
Then, evidently, values
zi; = v(ih,jh) — v; ; (0.31)
are the solution of system
~[(zi415 — 2205 + 2i1g) - B2 (21 — 220 + zig 1) BT
+ zi; =Ty,

(0.32)
and for values I'; ; estimates

L;i| < M-h? 0.33
l]

take place for some 1 < M < +o00. Then from (0.24) estimate from
above
IDE22 [ on + DS 2P| on < My-h? -n1/h (0.34)

follows for some 1 < M; < 400, does not depending on h.

Finally, let f(z1,22) #Z 0 be the smooth function, which par-
tial derivatives till the second order sufficiently quickly tend to zero,
when z? + 22 — +00. Then, evidently

sup |9*v/0zF + 0*v/0z5| > 0, (0.35)
z€R?

and therefore estimate

sup  |Tij| > m - h? 0.36
sJ

1,j=—00,+00
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is true for some 0 < m < +o00. Estimate (0.36) and triangle inequal-
ity lead us to estimate from below

D222 | on + || D22 | o > ma - h? (0.37)

for some 0 < m; < 400, does not depending on h. Estimates (0.34)
and (0.37) give the almost exact estimate of convergence rate of dif-
ference method (0.12) of approximate solution of differential equation
(0.1) in the difference coercive norm.

0.3 The content of paper

This paper is devoted to the investigation of well-posedness of dif-
ferential equation

dv/di* + Av = f(t),  (—oo <t < 400) (0.38)
and its difference analog
_('Uz'+1 — 2v; + 'Ui—l) -h2 + Av; = f;, (’L = —00, —I—OO) (039)

in arbitrary Banach space E. Here A is the (unbounded) linear
closed operator in E with dense in E domain D(A).

About the notion of well-posedness of differential and difference
equations see monograph [1].

The investigation of well-posedness is based on the property of
positivity of linear operators. About this notion see monograph [2].

Equation (0.38) is considered as operator equation in the func-
tional (abstract) Holder space C*(E)(0 < a < 1) and for any positive
in E operator A coercive inequality

[ Av]lga(my < M -a™ - (1= @) - || fllowm) (0.40)

is established for its solution v in C*(E) with some 1 < M < +o0,
does not depending on f € C*(E) and 0 < o < 1.

To the differential equation (0.38) the P. Grisvard’s theory [3], is
applicable but it leads us to the coercive inequality

lAvllca(m) < M- a2 (1 =)™t - || fllca(m)- (0.41)



344 P.E. SOBOLEVSKII

The difference equation (0.39) is considered as operator equation in
the Holder space C*(E)(0 < a < 1) of (abstract) grid function, and
for any strongly positive in E operator A it is established coercive
inequality

[Av | ghomy < M e - (1 =)™ [ Ml cha(m) (0.42)

for its solution v" in C™®(E) with some 1 < M < +o0, does not
depending not only on f* € C"*(E) and 0 < a < 1, but on h. From
inequality (0.42) it follows, that

1AV | on iy < M -1/~ || fllen iy (0.43)

where C"(E) is the Banach space of uniformly bounded grid func-
tion ¢" = (y; € E;i = —00, +o0). Inequality (0.43) leads us to
the formula (0.23) of exact value Mc(h) in the difference coercive
inequality (0.17)

To difference equation (0.39) also the P. Grisvard’s theory is ap-
plicable even in more general case, when A is only positive operator
in E, but it which leads us to inequality

1AV | gha(my < M- a2 - (1= a) " | one ). (0.44)

From (1.44) only estimate

2
1AV oy < M -1 /h- |l on ) (0.45)

follows.

1. Differential equation of the second order in the
Banach space

1.1 Well-Posedness in the space C(E)

In the arbitrary Banach space E differential equation
—v (1) + Av(t) = f(t),  (—o00 <t < +00) (1.1)

is considered. Here v(t) and f(¢) are unknown and given (abstract)
functions, defined on (—oo, +00) with values in E; A is acting in E
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linear (unbounded) closed operator with dense in E domain D(A).
We will consider differential equation (1.1) as operator equation in
functional Banach space C(E) = C[(—o0,+0), E] of all defined on
(—o00,+00) (abstract) continuous and bounded functions 1 (t) with
norm

[¥llcm = sup Oolll/)(t)llE- (1.2)

—oo<Lt<+

We will call function v(t) € C(E) the solution in C(E) of equation

(1.1), if v (t), Av(t) € C(E) and equation (1.1) is satisfied. For exis-

tence of such solution v(t) of equation (1.1), evidently, it is necessary,

that
ft) e C(E). (1.3)

We will say, that equation (1.1) is well-posed in C(E), if two condi-

tions are satisfy:

(a1) For any function f(t) € C(F) equation (1.1) has unique in C(E)
solution v(t) = v(¢t; f). It, in particular, means, that v(¢; f) is act-
ing in C(FE) additive and homogeneous operator, which is defined
on whole C(FE), and operators

d?[v(t; f)]/dt*> and Av(t; f). (1.4)

have these properties also.
(a2) The operator v(t; f) is continued in C(E). It means, that in-
equality

lv(t; H)ller) < Ms - 1f ()l (1.5)
holds with some 1 < Mg < 400, does not depending on f(t) € C(E).
From this it follows, that operators (1.4) are closed in Banach space
C(E) and, in virtue of Banach’s theorem, are bounded. This leads
us to coercive inequality

" O llewm) + Av®) ey < Mo - 1 Ollem) (1.6)

for solution of well-posed in C(FE) equation (1.1) with some 1 <
M¢c < 400, does not depending on f(t) € C(E). Inequality (1.6)
permits to investigate spectral properties of operator A. For any
u € D(A) and A > 0 we will put

Au+ Au = . (1.7)
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Then, evidently, function v(t) = exp{iv/At} - u(i = v/—1) is solu-
tion in C(E) of equation (1.1) for function f(t) = exp{iv/At} - 1.
Therefore from (1.6) it follows, that

Mullg + |Aul|z < Mc - ||[Y||&- (1.8)

We will suppose, that operator A has bounded in E inverse. Then,
evidently, from inequality (1.8) it follows, that operator AI + A has
bounded inverse for any A > 0, and estimate

IAT + A7 psp < M- (A+1)7 (1.9)

is true for some 1 < M < +4o00. Such operator is called (see [2])
positive operator. So, if equation (1.1) is well-posed in functional
Banach space C(E), then A is positive operator in Banach space E
(under condition, that operator A has bounded inverse). Whether
the positivity of operator A in F is the sufficient condition of the
well-posedness of equation (1.1) in C(E)?

For arbitrary Banach space F' let us consider the acting in C(F) =
C[(—o0, +00), F| operator A, defending by formula

Ap(z) = = (z) +p(z),  (—o00 <z < +00) (1.10)

on functions 9 (z) € C(F), such that " (z) € C(F). Evidently, that
operator AI + A has bounded inverse for any A > 0, and formula

+o0
(M +4)" () | exp{—vIFXa—yl} i)y (1.11)

1
2+ 1
holds. From (1.11) estimate (1.9) (for M = 1) follows, i.e. A is pos-
itive operator in Banach space E = C(F). However the contraex-

ample from §0 introduction shows, that equation (1.1) is ill-posed in
C(F).

1.2 Formula for solution in C(E) of equation (1.1)

From estimate (1.9) it follows, that operator AI + A has bounded
inverse for complex numbers A = o + it € G = GF(M)(0 <e < 1),
such that, (o <0),

1-— 1—
1< = (1+0)(@20) or (02 +7)/2 <, (112)
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and estimate
A +A) epse<M-e -1+ )t (1.13)

holds for some 1 < M; < 400, does not depending on 0 < ¢ < 1.
It means, that spector o (A) of positive operator A is outside of set
G- = —G, and inside of G- and on its boundary 0G_ estimate

1AL = A)Hpop < Mi-e™h - (14 [A)T (1.14)

holds. Therefore for any analytic in the neighborhood of o (A)
(scalar) function 1(z), such that estimate

(1 +12)* - [9(2)] < My (1.15)

takes place for some 0 < a < +00,1 < My < 400, Cauchy-Riesz’s
formula defines bounded operator

¢(A):2im, [ 96 Gr-a7tas,  G=veD. 6)
0Ge

In particular (see [2]), negative fractional powers A~%(a > 0) of
positive operator A are defined, A= = (A~1)® for integer a > 0,
and semigroup identity

A=@FB) — g=2. 478 (0 < @, < +) (1.17)

is true. From this it follows, that positive fractional proves A% can
be defined by formula

A% = (A7)~ (a>0). (1.18)

Operators A%, (o > 0), already are unbounded, and their domains
D(A%) are dense in E. Following moment inequality

1—
1A% < M(a, B) - | APul|%/7 - )y */° (1.19)

[0 < a < B < +oo,u € D(AP)] takes place with some 1 < M(a, 8) <
400, does not depending on u € D(AP). Operators A® for a € (0,1)
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have better spectral properties, than operator A. In particular, from
identity [see (1.17)]

M+ A= (VX = VA) - (VA +VA), (1.20)

inequality (1.19) (for @« = 1/2,8 = 1) and estimate (1.14) it follows,
that operator v/AI — v/A has the bounded inverse for A € G-, and

estimate
(VAT = VA) Y pop < Mg-e ' (14 [AM2) (1.21)

holds. In particular, this means, that operator \I ++/A has bounded
inverse for any complex number A, such that ReX > 0, and estimate

I+ VA) Y pse < M- (1+A\)7! (1.22)

holds. Acting in Banach space E linear operator B with dense in E
domain D(B) is called strongly positive (see [2]), if operator A\I + B
has bounded inverse for any complex number A with Re\ > 0, and
estimate

AL+ B) Hgse <M-(1+ )" (1.23)

is true for some 1 < M < +oo. Operator B is strongly positive, iff
—B is generator of analytic semigroup exp{—7B}(7 > 0) of linear
bounded operator in E with exponentially decreasing norm, when
t — 400, i.e. estimates

| exp{—tB}||z~p, [t - B - exp{—tB}|z~E <
< M(B) -exp{—a(B)t}, (t>0) (1.24)

are true for some 1 < M(B) < 400,0 < a(B) < 400. Thus V4 is
strongly positive operator, and estimates
lexp{—tvVA}|p—p, [t - VA~ exp{—tVA}|p—p <
< M(VA)-exp{—a(VA)-t}, (t>0) (1.25)

take place. The consideration of operator VA permits to reduce
differential equation (1.1) of the second order to equivalent system

v'(t) + VAvu(t) = 2(t), =2 (t) + VAz(t) = f(t), (=00 <t < +00)
(1.26)
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of differential equations of the first order. This prompt [see formula
(1.11)] that for solution v(t) in C(E) of equation (1.1) formula

+o00
o(®) :ﬁ / exp{— VAt — s|} - f(s)ds (1.27)

must be true. In fact, with help of integration by parts and estimates
(1.25) identity

+o0
/ exp{—VA|t —s|} - v (s)ds =

—0o0

L

2V A
1

_ _u(s) +m_4 exp{—VA|t — 5|} - Av(s)ds  (1.28)

is established. From (1.28) and closedness in E of operator A, in
virtue of (1.1), formula (1.27) follows. This, in particular, means,
that equation (1.1) cannot have more that one solution in C(E).
Finally, it is easy to see, that formula (1.27) defines solution in C'(E)
of equation (1.1), if, for example,

Af(t) or f'(t) belong to C(E). (1.29)

It turns out, that formula (1.27) defines solution in C(E) of equa-
tion (1.1) under essentially less restriction on smoothness of function

f(®)-

1.3 Well-posedness in the space C*(E)

We will consider differential equation (1.1) as operator equation
in functional Banach space of Holder C*(E) = C[(—o0,+0), E)
(0 < @ < 1) of all defined on (—o0, +00) with value in E (abstract)
functions 1 (t) with norm

[Yllcae)y = sup |[¥(t)lg+  sup [ (t+s)—(t) | s~
—oo<Lt<+00 —oo<t<t+s<+00
(1.30)
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Analogously to the case of space C(E) the notion of solution v(t) in
C%(E) of equation (1.1) in the space C%(E) are defined. The well-
posedness in C*(E) of equation (1.1) means, that coercive inequality

10" lloe () + [1Av]ioa < M(@) - || fllow(zy (1.31)

is true for its solutions v(t) in C*(E) with some 1 < M(«a) < +o0,
does not depending on f(t) € C*(E). As in the case of space C(FE)
it is established, that from (1.31) the positivity of operator A in E
follows. It turns out, that this property of operator in E is not only
the necessary, but also the sufficient condition of well-posedness of
equation (1.1) in the space C*(E) for all « € (0,1). Since, evidently,
the set of smooth (abstract) functions [for example, functions, sat-
isfied condition (1.29)] is dense in C*(E), then it is sufficiently to
establish the inequality

[Av(E)llca(r) < M(e) - |f (D)l ca(r) (1.32)

for function v(t), defined by formula (1.27) for smooth function f(t)
with some 1 < M(a) < +oo, does not depending on f(t). From
(1.27), evidently, it follows, that
+00
VA
Av(t) = 3 / exp{—VA|t — 5|} - [f(s) — f(t)]ds + F(t). (1.33)
0

The application of estimates (1.25) leads us to estimate

+o0
[Av@)lle < 5 - MWA) - [ expl-a(VAt s} -}t~ 512 Lds-
-H(f) + | fllom)- (1.34)
Here and in what follows
H*(f)=  sup [[f(t+s)—ft)l|e-s7" (1.35)

—0o<t+5<+00

It means, that estimate

[Avllogm) < M(VA) - [a(VA)]™ - T() - H*(f) + | fllos)  (1.36)
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is true. Here and in what follows I'(«) is the Euler’s Gamma-
function. Further from (1.33) for A > 0 identity

Av(t+ h) — Av(t) =
+oo

— 5+ 0 — 01+ % [ (exp (VA i)

[0 = 16+ )] - expl VAl — ) - [£(6) = )]s
VA [ fexp (VAL + b} £ 2) — (04 )

—2h

- eXp{:\/ZIzI} [f(t—2) — = f(®)])dz+

o0

+ g / [exp{—\/Z|z + hl} — exp{—\/Z|Z|}]'
2h
—2h

17t =)~ fdz+ L2 [ exp{—vALz + hl)—

—0o0

— exp{~VAl2}] - [f(t - 2) — f(t + W)]dz+

+[1+ gexp{—2hVA} — 5 - exp{-=3hVA} - [f(t+h) — [ (2)]
= Ji(h) + Jo(h) + J3(h) + Ju(h)
(1.37)
follows. The application of estimates (1.25) gives
2h
MVA)-HS) - [ e e 21z
a)~t-M(VA)- H‘;(?)(?)a +20% 1) - he.
(1.38)

1W<

1
2
(2

Further for 0 < z < z + h we have
z+h

exp{~VAlz + hl} — exp{~VAlzl} =~ [ VA-exp{~VA-s}ds,

and therefore, in virtue of estimate (1.25), we obtain

+o00 z+h

4 M (VA) - HO(f) 951 0
Il < . 1] S

2h  z
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20 . M2(VA) - HO(f)

= 1o - h®. (1.39)
Analogously
4 M2(VA)-HYf) 1 [ d
inols < LECD I ey,
2h z—h
— 201 MQ(\/Z) i} Ha(f) . he. (140)
l-«a
Finally, evidently, that
[ Ta(W)le < [L+ M(VA)]- H*(f) - B (1.41)

Identity (1.37) and estimates (1.38)—(1.41) mean that estimate

Ho(Av) < [M(VA)EEZa1y

2a

R} o (1.42)
+MAVA)ZLET + 1+ M(VA)] - H(f)
is true. Estimates (1.36) and (1.42) lead us to following result:

THEOREM 1.1. Equation (1.1) is well-posed in functional Banach
space C*(E)(0 < a < 1), iff A is positive operator in Banach space
E. For solution v in C*(E) of equation (1.1) coercive inequality

|Av|gamy < M-t (1—a) " || fllcam) (1.43)
takes place with some 1 < M < +o00, does not depending on f €

C*(E) and a € (0,1).

1.4 The application of P. Grisvard’s theory

From definition (1.9), evidently, it follows, that Ay = A — a1 for
sufficiently small a; > 0 is also positive operator, i.e., estimate

A+ A) Yeoe <M -(A+1)F (1.44)

holds for any A > 0 and some 1 < M; < +o0. It means, that
spector o(A;) lies outside the correspondent set G- (M1),(0 < € <
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1). Therefore there exist numbers ¢ € (0,7), such that o(A4;) lies
inside the angle of complex plane

|arg A[ < ¢, (1.45)
and outside of this set and on its boundary estimate
IA = A1) Hlp—E < M(p) - (A +1) 7 (1.46)

holds with some 1 < M(y) < +oo. The infimum of such numbers
@ is called the spectral angle (A1) = p(A1, E) of positive operator
Ap in Banach space E. It is evident, that

0 < p(4;) <. (1.47)

We will continue operator A; to acting in C(E) operator A; by
formula 3
(A)(t) = Arg(®), (=00 < t < +00) (1.48)

on functions (t) € C(E), such that A19(t) € C(E). It is evident,
that A; is positive operator in C(E), inequality
1A+ A1) Mo »om) < M- (A+1)7 (1.49)

holds with the same numbers M; and A, that in the inequality (1.44),
and

¢l41,C(B)] = ¢(41, B). (1.50)
Further we will define acting in C(E) operator B; by formula
(Bi)(t) = =" (t) + ar9p(t) (1.51)

on functions (t) € C(E), such that 4" (t) € C(E). It is evident,
that for any complex numbers A with |arg \| < 7 and f(t) € C(E)
differential equation

M(t) — v () + aro(t) = f(2) (1.52)

has unique solution v(t) = v(t;A) in C(E), defining [see formula
(1.11)] by formula

+o0
2\/++—a1 / exp{—vVA+ arlt — |} - f(s)ds, (1.53)
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which leads us to estimate
lollesy < AP +af = 2| - a1 - cos(r = [arg AD)] ™ - | flom)- (1.54)
It means, that B, is positive operator in C(E), and
¢[B1,C(E)] = 0. (1.55)

In particular, this means, that — B is generator of analytic semi-
group exp{—tBi}(t > 0) with exponentially decreasing norm, i.e.
[see estimates (1.24)] estimates

lexp{~tB1}lc(m)»cwmy 1tB1 - exp{—tBi}cm)—om) <

< M(By) - exp{—ta(B1)} (1.56)

}
(t > 0) hold. Now we will consider differential equation (1.1) as
operator equation 3 }
Biv+ Ajv = f (157)
in functional Banach space C(E). Operator B; and A, evidently,
commute, and, in virtue of (1.47) and (1.55),

©(B1) + p(A;) < . (1.58)

Therefore to operator equation (1.57) the P. Grisvard’s theory [3] is
applicable.

Let Co(B)) = CL[C(E),B1](0 < a < 1) be functional Banach
space with norm

Yl o) =R INBI AT+ B) e, (159)

It turns out (Grisvard’s theorem) that for any f € Cy(B;) there
exists unique solution v = v(t) = v(¢; f) in Cy(B1) of equation (1.57),
and coercive inequality

Viollg, gy < Mi-a™' -0 -a) " - fllcamy,  (160)

takes place for some 1 < M, < 400, does not depending on f €
Co(B1) and a € (0,1). Further, in interpolation theory of linear
operators (see, for examples, references in [1]) is proved, that spaces
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Cq/2(B1) coincide with Holder spaces C*(E) for a € (0,1). In fact,
from (1.53) for any A > 0 and f(¢) € C(E), evidently, it follows, that

W) = AL+ B) (1) = xpliay - F()+

| (1.61)
+2\/T—al,£o exp{—vVA+ a1t —s|} - [f(t) — f(s)]ds,
and therefore identity
NP2By (AL + By)7Hf(8) = 257 £ (1) + L () 1O/
(1.62)

WaFa e T em{-vATal - sl} - [7(0) - £(s)ds

is true. Let f(t) € C*(E). Then from (1.62) it follows, that f(t) €
Ca/2(B1), and estimate

1£lle, o(my < 0> (@20 (1=a/2)' =" || flloqay +T (L +a)-H(F)

] (1.63)
holds. Further, since Bj is positive operator in C'(E), then
1 +00 ~
Brif(t) = [ (\+By)*f(t)dt
0
+o0 ~ ~
= [ A2\ 4 By) 7 - A2 (A + By)THf(t)dA
0
(1.64)

for any f € C(E). If f € Ca(By), then from definition (1.59) it
follows, that function 1, (X, t) = A2B; (A + By) 1 f(t) € C(E) for
any A > 0, and estimate

et Ollo) < 17Ollo, 40 (1.65)

is true. In virtue of closeness in C(E) of operator By, identity

+00o
£t) = / AO2(\ 4 By) L (A, )dA (1.66)
0
takes place. Applying formula (1.53), we will obtain, that
+00 1 +00
) = O/ R [ expl=vAF arlt=sl}pa(h s)dslir
—00

(1.67)
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From formula (1.67) and estimate (1.65) it follows, that

+0o0
1fOller < /A_a/z'()\Jral)_ld)"||f(t)||ca/2(él)

a—a/2 ) m
! sinma/2

Ol iy (168)

Further formula (1.67) leads us to identity

+o0o

[ r / fexp{—v/A+ ar|z + hf}—
0

- exp{ VA + G,1|Z|} @ba z)dz)d/\
(1.69)

ft+h)—f(t) =

From identity (1.69) and estimate (1.65) it follows, that

If(E+h) = f@D)le <

“+o00
<

/ )\—0;/2
- / 2\/)\—I—
—exp{—V A+ a1|z|}dz)d\ - ||f(t)||Ca/2(Bl). (1.70)

/ lexp{—v/? + a1lz + A} —

The substitution y = z - VA +a1,s = |h| - VA + a1 leads us to in-
equality

+00
serm-s@le < [ 5T L0l g,

hlvar
(1.71)
From (1.71) estimate
HY(f) <4 a7t (A=) Sl 0 (1.72)

follows. Inequality (1.63), (1.68) and (1.72) mean, that following
inequalities of equivalence of norms of spaces C®(E) and C,/o(B1)

a-(1—a) - M~ | fllcam < Ifllc, o a(Br) S MY | fllca(s) (1.73)
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are true for some 0 < M~! < Mt < 400, do not depending on f €
C*(E) = Cyy2(B1) and a € (0,1). Further from coercive inequality
(1.60) under substitution @ by «/2 for 0 < a < 1 it follows, that

1
410l 30y < oLl o0y (1.74)
Inequalities (1.73) and (1.74) lead us to coercive inequality
1A10llga(my < 2Mi-M* (M) ta 2 (1=a) - ||fllgacm) (1.75)
for solution of equation (1.1).

REMARK 1.1. Coercive inequality (1.43), evidently, is stronger, that
coercive inequality (1.75) with respect to order @« — +0. It will be
important under consideration of difference analogue of differential
equation (1.1).

2. Difference equation of the second order in the
Banach space

2.1 The estimates of resolvent povers of operator
—B(h?A), and stability in the space C"(E)

We will consider the difference analog of differential equation (1.1),
namely difference equation

—(vig1 — 2v; + vi—1) - h 2+ Avy = f;, (1 = —o0,+0). (2.1)

Here v; € D(A) and f; € E are unknown and given elements, h €
(0, 1] is some given number. Difference equation of the second order
(2.1) is equivalent to system of difference equations of the first order

(v,'—vi,l)-h_l-l—évi =z, —(z,'+1—zi)-h_1+Bzi = (l-l-hB)fi (2.2)

(1 = —00, +00), which is analogous to system of differential equations
(1.26). Here operator B = B(h?A) = hB is defined by formula

B =h2A/2 + [(h?A/2)% + h2A]Y/? (2.3)
i.e. B is the solution of operator quadratic equation

B%?.(I+B)™ ' = h?A. (2.4)
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We will consider the Banach space C"(E) of grid functions
" = (¢ € E,i = —o0, ) (2.5)

with norm

19" lonmy = sup  [Iille- (2.6)

1=—00,+00
System (2.2) permits to show, then for any f* € C"(E) there exists
unique solution v”, Av" = [Av;,i = —o0, +o0] € C*(E), of equation
(2.1), defining by formula

Av; = B-(2+B)7" io (1+B)Hf, (=00, Fo0) (27)

k=—oc

which is analogous to formula (1.27). The basis of these statements
will be given under supposition, that A is positive operator in FE,
and estimate (1.9) will be comfortable to write in form

I+ A) " pop < M(4) - [ +a(4)] 7 (2.8)

for any A > 0 and some 1 < M(A) < 4+00,0 < a(A) < +oo. For the
investigation of spectral properties of unbounded operator B(h?A)
we will construct the bounded operator [AI + B(h2A)]~! for A > 0.
Since (scalar) function

B(2) = z/2 + (24 + z)'/? (2.9)
is analytic on whole complex plane, except points z = 0,—4 and
B(z)-z7! = 1, when |z| — 400, then, in virtue to estimate (2.8),
the Cauchy-Riesz’s formula gives

1
AT+ B(RA] = / At B()] - (2] — B2A)"\dz. (2.10)
i
h20G<

Finally, since z = 0, —4 are the bifurcation points of function B(z),
then the deformation of integration contour, in virtue of Cauchy’s
theorem, leads to formula

T

4
M BIA = o [0 dp0) ™\ fold— p)- (oI +124) dp.
0

(2.11)
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Since, evidently, function (0 < p <4, A > 0)

Mi(A\p) = (2m)"H- (W = Xp+p) 7 -y fp(d—p) 20, (212)

then, in virtue of estimate (2.8), estimate

4
I\ + B(h*A)] | gE < M(A) - /Ml(A, p) - [p+ h*a(A)] 'dp

0
(2.13)

is true. The application now of formulas (2.11) and (2.12) in the
case, when operator h?A is replaced by the number h2a(A), gives
estimates

IAT+ B(h*A)] Hgse < M(A)-{A+ B[h?a(A)]} !
< M(A) - A+ ka7 (2.14)

Analogously to formula (2.11) for any m = 1, 400 formula
4
M+ B(h2A)]™™ = / Ma(Mp) - (oI +H2A)'dp  (2.15)
0

is established. However, function My, (]}, p) for m > 2 changes the
sing on the segment 0 < p < 4. Therefore the method, which was
applied in the case m = 1, does not work in the case m > 2.

We will suppose supplemently, that —A is generator of strongly
continuous semigroup exp{—tA}(¢ > 0) with exponentially decreas-
ing norm, i.e. estimates

lexp{—tAHpop < M(A) - exp{—ta(A)} (¢>0)  (2.16)

take place for some 1 < M(A) < +00,0 < a(A) < 4o00. Then,
if it is well-known (see, for example [2]), there exists the bounded
inverse (Al + A)~! for any complex number A\ with Re\ > —a(A),
and formula

+o00
(M +A) = / exp{—tA} - exp{—tA}dt (2.17)
0
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holds. Formula (2.17) means, that the resolvent of operator —A is
the Laplase transform of the semigroup exp{—tA}. From (2.17), in
particular, it follows, that A is positive operator in E and, in virtue of
estimate (2.16), estimate (2.8) is true. Further from (2.15) it follows,
that

+0o0
M+ B(h2A)™ = / L\ 1) -exp{—th?A}dt,  (2.18)
0
4
La0t) = [ Mu(¥,p) - exp{~pt}dp. (2.19)
0

In the case, when h? A is the positive numbers, formula (2.18) means,
that function [AI + B(h2A]~™ is (for fixed A > 0) the Laplase trans-
form of function £, (A, t). Then from properties of Laplase transform
it follows, that L,,(A,t) is the convolution of m copies of function
L1(A,t), and this convolution is defined by recurrent correlation

t
Lint1(A, 1) /Em At —s)ds, (m=1,400). (2.20)
0
Since [see (2.12)] Mi(A,p) > 0, then from (2.19) it follows, that
L1(A,t) > 0. Therefore, in virtue of (2.20),

Ln(Mt) >0,  (m=T,+ox). (2.21)

Inequality (2.21) permits to apply by estimate of norm of operator
[A + B(h2A)]™™, defining by formula (2.18), the same approach, as
in the case m = 1 for formula (2.11). Namely estimates (A > 0)

I +B(R? A ™™g < M(A)- {/\+B[h2( )]}_m

< M(A)-[A+ hy/a( (2.22)

are true. In particular,

I+ B(R*A)] ™ 5-E

IN

M(A)-{1 + B[h*a ( )]}*m

< M(A)-[1+hyJa(A)]™™. (2.23)
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Estimate (2.14) for A = 2, identity B- 2+ B)™' =T —-2-(2 +
B)~! and estimates (2.23) show, that, in virtue of formula (2.7), the
grid functions v", Av" = (Av;;i = —oc, +oo) € C*(E) for any grid
function f* € C"(E). Further from formula (2.7) it follows, that

+o0
(i1 —20+v1) = A-B-2+B)7'- > (1+B)7

T=—00

'(fz'—l—l—r - in—r + fi—l—r)

= A'.B-2+B)'- +Zoo [(1+ B) e —
f{=—00
—2-(1+B) ¥ +(1+B) M fiy
= -A'.B.2+B)7'.(2B)-
-1+B) - fi+A.B.2+B)"!.B?.
(1+B)7 Y (1+B) fi (2.24)
040

Finally, formula (2.4) leads us to identity

+0o0
(it1 —2vi+vi1) =h*-B-(2+B)~'- Y (1+B) - fi g —1* fi,
{=—00

(2.25)
which, in virtue of (2.3), means, that defined by formula (2.7) grid
function v” is the solution of difference equation (2.1). It is showed
analogously, that formula (2.7) define unique solution on of equation
(2.1). So, the well-posedness of equation (2.1) in the Banach space
CM(E) is established. This statement, as in the case of differential
equation (1.1), is equivalent to two inequalities

o™ ) < Ms(h) - 17" cn i), (2.26)

140" [l on () < Mo (h) - I lon ). (2.27)

Inequality (2.26) is, evidently, the corollary of inequality (2.27), since
A~ is the bounded operator in E.

However under investigation of convergence of difference method
it is necessary to establish the well-posedness of equation (2.1) in
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Banach space C"*(E) not for some fixed h € (0, 1], but in the aggre-
gate of such spaces for all h € (0,1]. To this aim we must establish
inequalities
" lcn ey < Ms - 11"l on(mys (2.28)
|Av" | o gy < Mc - || Ml on(m) (2.29)

with some 1 < M, M < 400 do not depending on f* € C*(E) and
h € (0,1]. Inequality (2.29) is (see §1), generally speaking, not true
for any Banach space E and generator —A of strongly continuous
semigroup exp{—tA}(t > 0) with exponentially decreasing norm. It
turns out, that more weaker inequality (2.28) is true. In fact, from
formulas (2.7) (2.4) and identity (1+ B)-(2+B)"'=1—(2+B)~!
it follows, that

vi=(h-B™)-[I-2+B) - [fi+ Y. 1+B)"" fi_,]-h. (2.30)
r#0

Further we use estimate (2.14) for A = 0 and estimate (2.23) and
obtain

o™ lonm) < M(A) - la(A)] 72 [1+ M(A)]'/?
{142 a2 1 len gy (2:31)

This property is called the stability of difference equation (2.1) in
the Banach space C"(E).

REMARK 2.1. If exp{—tA}(¢t > 0) is the strongly continuous semi-
group with exponentially decreasing norm, then A is called the nor-
mal positive operator. I do not know, if the normal positivity of
operator A in Banach space E is the necessary condition of the sta-

bility of difference equation (2.1) in the functional Banach space
Ch(E).

2.2 Stability in the space C"®(E)

We will consider difference equation (2.1) as operator equation in the
Banach space Ch’a(E)(0<a<1) of grid functions ¢ = (¢; € E;i =
—00, +00) with norm

14" lha = sup |lhillz+  sup ik — il - (KR)™%.
1=—00,+00 —00<i<t+k<+00
(2.32)
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The well-posedness of difference equation (2.1) in the aggregate of
such spaces for all h € (0, 1] means that for solutions v” of equation
(2.1) stability inequality

||’Uh||ch,a(E) < Ms(a) - ||fh||ch,a(E) (2.33)

and coercive inequality
1AM | gha(my < Mc (@) - |1/l one (i) (2.34)

are true for some 1 < Mg(a), Mc () < 400, do not depending on
fP € C*(E) and h € (0,1]. Let us establish inequality (2.33). To
this aim we will mark, that from estimate (2.33) the estimate

I+ B(h2A)] ™|ge < M(A)-exp{—0(A) -mh},i(A)

= y/a(A) - [1+/a(4)]! (2.35)

follows. Further, from formulas (2.7) and (2.4), evidently, it follows,
that (r =1, +00)

Vigr —v; = h*-B1.(1+B)-(2+B)~ Z [(1+ B)~ ¢t

l=—0o0
(fice = firr) — U+ B) W (fig— fi)] +
+hH B2+ B7Y) - (fisr — i) - (2.36)
If r is odd, then
Vitr — VU =
:[hQ'B_2_h'(hB_1)]'(fi+r fz)
—h-(hB1)-(2+B) - (1 +B) Ve (fisr — fi) —
—-B™H- > (2+B)7!
€] <|e+7],££0

'(1+B) (4ri=1) (fz+7' fz)_
C0B) X @4 B (4 B e ()

[€]>|8+r|
[+
-3 S @+B) 1+ B) ™Y (fi— fiy)
|| < |47 m=|¢+1

040
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¢

+h? 3 > @B+ B) Y (i — fin)

€| >|t+r] m=|t+r|+1
— Ji(h) — Jo(h) — J3(h) — Ja(h) + Js(h) — Js(h). (2.37)

From estimate (2.14) for A = 0 it follows, that

[ J1(h)| < [M2(A)-a™(A) +h- M(A)-a" 2 (A)]- HP(f7) - |rh)“.
(2.38)
Here and in what follows

HY (") = sup | five — fillz - (KR) . (2.39)
—oo<i<i+k<+00

Further, analogously to formula (2.18), it is established, that

+o0o
[2+B(h2A)] [1+B(h*A)] ™ = / L1(2,8)% Ly (1,) exp{—th?A}dt.
0
(2.40)
Here £1(2,t) * L£,,(1,%) is the convolution [see formula (2.20)] of
functions £1(2,t) and L,,(1,t). Therefore, analogously to estimates
(2.23) and (2.35), the estimates, (m = 1, 4+00),

124B)~"-(14-B) ™55 < M(A)-{1+h[a(4)]/2}~mD), (2.41)
12+ B) ™ (14 B) ™| < M(A)-exp{—5(A)-(m-+1)h}, (2.42)
are true. Therefore
12l < H"(f*)-|rh|* - h- M(A) - [a(A)] 1/
M(A) - {1+ h-[a(A)]/?}. (2.43)
Further analogously

[Js(h)|le < HM(fP)-|rh|*-
M(A) - exp{—06(A) - |+ 7| -h}-h,
€] <|é-+r |0
(2.44)

1Tl < HM(") - |rh|* -

Y M(A) - exp{—3(A)-|f] - b} - he (2.45)
1€/> 47|
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Therefore, evidently, that

[J5(h)l|e + | Ja(h)]le <
—+00

< rh|® - B (f") - M(A) - [ exp{=6(4) - [al}da

= |rh|® - HM(f7) - M(A)-2-671(A). (2.46)

Further

[+

Ismle < X2 >, M(4)-

|€|<|€+7|,€£0 m=|€|+1
~exp{—0(A) - |m| - h} - [¢h]* - h* - H(f")
< HM(f")-M(4)-
|z+rh|

el [ exp{-8(A)y}dylds. (247
|z|<|z+rh| |

Since, it is evident, that

|z+7rh|
[ exp{=5(p}dy < exp{-5(a)-Jal} -min{jrh],5 ()}, (245)

||
then from (2.47) it follows, that

IBME < Irhl® - HM(F*) - M(A) - 6571 (A) -

exp{—0(4) - |z|} - |z|*dz.  (2.49)
z|<|z+rh]|

It is established analogously, that

IJs()lle < |rh|® - HM(f") - M(A) - 5271(4) -

exp{—4(4) - |z|} - |z|*dz.  (2.50)
z[>|z+rh|
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Therefore the following estimate is true:

15(M)lle + 1 Js(M)lle - < |rh|*HM*(f*) - M(A) - 521 (A)-
+o0o
- exp{—0(A)|[} - =]
-0
= PR ERR(fR) - M(A) -6 2(AT(1 + a).
(2.51)
If r is even, then to the right part of (2.37) must be added member

—Ji(h) = —=h-(hB™")-(24+B) " (14+B) "GV (fiyr —2fiirj2+ fi)-
(2.52)
Evidently, the following estimate is true:

172 (R)l|z < lrh|®-HM(f*)-h-a™'/2(A)-{1+hla(4)]'/?}75. (2.53)

Estimates (2.38), (2.43), (2.46), (2.51) and (2.53) together with es-
timate (2.31) mean, that for solution v" of difference equation (2.1)
inequality

lo" ooy < Ms - 1 * | oho(my (2.54)

is true for some 1 < Mg < +oo, does not depending on f" €
Ch(E),h € (0,1] and « € (0.1). So, it is established, that differ-
ence equation (2.1) is stable in the Banach space C"®(E) [uniformly
with respect to a € (0,1)].

REMARK 2.2. From the stability of difference equation (2.1) in the
space C"(E), evidently, its stability in the space C"1(E) follows.
Therefore the stability in the space C**(E)(0 < a < 1) can be also
established with the help of interpolation theory of linear operators.

2.3 The additional estimates of the resolvent povers of
operator —B(h%A)

We will suppose now, that —A is generator of analytic semigroup
exp{—tA} with exponentially decreasing norm, i.e. estimates [see
estimates (1.24)]

|exp{—tA}|m-p, [tA - exp{—tA}|z-r < M(A) - exp{—ta(A)}
(2.55)
are true for some 1 < M(A4) < 4+00,0 < a(4) < +o0.
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The proof of well-posedness of difference equation (2.1) in the spaces
Ch(E), i.e. the proof of inequality (2.34), is based on estimates of
norms of operators

B-(2+B)~'-(1+B)™™,B%(24+B)" " (1+B) ™™ (m =T, +o0). (2.56)
In the case m = 1 from evident identities
B-2+B) ' 14+B)™ = 2+B)'-01+B)-2+B)!
BX.2+B)'-1+B)! = 1-1+B)!'-2-2+B) '+
2-(2+B) - (1+B)' (2.57)
and estimate (2.41) the uniform with respect to h € (0, 1] estimates
IB-(2+B)™! - (14 B) " g~r < M(A), (2.58)
IB?(2+B)~" - (1+B) lp-p <1+3-M(4) '

follow. Let further m > 2. In virtue of formulas (2.4) and (2.40), we
have

“+o0
B%(24+B) 1. (1+B) ™ = / L1(2,8)%Lyy—1(1,1)-h* A-exp{—th? A}dt.
0

(2.59)
We apply estimate (2.55) and obtain
IB*-(2+B)~" - (1+ B) "lp~5 < M(A)-
e -1 2 (2.60)
ds [ L1(2,t) * Lm—1(1,) -t~ " - exp{—th* - a(A) }dt.
0
Further from evident formula
+o00
t7! = /exp{—ts}ds(t > 0) (2.61)

0
it follows, that

IB*-(2+B)™ - (1+B) ™™ psr <
+oo +

</£12t *ﬁm 1(1t)-

o\

. exp{—t[s + h? - a(A)]}dt)ds. (2.62)
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Finally the application of formula (2.40) for the case, when operator
h2 A is replaced by number h%a(A), gives estimate

|B>-(2+B)™"-(14+B)™||gogr <
+oo
M(4)- [ {2+ Bls+ha(A)]}
0

{1+ B[s + h%a(A)]}~ ™ Vds. (2.63)

We will remind, that here

B(2) = 2/2 + \[22/4 + 2, (2.64)

and therefore the following estimate is true:

1B(h*A)-[24+B(h* A)) 7 [14+-B(h* A)] 7™ |l p—p < 2-M(A)-(m*~1)7.
(2.65)
For the estimate of norm of the first from operators (2.56) we will use
the moment inequality [see inequality (1.19)] for powers of positive
operators in Banach space. Estimate (2.14) means, that B = B(h%a)
is positive operator for any fixed h € (0, 1]. It turns out, that moment
inequality
|Bolle < Mg - B2 - |1 (2.66)
takes place for any element 9 from domain D(B?) of operator B>
with some 1 < Mp < 400, does not depending on v € D(B?) and
h € (0,1]. In fact, from estimate (2.14) it follows, that

+o00
Bip = / (A + B)~2. B%pd). (2.67)
0

Further we use identity
BXA+B)2=T-2X\-(A+B)" '+ X2-(A+B)™2.  (2.68)
Therefore from (2.22) it follows, that

|\ + B)2ll5s < M(A) - X2 | B>\ + B)?||si < 1+ 3M(A).
(2.69)
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Then formula (2.67) leads us to inequality [N € (0, +00)]
1Byl < [L+3-M(A)]-N-|l¢llg+M(A)- N~ | B*]p. (2.70)

Let 9 # 0. Then B?) # 0, since there exists the bounded B~2.
Therefore we can put in (2.70)

N = [M(A)]72 - [1+3- M(A)]) 2 - B2 - )15 € (0,+00).

This value N leads us to inequality (2.66) with (2.71)
Mp =2 [M(A)]?-[1+3- M(A)]Y2. (2.79)
From (2.66), evidently, it follows, that
IB-(24B)"' - (14 B)"™|psr <
<Mg-|B2-2+B)'-(1 _i_B),m“g/iE'
N@+B) 1+ B2 (2.73)

We use estimates (2.65) and (2.41) and obtain from (2.73) estimate
IB(R*A) - [2+ B(h*A)] ™ - [L + B(h*A)] ™™ |p~p <
< Mp-M(A)-V2-(m?—1)"Y2. (2.74)
Estimates (2.58), (2.65) and (2.74) show, that estimates
IB-@+B) - (L+B) ™gop <My -m ' (m=T,75), (275)
IB*-(2+B)™" - (14 B) ™|lpsp < Mo -m™? (m =T,%00) (2.76)

are true for some 1 < My, My < +00, do not depending on h € (0,1].
Estimate (2.35) permits to obtain more precise estimates. Namely
for m > 1 we use evident identity

(2+B) ' (14B)™ = {(2+B) - (1+B) ™/ .{(14 B)~(m~Im/2]},

(2.77)
Here [m/2] is the integer part of number m/2. Then from (2.75),
(2.76), evidently, it follows, that

IBU2A) - 2+ BU2A)] " [1 + BO24)] ™55 <
< M;-m™!-exp{—6(A) -mh}, (2.78)
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IB?(h*A) - [2+ B(h*A)] ' - [L + B(h*a)] ™|l sk <
< My -m 2. exp{—6(A) -mh}  (2.79)

for some 1 < Mj, My < 400, do not depending on h € (0,1] and
m =1, 4o0.
2.4 Well-posedness in the space C"*(E)
From formula (2.7), evidently, it follows, that, (i = —oc, +00),
+00 )
Avy=B-(2+B)"'- Y (L+B)F(f—fi)+ fi,  (2.80)

k=—00

The application of estimate (2.78) leads us to estimate

ldvills < My HMe(fR). S ik

Vs . ) . 79 — L.

A= ke ki (2.81)
- exp{—0(A) - [i — klh} - [(i — k)R|* + || fille-

Therefore
—+00

IIAviIIESMl'Hh’a(fh)'/ |2|*~-exp{—d(A)|z|}dz+]| fill &, (2-82)
—0oQ

i.e. estimate
[ A0™ | on gy < M- 6(A) -T(a) - H*(f*) + | fMllcr)  (2:83)
is true. Further for any integer r > 0 from (2.80), evidently, identity

+0o0
Avipr — Av; = 3 [B-(2+B) - (1+B) ™ (fip — firr)

—_B <24+ B) - (1+B) ™ (fim = fi)] +
+ (fitr — fi) (2.84)
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follows, which we will to transform to following form
AUH—'I‘ - A’UZ' =
=[1-@2+B)'-(1+B)" -
(2 +B)7 e (L+B) ™" (fisr — fi) +

371

+ Z 2+B (1+B)_‘m+r|'(fi—m_fi+r)_

m=-—2r

—B-2+B)" (14 B)"™  (fim — fi) +

+ _io iBQ 24 B)7 (14 B)TImml (f — fin) +

m= 2r+1 n=1

+ Z 232 1+ B)" ™" (fiym — fitr)

m=2r+1 n=0
= Ji(h) + J2(h) + J3(h) + Ja(h)

From (2.41), evidently, it follows, that
171 (B)[& < [rh|® - HP(f") - [1 +2- M(A)].

Further we use estimate (2.78) and obtain

2r
I RMle < 3 Mi-HP () |m4r)hl* ko

m=-—2r
2r
+ Z M; - Hh,a(fh) . |mh|a71 h.
m=—2r
Therefore
2rh
12 (W) |z < My - HM(f")- / |z +rh|*™" + |z* ' |dz
—2rh

It means, that estimate
2 (B)lle < |rh|® - H™(f") - My -a™h - (3% + 1+ 271
is true. Finally, in virtue of estimate (2.79), we have

1 3(h) ||z < M - H™(f") - Z Zm+n =2 |mh|®.
m=2r+1 n=1

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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Therefore
—+00 rh
1a)ls < M- R () [ oo+ y)dylda. (291)
(2r+1)h 0

It means that estimate
1 J5(R) |l < |rh|® - HP®(f*) - My - (1 —a)~" - 2% (2.92)

holds. Analogously

+o0o r—1
1Ja(B)ll& < My-H™M(f%)- " " [m—n| ?-|(m—r)h|*. (2.93)
m=2r+1 n=0

Therefore
+oo rh
1Bl < Mp-H (1) [ a—rhf*] [ (@ -y)dyldo. (2:9)
(2r+1)h 0

It means, that estimate
|1 Ja(B)ls < [rh|® - HP(f") - My - (1= @)7" - 207 (2.95)

takes place. Identity (2.84) and estimates (2.86), (2.89), (2.92),
(2.95) lead us to estimate

HM ety < M-HM (Y 07 (1 —a)7! (2.96)

with some 1 < M < 400, does not depending on f* € C*(E),h €
(0,1] and @ € (0,1). From estimates (2.83) and (2.96) we obtain the
following result:

THEOREM 2.1. Let A be strongly positive operator in Banach space
E, ie. —A be generator of analytic semigroup exp{—tA}, (t > 0),
with exponentially decreasing norm. Then difference equation (2.1)
is well-posed in the functional Banach space C*(E), (0 < a < 1),
and coercive inequality

||A’Uh||ch,a(E) <SM-a'(1—a)"- ||fh||ch,a(E) (2.97)

holds for its solutions v" with some 1 < M < +oo, does not depend-
ing on f* € CM*(E), h € (0,1] and « € (0,1).
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REMARK 2.3. I do not know if the strong positivity of operator A
in Banach space F is the necessary condition of well-posedness of
difference equation (2.1) in the functional Banach space C™*(E).

2.5 Almost well-posedness in the space C"(E)

The value M¢(h) in coercive inequality (2.27) for solutions in C**(E)
of difference equation (2.1) must, generally speaking, tend to +oo,
when h tends to 4+0. It is the consequence of differential equation
(1.1) theory (see contraexample in §0 introduction). The theory of
difference equation (2.1) permits to obtain the estimate of conver-
gence rate to +oo such value M¢(h). Namely in virtue of definition
(2.39), from estimate (2.83) it follows, that

1AV | onmy < M -t B | o (2.98)

for any o € (0,1/2], h € (0,e72] and some 1 < M < +oo, does not
depending on f* € C*(E),h and a. We will put here

a=(In1/p)"! (2.99)
and obtain
1A lcnmy < M -e-nl/n- || ]| onim)- (2.100)
It means, that we can put
Mc(h) =M -e-Inl/n (2.101)

in inequality (2.27). It is naturally to say, that inequality (2.100)
means the almost well-posedness of difference equation (2.1) in the
space C"(E). In order to apply this result to two-dimensional dif-
ference equation (0.12) and to prove formula (0.23), we must prove
that difference operator of the second order with respect of one vari-
able in the space C" of grid functions of two variables, is strongly
positive operator, uniformly with respect to h € (0,1]. We will mark
that analogous fact for ordinary differential operator A, acting in the
space C(F) and defined by formula (1.10), evidently, from formula
(1.11) follows.
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In space C*(F) of grid function 9" = (¢;;4 = —o0, +oo) with
values in any Banach space F we will define difference operator A*
by formula, (i = —o0, +00),

(Ah’l)h)i = _('Ui—f—l —2v; + 'Ui—l) -h2 +a-v; (2.102)
for some 0 < B < 1 and a > 0. The resolvent of operator A" is
defined by solution of difference equation, (i = —oo, +00),

_('Ui—f—l — 2v; + 'Uz'fl) “hT2 4 av; + Av; = f;. (2.103)

For any complex number A with ReX > —a and f* € C"(F) equa-
tion (2.103) has unique solution v"*, defining [see formula (2.7)] by
formulas

A+a)-v;=b-(24+b) - io (14 )"kl g, (2.104)
k=—o00
b=0bR*(\+a)],b(z) = 2/2 + 1/22/4 + 2. (2.105)

In fact, evidently, |1 + b > 1, when ReA > —a.
For some integer N > 0 we will put

Ata) o) =b-2+b)7" > (1+b)71 g (2.106)
k<N

Evidently (N is the finite number), that function (A+ a)v}¥ (for any
fixed i = —00, +00) is analytic and bounded in the complex halfplane
Re)l > —a, A # 0, and |(A + a)v)| — 0, when |\| = +oo.

Therefore, in virtue of maximum principle, the estimate of func-
tion (A + a) - v}V is defined by its estimate on the line A + a =

S-v/—=1,—00 < s < +00. For 0 < s < 400 and t = h?s, evidently,
we have

b = (/16 +¢)7 +12/4+
+t- [%(t4/16 +12)1/2 —42/8)1/2,
14062 = 1+ (/16 +8)2+¢2/4+

+2- [%(t4/16 +12)Y2 4428112 4

+t- [%(t4/16 +12)1/2 —¢2/8)'/2,
240 > [1+0)] (2.107)
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Further from (2.106), evidently, it follows, that estimate
IA+a)o [[e < 20| (1146 +1)-[[ 14 = 1] 7+ Lf "V [l oy (2108)
is true. Here we put

17 lon ey = ma il (2.109)

From (2.107) it follows, that

I+ a)o e < ¥ - 117N o), (2.110)

V() = at)/B(t),
at) = 2-{(t*/16 + )2 + 12 /4 +

+t- [%(t‘*/lﬁ +12)3 — ¢2/8)1 /212
({1 + (#1/16 + )12 +
+ 2[%(7:4/16 +1)Y2 1 12/8)1 /2 442 /4 +
+t- [%(t4/16 +12)Y2 2 /81212 1),
Bt) = (416412 +
P2 [L(E16+2)2 1 287 4 /4t
+t- [%(t4/16 + 122 —42/8)1/2, (2.111)

Finally, from (2.111) it follows, that

sup Y(t) =M < +o0, (2.112)
0<t<+00
i.e. estimate
1A+ a)o e < M- ("Nl cnir (2.113)

holds with some 1 < M < 400 does not depending on f» N and
h. The same estimate is true also for —oo < s < 0. Therefore,
in virtue of maximum principle, estimate (2.113) takes place for all
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complex numbers A with ReA > —a. Further from definition (2.109),
evidently, it follows, that there exists the sequence N,,  +oc for
m ' +o0o, such that

||fh’Nm||Ch(F) - HthCh(F)' (2.114)
Finally, if ReA > —a, then, evidently,

|loNm — vg]| g — 0. (2.115)

2

Therefore from estimate (2.113) and limit correlations (2.114) and
(2.115) it follows, that

I(A + a)villr < M - || ]| . (2.116)
It means, that estimate
1AL + A" e mysonmy < M (2.117)

is true for Re\ > —a. Estimate (2.117) means, that A" is uniformly
with respect to h strongly positive operator in Banach space C"(F),
i.e. estimates (¢ > 0)

| exp{—t A"} o () on ey, IEA" - exp{—t A" H|cn(py o on(ry <
< M - exp{—dt} (2.118)

take place for some 1 < M < 4+00,0 < § < +00, do not depending
on h. This property permits to apply formula (2.101) in coercive
inequality (2.27) for solution of (abstract) difference equation (2.1)
in the case, when operator A = A". Therefore formula (0.23) is true.

2.6 Application of P. Grisvard’s theory

We will consider difference equation (2.1) as operator equation
Al + Bhyh = fh (2.119)

in the Banach space C"(E). Here we will put, [v; € E;i = —o0, +0|,

(AMo"); = —(vig1 — 203 +vi_1) - B2 + avg, (2.120)
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(B""); = [(A — al)vi], [v; € D(A);i = =00, +o0 (2.121)

for sufficiently small ¢ > 0. From the strong positivity of operator
A in the Banach space FE, evidently the strong positivity of operator
B" in the functional Banach space C"(E), uniform with respect to
h, follows. In point 2.5 is proved, that A" is uniformly with respect
to h strongly positive operator in C*(E). These facts, in particular,
mean, that inequality

o(A") + p(B") <m—§ (2.122)

for spectral angles of operator A" and B" accordingly is true for some
0 € (0,7), does not depending on h. Finally, evidently, operators
AP nd B" commute. Therefore to operator equation (2.119) the P.
Grisvard’s theory is appliable. Namely, let us define the Banach
space C(A")(0 < a < 1) of grid function %" € C* with norm

19" llcnary = il;lg(/\ +a)® - | A" AL+ AN T o (2123)

Then for any f* € C"(A") there exists unique solution v” of equation
(2.119), and coercive inequality

A" | oncany + 1B 0"l cnany S M -a - (1= a) ™" I f*lonan)

(2.124)
is true with some 1 < M < 400, does not depending on f”, h and
. It turns out that spaces C" /Q(Ah) for 0 < a < 1 coincide with
difference Holder spaces C™*(E), and norms (2.32) and (2.123) are
equivalent, uniformly with respect to h. Let us prove this statement.
From formula (2.104) for resolvent of operator —A”", evidently, it
follows, that (A > 0)

(A +a)?/? - A (N + A)~L. 1 =
b =

755 S @+ L (f - fi)

k=—
+a-A+a)*? (2.125)

b=>blh?(A+a)], b(z) = 2/2 + /22 /4 + 2 > /z (2 > 0).

= A-(A+a)¥/?> 1.
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Therefore estimate

1A+ @)% Ah (AT + AM LR <

A 2b — —m @ h,a( rh
< - . . 3
S YXTa 24D mEZI(l-I—b) m® - H"(f") +
Fa (4@ | o) (2126)

holds. Further from identity, (C > 0),

C
1 B _ I'(m+ «)
— . [(C =t dt=C" . — 2.127
r'l—o«) 0/( ) L'(m+1) ( )
and Stirling’s formula it follows, that
M C
c™.m~ < m '/(C—t)_a'ta' (m-tm_l)dt (2128)

0

with some 1 < M < 400, does not depending on C' > 0,m = 1,400
and a € (0,1). Therefore for C' € (0,1) inequality

X m e M 7 —Q 07 -
mZZIC -m gm-o/(c*—t) Y- (1 —t)2dt (2.129)

takes place. From (2.129), evidently, it follows, that
c/1-c
Moy 2 g
['2-«) (1—-C)lta J (1+s)3 "
(2.130)
We will apply (2.130) for C = (1 + b)~! in inequality (2.126) and
obtain

“+o00
> oo <
m=1

1A +a)/2- AP - (AT + AP) LMl <
1/b
2M b1+a 2(1+b) Sl—a
= P(Q—a).[(1+b)(2+b)+ 2+0b /(1+s)3ds]

HP (1) 4+ a® - (|| en - (2.131)
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It means, that inequality
||fh||cg/2(Ah) < M - ||fh||ch,a(E) (2.132)

takes place for some 1 < M; < 400, does not depending on f" h
and «. Since A" is positive operator in C"*(E), then formula

“+00
= / Ak (AT + AM)=2fha, fh e CE (AR, (2.133)
0

is true. It is evident, that (2.133) can be transform to formula

+o0o
= /(A+a)—(1+a/2).()\+a).()\I+Ah)_1-1ph()\,a)d)\, (2.134)
0

where
PPN a) = (A +a)¥? AP (AT 4 AP TLfh (2.135)

It means, in virtue of formula (2.104), that

+oo

(ita ba
fio= 0/(A+a) o bo
+0o0 )
= 3T (b)) R (X, a)d, b
k=—00
= bh*(\ +a)]. (2.136)

From (2.136) and definitions (2.135) and (2.123), evidently, it follows,
that

RIw

1 Ml en sy <

Further for any integer r > 0 from (2.136) it follows, that

@ Pl oy (2137

—+o00
fivr = fi = Of (A +a)~(Fe/2) . she-
+00
C 3 [ 4 b )T — (14 b)) - g (A, a)d
l=—00

(2.138)
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From definition (2.135) and (2.123) it follows that

+00
ba

o r h . —(1+a/2) , Yo |
fovr = Fil < 17on o 0/ (A+a) e e

: io (14 b))~ — (1 4+ b,) . (2.139)

Substitution
t =h*(\ +a) (2.140)

leads us to inequality

“+o0
Ifosr = Flls- B < WPy am | 711902
a

—+00
% _z |(1+b)/etr — (1 + b)) dt,
(b=>b(t) =t/24+ /t?/4 +t.
(2.141)
If r is even, then
—a h T (14a/2) | 14b
| firr — fille -R™% < |If ||Ch 2f 246
af hZa
21 — (1 - b) B0+ (1 +b) Y dt
(2.142)

If r is odd, then

S

+o00
_ _ 1+
[ fi+r = fille-h™* < ||fh||cg/2(,4h) ' 2/ ¢ (el 275

2L —1 407" +[1 -1 +b)7E].
1= (14 b)" 21} as. (2.143)

Here [Z] is the integer part of number r/2. Let  be even.
Then substitution

s=bt),t=s2-(1+s) Ldt=s-(2+45s) - (1+s)2ds (2.144)
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leads us to inequality

+o0o

fisr = Fille B < 1 e amy [ (L 9)72(1 4 5)700)
b(h%a)
2 [1—(1+5)7 B [14(145)7"]ds
+0o0
< A on oany / (e 4

0
+s U211 — (1+45) Blds.  (2.145)

Since for any N > 0

+00
/[s—(H—a) 45702 1 — (14s) Bllds < (2.146)
0

N +o00
< /[%]-(Sia—i-sfaﬂ)ds—l— /[87(1+a) +37(1+a/2)]d8,
0
then for .
N = [5]*1 (2.147)

we will obtain estimate
| fisr—fillz-h ™% < 12.2*a.a71.(1—04)*1.r*a_Hfh“Cgﬂ(Ah). (2.148)

The same estimate is true, when r is odd. Estimates (2.137) and
(2.148) mean, that following estimate

||fh’||Ch,a(E) <My-a~'-(1-—a)'- ||fh||c(’;/2(Ah) (2.149)

holds with some 1 < My < 400, does not depending on f*, h and
a. Estimates (2.132) and (2.149) mean, that following inequalities
of equivalence of norms of spaces C*(E) and C? /Q(Ah)

a-(l-—a)-M™- ||fh||ch,a(E) < ||fh||cg/2(,4h) <Mt ||fh||ch,a(E)
(2.150)
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are true for some 0 < M~ < MT < +00, do not depending on f”, h
and . From (2.150) and (2.124)it follows, that inequality

|4V [ ora gy < M -7 (1= )" [|f Ml o) (2.151)

is true for solution v" of difference equation (2.1) with some 1 <
M < 400, does not depending on f? h and a. It is evident, that
for a N\ +0 inequality (2.151) is less exact, then inequality (2.97).
From inequality (2.151), evidently, it follows, that

1AV | en gy < M - (In1/R)? - | f]| on ey (2.152)

for h € (0,1/2] and some 1 < M < 400, does not depending on f"
andh. Evidently, for h \, +0 inequality (2.152) is less exact, then
inequality (2.100).
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