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SUMMARY. - Consider the evolutionary integral equation

u(t)—i—/() b(s)Au(t — s)ds = f(t), tER.,

in the spaces X = L, (Q;RY), 1 < r < co, where  C R* denotes
a Lipschitz-domain, b € Ly 0.(Ry), f € Lp(Ry; X), and A is
such that (z + A)~! admits a kernel representation

(2 + 4)~Lg)(z) = /Q Yoo, v)g(w)dy, €9,

with kernel v,(x,y) satisfying a Poisson estimate in a suitable
sector z € XNy of the complex plane. Assuming that the equation
i question is parabolic, it is shown that its fundamental solu-
tion admits also a kernel representation with a kernel subject to
a Poisson estimate, and that the equation has the mazimal regu-
larity property in Ly(Ry; L. (5 RN)), for 1 < p,r < 00.
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1. Introduction

Let X be a Banach space, A4 a closed linear, but in general unbounded
operator in X, b € Ly ,.(Ry), and f € Ly(Ry;X), 1 <p <oo. In
this paper we consider the evolutionary integral equation

u(t) +/0 b(s)Au(t — s)ds = f(t), teRy. (1.1)

Problems of this type have attracted much interest during the last
decades, due to their various applications in mathematical physics
like viscoelasticity, thermodynamics, or electrodynamics with mem-
ory. For a recent comprehensive presentation of the state of the art
in the theory for (1.1) we refer to the author’s monograph [11]. In
applications, the operator A typically is a differential operator act-
ing in spatial variables, like the Laplacian, the Stokes operator, or
the elasticity operator, which implies that X is a space of vector-
functions on a domain  C R" like L,(;RY), 1 < r < oco. b(t)
should be thought of as a kernel like b(t) = e~ /T(), n > 0,
B € (0,2). We are here interested in the parabolic case, and want
to study in particular mazimal regularity properties of (1.1). Recall
the (1.1) has the maximal regularity property w.r.t. a function space
F(Ry; X) if (1.1) admits a unique solution v € F(R,; X), for any
given f € F(Ry; X).

To be able to apply Laplace transform methods to (1.1) we as-
sume in the sequel that b is of suberponential growth, which means

o0
/ |b(t)|e™*'dt < 0o for each € > 0.
0

Recall that (1.1) is called parabolic if b(\) # 0 for ReX > 0, —1/b(\) €
p(A), and there is a constant M > 0 such that

|(I +b(A)A) "' <M for Reh > 0. (1.2)

Here the hat indicates the Laplace transform. It has been shown
in [11] that parabolicity of (1.1) is a necessary condition for (1.1)
to have the maximal regularity property of type Ly(Ry; X), for any
p € [1,00].
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In this paper we are concerned with the converse of this state-
ment, i.e. when does parabolicity imply maximal regularity of type
Ly(R4; X). At the time being there are essentially three different
methods known to prove such results which we briefly describe now.

(i) Multiplier techniques
This method is based on the representation

a(\) = (T+bA)A)Lf(N), for Reh > 0, (1.3)

which follows from (1.1) by taking Laplace transforms and using
parabolicity. If X is a Hilbert space, it is well known that the Laplace
transform induces an isomorphism from Lo (R4 ; X) onto Ho(Cy; X),
the Hardy space of power 2. Hence without any further assumptions
on A or on the kernel b(t), (1.2) and (1.3) imply maximal regularity
of Ly(Ry; X).

This result can be extended in two different ways. Firstly, if again
X is a Hilbert space, the Mikhlin multiplier theorem is known to be
valid in the vector-valued case as well. Therefore, if in addition with
M) = (I +b\)A4)!

IM(M)| + |]AM'(A\)| < C  for ReX > 0. (1.4)

then (1.1) has maximal regularity of type L,(Ry;X), 1 < p < oc.
Since

M'(\) = —b'(N)AJ + b(A)A) 2,

(1.4) follows from parabolicity of (1.1), provided the kernel b(t) satis-
fies an additional mild regularity assumption, namely if b is 1-regular.
Recall that b is k-regular (k € N) if

INBD ()] < e|b(M)|  for ReA > 0,1 < j < k. (1.5)

For a discussion of k-regularity and for the results stated above we
refer to [11]. On the other hand, it has been shown by Pisier that
the Mikhlin multiplier theorem holds for the spaces L,(R; X') only if
X is a Hilbert space.

The second extension is based on the fact, that a Mikhlin multi-
plier theorem remains valid in the vector-valued case for the Besov-

spaces B, , (R;X), p,q € [1,00], where X is an arbitrary Banach
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space; see Amann [1] or Weis [16]. The kernel b(¢) then should be 2-
regular. However, results for these spaces have been obtained before
in [11] by the following method.

(ii) Singular convolutions
This method relies on the variation of parameters formula

u(t) :f(t)—l—/OtS(t—s)f(s)ds, t>0 (1.6)

for the solution of (1.1). Here {S(t)}+>0 C B(X) denotes the resol-
vent family of (1.1) (or fundamental solution) defined by

S(t) + A/t bt —1)S(r)dr =1, t>0. (1.7)
0

S(t) is known to exist in case (1.1) is parabolic, and if b is 2-regular
we have in addition the estimates

1S@)] + LS < M, >0, (1.8)

and

[t25(t) — s?S(s)| < M|t — s|[1 + log , t>s>0. (19)

t—s
Observe that (1.6) contains a singular convolution since S(t) will
not be integrable at 0, unless A is a bounded operator which is the
trivial case. However, based on estimates (1.8) and (1.9), it has been
proved in [11] that (1.1) has the maximal regularity property for the

Besov spaces B, , (Ry; X), where p,q € [1,00], s  Ng, and X is an
arbitrary Banach space.

(iii) Operator sums
Fix any function space F(R; X) and define operators in this space
by means of

(Au)(t) = Au(t), t>0, (1.10)
with domain D(A) = {u € Y : Au € Y}, and via Laplace transforms
(BuJ()) = ——a()), Red >0, (1.11)

b(\)
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with D(B) appropriate. Then (1.1) can be rewritten as
Au+ Bu = Bf, (1.12)
hence the solution u is formally given by
u=B(A+B)f, (1.13)

since A and B commute. Thus, if it can be shown that A + B with
domain D(A + B) = D(.A) N D(B) is invertible, in particular closed,
then (1.1) has the maximal regularity property of type F (R, ; X).

This approach was used for the first time in the fundamental
paper of Da Prato and Grisvard [4] for evolution equations (i.e.
b(t) = 1) more than 20 years ago. For evolutionary integral equa-
tions it has been used by Clement and Da Prato [3]; see also Lunardi
[10] and Pugliese [13]. Without going into details let us mention that
for 1-regular kernels b by means of the Da Prato-Grisvard theorem
one can show that the spaces L,(R;;Da(c,q)) are spaces with the
maximal regularity property for (1.1), where p € [1,0), g € [1, ],
a ¢ Ny. Here D4(a,q) denote the real interpolation spaces between
X and X4 = (X, |- ]4), |z|a = |z| + | Ag]-

The Da Prato-Grisvard theorem was lateron improved by Dore
and Venni [6] and by Priiss and Sohr [12]. Imposing a condition on
the Banach space X, namely (-convexity or equivalently the U M D-
property, and restricting the class of operators A under consideration
to A+wy € BIP(X) these results imply that (1.1) has the maximal
regularity property for the spaces Ly(R;; X), 1 < p < oo, provided
b is assumed to be l-regular. This result is worked out in §8 of
[11], and it generalizes to the vector-valued fractional Sobolev spaces

Hy (Ry;X),58>0,1<p<oo0. |

In this paper we want to introduce another method for proving max-
imal regularity of (1.1) in spaces Ly(Ry; L, (;RY)), 1 < p,r < oo,
when A is an elliptic differential operator such that its resolvent sat-
isfies Poisson estimates, i.e. (z + A) ! is represented as

(= + A)Lg)(z) = / oo w)g)dy, e, (1.14)
Q



292 J. PRUSS

and
n_ 1
12(z,9)| < Clz|m " 'p(lz — yllz|[=), =,y €, (1.15)

where z € C is restricted to a suitable sector. The function p :
(0,00) — (0,00) is assumed to be continuous, nonincreasing, and
such that

/ p(r)T”@ < 00, (1.16)
0 T

or instead of (1.16) satisfies the stronger condition
p(r) (" 4" ) < M < o0, >0, (1.17)

for some 6 > 0. Here 2 C R", and m refers to the order of the ellip-
tic differential operator under consideration; see Section 2 for more
details. We show that, in case (1.1) is parabolic, the fundamental
solution S(¢) of (1.1) admits a kernel representation, too, and the
kernel satisfies certain Poisson estimates as well. This is well known
in the case of analytic semigroups but seems to be new for evolution-
ary integral equations of the form (1.1).

At this point we want to draw the readers attention to an impor-
tant difference between the case of evolution equations and the case
of general kernels. If b(¢) = 1 then the kernel bound for the funda-
mental solution S(t) = e~4? is a bounded function for fixed ¢ > 0,
while for general b(t) this is not the case. It can be shown that for
Q=R",n>1, N=1, A= —A, b(t) =51 /T(B), where 3 € (0,2),
the kernel representing S(t) is bounded if and only if g = 1.

Section 3 contains the main result of this paper, namely the max-
imal regularity of (1.1) in L,(R;; L, (€ RY)). For the case of evo-
lution equations, where b(t) = 1, this was proved recently in Hieber
and Priiss [9]. The proof of the main result is carried out in Sections
3 and 4. It is similar in spirit to that of Hieber and Priiss, which in
turn was inspired by the recent paper of Duong and Robinson [7].
But it is different in a number of details, due to the fact that the
kernel bound ¢(r) for the fundamental solution S(¢) is not a bounded
function. The appendix, Section 5, contains some estimates for the
iterates of 7, as well as the sup-inf inequality which are needed in
the proof of the main result.
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2. Poisson Estimates

Let X = L.(;RY), 1 < r < 0o, where 2 C R” is an open domain.
Let A be a closed linear operator in X which is sectorial in the sense
that p(A) D (—00,0) and there is a constant M > 0 such that
M
I(t+A4)71 < —  forallz>0. (2.1)
Then the resolvent set p(—A) contains a sector of the form %, =
{z € C:2#0,|argz| < ¢}. The spectral angle ¢4 of A is defined
by

¢a:=inf{p € [0,7) : p(—A4) D Xy, S;lp |z(z + A) 7! < oo}
2E€2r_¢

Then o(A) C £y, and we let
My_y = sup{|z(z + A) 7' : 2 € Sp_p}.

By X4 we denote the domain D(A) of A equipped with the graph
norm |- |4 of A; note that X 4 is also a Banach space, by closedness
of A. Concerning the kernel b we assume that b is ¢p-sectorial in the
sense that

~

b(A\) #£0 for all ReA > 0, and
¢y := sup{|argb(A)| : ReA >0} < oo (2.2)
Then equation (1.1) is parabolic provided ¢4 + ¢ < m, and the

Laplace transform H()) of the fundamental solution of (1.1) is given
by

1 ~
HQ) =1+ bNA)™L, Rel > 0. (2.3)
The main hypothesis concerning A is contained in the following def-

inition.

DEFINITION 1. Let A be a sectorial operator in X. A is said to
belong to the Poisson class P(X) if the resolvent (z + A)~' of A
admits a kernel representation

(2 + A)"L](x) = / v fW)dy, TR,  (24)
Q
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for z € ¥;_y, and the measurable kernel vy, satisfies the Poisson
estimate

va(@,9)| < Clalm'p(jz —yllz'™), 2,y €Q, 2 € Brg, (25)

where p : (0,00) — (0,00) is continuous nonincreasing and such that

/ p(r)r"tdr < oo.
0

The Poisson angle gbi of A is defined as the infimum of all ¢ >0
such that (2.4) and (2.5) are valid.

EXAMPLE 1. As a typical example for an operator A belonging
to the class P(X) consider 2 = R" and A the L,-realization of a
system of differential operator of order m with constant coefficients,
i.e.

(Au)(z) = (A(D)u)(z) = Zjgj=maaDu(z), = €R", (2.6)

where a, € CN*N. If A is elliptic in the sense that o(A(i€)) C
§¢A\{O} for all £ € R™ \ {0}, then A € P(X) with

o0 n—2
_ —kr(1+s) S ds
p(r) /0 e e 70 (2.7)

where £ > 0 is a constant, and the Poisson angle ¢’ equals ¢4. O

This result extends to many other (systems of) differential operators
with nonconstant coefficients on domains  # R", for example to
boundary value problems of the Agmon-Douglis-Nirenberg type on
sufficiently smooth domains, with sufficiently smooth coefficients.
There is a large literature on Poisson estimates, however, here we
refer only to the recent monographs of Davies [5] and Robinson[14],
to the recent paper of Arendt and ter Elst [2], and the references
given there. See also Hieber and Priiss [9] for further examples and
discussions.

The purpose of this section is to obtain Poisson estimates for
the fundamental solution S(t) of (1.1) in case A belongs to the class
P(X). The result reads as follows.
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THEOREM 1.  Let X = L. (;RY), 1 < r < oo, suppose A € P(X),
and let b € Ly jo.(Ry) be of subexponential growth, ¢p-sectorial and
1-regular. Assume gbi + ¢y < m, in particular (1.1) is parabolic, and
suppose
AP <) < ¢ YA P, Rex >0, (2.8)

for some constants ¢ > 0 and 8 € (0,2).

Then (1.1) has a fundamental solution {S(t)}i>0 C B(X) which
admits the kernel representation

SONO = [ e, e >0 (29)
for each f € X, where oy is measurable and subject to the Poisson
estimate

oi(z,y)| < t7PMMg(|lz —ylt™P™), 2y € Qz £y, t>0, (2.10)

with a continuous noincreasing function q : (0,00) — (0,00) satisfy-
ing

/00 q(r)r" tdr < oco. (2.11)
0

In particular, the estimate

SOlacn) < [ alr)rldr < o0
shows that {S(t)}+>0 is uniformly bounded in B(X).

Proof. Since qﬁi > ¢4 and b is 1-regular, Theorem 3.1 of Priiss [11]
shows that the fundamental solution S(¢) of (1.1) exists, is strongly
continuous on R, , and locally Holder-continuous of any order o €
[0,1) on the open halfline (0,00). It is given by the representation

formula .
S(t) = —
(*) 2mit

where I" denotes any contour vy + s, s € R, with v > 0. Since for
ReA > 0 we have

—H'(N) = A2 +bNA) T+ AT (WA +b(N)A) 2

(X)L e gt
700 (1— (I +Db(\)A)™h)],

/ H'(M)eMd\, t>0,
r

= A2(I+bN)A) 1+
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we obtain the following representation for the kernel o4(z,y) of S(t).

oz, y) = %/r [’yl/g(/\)(x,y)(l + %) _

X' (M) ] X
2\ 1 Az

1
- 71/’5(/\) (‘Ta y)

where v1(z,y) = [7:(2,&)7:(&, y)dE, denotes the first iterate of
v.. By l-regularity of the kernel b(t), this representation yields the
estimate

C At R (X)) LAt il
o, y)| < /F|e o () + ),y (0 S

By Definition 1 we have
(@, y)| < Clo™™ ' p(lz - yll2]"/™), 2 € Sr g, Ty €,

hence from the definition of v} we obtain

i@y < / (@, )15 (€, ) de
Q

< ClaPrimt [ ple =l ™pl — yllel Ve

Cle/m=1 [ pllalzl!™ = €plls = yl=l'/™ e

= Clo/"™ 'pi(z —yll=[/™)
< Cl™™ p(elz —yll2[V™),

with some constants C,c > 0, by Proposition 1 of the Appendix,
Section 5. Therefore we can deduce with z = 1/b(\) and ¢+, < 7

|dA|

C/ AN 1-n/m N —1/m
oz, y)| < — [ |e™]|b(A clz — y||b(A —.
ot (z,y)| 1 1_‘| [16(N)] p(c| yl[b(A)] )l/\Qb()\)|

Choosing v = 1/t and using estimate (2.8) as well as monotonicity
of p we get

< ¢

dA
o) < S o

/ APl — gl AP D
A ]
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— %/ |e(1/t+is)t||1/t+i8|ﬂn/m

ds
|1/t + is|2

= ot [T gl — gl L4 7P
0

plele —yl[1/t +is|*/™)

[14 s?]8n/2m=145
= OE (s ),

q(r) = / pler[l + sZ]ﬁ/Zm)[l + 32]ﬂ"/2m_1ds, r > 0.
0

Obviously, ¢ : (0,00) — (0,00) is nonincreasing since p has this
property, and

/ q(r)r"fldr = / / p(cr[l—i—sQ]ﬁ/Qm)r’“1
0 o Jo

[1 4 s2)n/2m=1ds dr

— n—ld
/0 [ /0 p(cp)p p] T
o o0 ds
< n1q < o0.
< /0 [/0 p(cp)p p] T2 <

This proves Theorem 1. O

In a quite similar way we can also treat the integral resolvent family
(or fundamental solution of second kind) R(t) which is defined as the
solution of the convolution equation

R(t) + A / NOR(—T)dr = b(D), t>0.  (212)
0

It can been shown as in the author’s monograph [11] for S(¢) that
{R(t)}+>0 C B(X) exists and is continuous in B(X), provided A4 is
¢ a-sectorial, b is 1-regular and ¢p-sectorial, and ¢4 + ¢ < 7, which
implies that (1.1) is parabolic. The Laplace transform of R is given
by

R(\) =b(A) I +b(A\)A)™", Rex >0,
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hence R(t) is represented by the complex integral

1
2wt

R(t) /P POV + D) A)2eMdr, >0,

where as before I' denotes any contour A = v + is, s € R, with
v > 0. If we let again denote by . the first iterate of ~,, i.e.

Y (@,y) = [o7:(2,€)72(€ y)dE, then the kernel pi(x,y) of R(t) is
given by

Ry iey
2mit Jr 52(N)

pt(xay) = 711/'5()\) (xay)e)\tdAa t> 07 T,y € .

We can then obtain a Poisson estimate for p;(x,y) in a similar way
as in the proof of Theorem 1.

[dA|

C 7 —n/m 7 —1l/m
el < [ 1MIBO el — i)

[dA]

C n/m-— m
< ¢ / (A D p(clz — | A5
t Jr Al

_ %/oo |e(1/t+is)t||1/t+,L-S|ﬂ(n/m—1)

ds

plclz —yl|1/t + ’i8|ﬂ/m)m

_ o Bn/m=1)-1 / plelz — ylt=B/m[1 + 52)5/2m)
0
[1_|_32]ﬁn/2m—(1+ﬁ)/2d3

= Ot PO g (fg I,
where this time

q(r) = / pler[l+ sz]ﬁ/Qm)[l + sz]ﬂ"/zm_(Hﬂ)/zds, r > 0.
0

Note that also in this case ¢ : (0,00) — (0, 00) is nonincreasing and
satisfies

o o o ds
n—1 n—1
/0 q(r)r" ™ dr < ( /0 p(p)p" ™ dp)( /0 L+ 52002 =%
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As a result we obtain

THEOREM 2. Let X = L. (;RY), 1 < r < 00, suppose A € P(X),
and let b € Ly joc(Ry) be of subezponential growth, ¢p-sectorial and
1-regular. Assume qﬁlj + ¢y < 7, in particular (1.1) is parabolic, and
suppose (2.8) is valid. Then (1.1) admits the fundamental solution
of second kind {R(t)}+~0 C B(X) defined by (2.12) which has the
kernel representation

R ) () = /Q oz 9) )y, zEQ, t>0, (2.13)

for each f € X, where p; is measurable and subject to the Poisson
estimate

lpu(,y)| <P g(lz —ylt ), zy e Qa Ay, t>0,
(2.14)
with a continuous noincreasing function q : (0,00) — (0,00) satisfy-
ing (2.11). In particular, the estimate

o0
R() s < 801 /0 o)™ Ldr < 00

shows that {R(t)}+>¢ is locally integrable in B(X) on R,.

In quite analoguous manner one can derive kernel representations
also for the derivative of S(t) as well as for AS(t), provided b(t) is
2-regular. Observe the relation AR(t) = —S(t).

COROLLARY 1. Let X = L, (Q;RY), 1 < r < o0, suppose A € P(X),
and let b € Ly jo.(Ry) be of subexponential growth, ¢p-sectorial and
2-regular. Assume qﬁ + ¢y < 7, in particular (1.1) is parabolic, and
suppose (2.8) is valid.

Then the fundamental solutions {S(t)}1>0 C B(X) is of class C!
on (0,00), and S(t) = —AR(t) admits a kernel representation with
kernel 6¢(z,y). We have

|6e(x,y)| <P g(jw —ylt ™), my e QrFy, t>0,
(2.15)
with a continuous noincreasing function q : (0,00) — (0,00) satisfy-
ing (2.11). In particular, |S’(t)|3(x) < C/t for all t > 0.
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COROLLARY 2. Let X = L,.(Q;RY), 1 < r < o0, suppose A € P(X),
and let b € Ly jo.(Ry) be of subexponential growth, ¢p-sectorial and
2-regular. Assume gbi + ¢y < m, in particular (1.1) is parabolic, and
suppose (2.8) is valid. Then the fundamental solutions {S(t)}1>0 C
B(X,X,4) is continuous on (0,00), and AS(t) admits kernel repre-
sentation with kernel oi'(z,y). We have

o' (z,y)| <t Py(lz —ylt=P™), zyeQa#y, t>0,
(2.16)
with a continuous noincreasing function q : (0,00) — (0,00) satisfy-
ing (2.11). In particular, |AS(t)|p(x) < Ct=# for all t > 0.

Some further remarks are in order.

REMARK 1.  Assumption (2.8) can be weakend considerably in
case one is only interested in finite intervals J = [0, T] instead of the
halfline R, . In fact, the proof of Theorem 1 shows that (2.8) is then
only needed on the halfspace ReA > 1/T > 0, and since b(A) # 0 on
Cy4, (2.8) then reduces to

0 < ¢ < liminf [MB())| < limsup [MB(N)| < ¢ 1, (2.17)

|A[—00 =00

for some positive constant ¢. Moreover, it has been shown in Priiss
[11] that 1-regular kernels b satisfy

b < BN < ¢ B(AD],  Re > 0.

Therfore, (2.8) is equivalent to

0<c<Mp)|<cl, A>0, (2.18)
and its local version (2.17) is equivalent to
0 < ¢ < liminf A[b(N)| < limsup M[b(N)] < ¢ L. (2.19)
0<A—00 0<A—00

By a wellknown Abelian theorem the latter is implied by
t t
0 < lim inft_'g|/ b(s)ds| < limsupt™?| [ b(s)ds| < oo,
t—0+ 0 t—0+ 0

and this condition is even equivalent to (2.18) if b(¢) is real and
nonnegative, by Karamata’s theorem; see e.g. Widder [17].
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3. Maximal regularity
Let S(t) denote the fundamental solution of (1.1). Then for “nice”

forcing functions f(t) the solution u(t) of (1.1) is given by the vari-
ation of parameters formula

t
uft) = % /0 S(t — 8)f(s)ds
= S(t)f(0) + / tS(t—s)f(s)ds (3.1)
. 0
= S0+ [ Se=s)s6as

where the singular convolution S * f should be read as

¢t ¢t
/0 §(t—s)f(s)ds = /0 §(t—)(f(s)— £ (1)ds+(S(t) ) (1), t > 0.

If we are in the situation described in Section 2, say if A is sectorial
with spectral angle ¢4, b is ¢p-sectorial and 2-regular, ¢4 + ¢p < T,
then the solution operator is well-defined, say for f € C§°(Ry; X).
To obtain maximal regularity in L,(Ry; X) we need a stronger ver-
sion of Poisson bounds.

DEFINITION 2. Let A be a sectorial operator in X. A is said to
belong to the strong Poisson class P,(X) if the resolvent (z+A)™!
of A admits a kernel representation

(2 + 4)~ f](z) = / V(o) Wy, T€Q,  (32)
Q

for z € Y,_y4, and the measurable kernel v, satisfies a Poisson
estimate

72(2,9)| < Clelm~'p(lz = yll2|"/™), 2,y €Q, 2 € By, (33)
where p : (0,00) — (0,00) is continuous nonincreasing and such that

p(r)(r”_‘s + T"M) <M < oo,
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for some constants C,M,§ > 0. The Poisson angle zpfj, of A is
defined as the infimum of all ¢ > 0 such that (3.2) and (3.3) are
valid.

The main result of this section is the following result.

Theorem 3. Let X = L,(Q;RY), 1 < r < oo, suppose A € Py(X),
and let b € Ly jo.(Ry.) be of subexponential growth, 2-regular, and ¢y-
sectorial. Assume @bﬁ + ¢p < 7, in particular (1.1) is parabolic, and
suppose

AP < BN < ¢ HATP, Red >0, (3.4)

for some constants ¢ > 0 and 3 € (0,2).

Then (1.1) has the mazimal regularity property with respect to
the spaces Ly(Ry; X) for 1 < p < oo, i.e. for each f € Ly(Ry; X)
there is a unique solution u = Gf € L,(Ry;X),in the sense that
bxu € Lpjoc(Ry;X4) and u+ Abxu = f a.e. on Ry. The solution
operator G : L,(Ry; X) = Ly(Ry; X) is bounded.

A number of additional remarks are in order.

Remark 2. (i) Although the kernel b does not belong to Ly (R, ),
the convolution b * u is well-defined since we are working on the
halfline R, . Under the assumptions of Theorem 3 we do not obtain
bxu € Ly,(Ry; X) but only locally. However, Abxu € L,(R;; X) by
(1.1), hence if in addition A is invertible, then b * u € L,(Ry; X) as
well.

(ii) We shall prove at the same time that the solution operator G is
also bounded in L,(R; X'). Observe that in this case the convolution
b*u on R is not defined pointwise. It is here more convenient to
invert the convolution and define an operator B on L,(R; X) as in
(1.11) and to consider (1.12) instead of (1.1); see Priiss [11], Section
8 for details.

(i4i) Concerning maximal regularity on finite intervals J = [0,7]
one can relax (2.8) as explained in Remark 1.
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Proof of Theorem 8. The aim is to prove that the solution map for
(1.1)

t
u(t) = (G)(1) = = /0 S(t—s)f(s)ds, t>0,  (3.5)

which is well-defined say for f € C°(Ry; X), X = L.(QRVY), is
bounded in L,(R;;X), for all 1 < p,r < oo. This will be achieved
in four steps.

Step 1 Taking Laplace transforms in (1.1) and in (3.5) we obtain
the representation

—~ ~ ~

(GFYN) = (T +b(NA)LF(N), Rex>0. (3.6)

Extending f and u by 0 to all of R this implies in terms of Fourier
transforms (indicated by a tilde)

(Gf)(p) = I +b(ip)A) " f(p), pER p#0.  (3.7)

In fact, since b is 2-regular by assumption, its Laplace transform /b\()\)
admits boundary values /I;(z) € Wozo,loc(]R\ {0}), and by parabolicity
H()\) = (I+b(\)A) ! extends continuously to Cy \ {0} in B(X, X 4),
and satisfies |[H ()\)|g(x) < M < oo there; see [11] for these properties
of b and H. By means of the vector-valued Parseval theorem we
obtain therefore G € Lg(R; Lo (Q2; RY)), i.e. the claim of Theorem 3
holds for p =r = 2.

Step 2 In this step we prove that G is bounded from
Li(R; Ly (9 RY)) = L (R x ;RY)

t0 L1 weak(R x Q;RY). This is the most difficult part of the proof
which will be carried out in Section 4. It is again divided into three
parts, and it is there where the Poisson estimates for the kernel
representing (z + A)~! are used.

Step 3 By means of the Marcienkiewicz interpolation theorem, cf.
e.g. [8], Steps 1 and 2 yield boundedness of G in L,(R; L, (2; RY)) =
L,(R x Q;RY) for 1 < p < 2. Since the dual A* of A is again
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sectorial, invertible with the same constants and belongs to P(X) as
well, with the same function p(r), the representation

@no = ~5 [ s (3.9)

_ R%/OOOS*(T)(Rf)(t—T)dT, teR

with (Rf)(t) = f(—t) shows that G* is also bounded in the space
L,(R; L, (S RY)) for 1 < p < 2. Therefore by duality G is bounded
in L,(R; L, (©;RY)) also for all p € [2,00). This proves the assertion
of Theorem 3 for all p = r € (1, 00).

Step 4 By means of the theorem of Benedek, Calderon, and Pan-
zone, cf. e.g. [8], we extend the result for p = r € (1,00) to the
general case. In this step the Poisson estimates for the kernel of
(z + A)~! are not used, it is enough to employ estimates (1.8) and
(1.9) taken from [11], Section 3. In fact, these estimates imply the
Hormander condition

/ K(t— ) — K(f)|so0dt < M < o, teR,
>2ls

where K (t) = S(t) for t > 0, K(t) = 0 for ¢ < 0, and so Theorem
V.3.4 of Garcia-Cuerva and Rubio de Francia [8] yields the assertion
of Theorem 3 for arbitrary p,r € (1, 00). O

4. Proof of the Theorem 3: main part

We turn now to the proof of the claim in Step 2. On the set R x Q2
we introduce the quasi-distance

d((t,z), (5,9)) = ([t — s’ + |z —y|™)™, t,s € R ;z,y € .

Observe that only in case m > 1 and 8 > 1 d is a metric. Let
f € Li(RxQ;RY)N Ly (Rx Q; RY) be given and choose a Calderon-
Zygmund decomposition for |f| of level & > 0 w.r.t. the quasi-
distance d; cf. Stein [15], Theorem 1.4.2. This means that we obtain
balls B; := {(s,y) € R x Q: d((s,y), (si,yi)) < p;} and functions g,
h; such that
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1. f =g+ h, where h =", h;,

2. |gloo :=esssup{|g(t,z)|: t e R, z € Q} < ag;
3. supp h; C Bj, and [ [, hi(t, x)dzdt = 0;

4. |hilr == [g Jq |hi(t, z)|dzdt < ac - mesB;;

5. ) ;mesB; <c|fli/a.

Here ¢ denotes a fixed constant depending only on Q@ C R", and
“mes” indicates Lebesgue’s measure on R x 2. Observe that at
this point we need a Lipschitz boundary for the domain € since the
result applied here uses the so-called “doubling property” for the
quasi-distance d. Observe the inequality |g|1 + |h|1 < (1 + 2¢2)|f]1,
in particular g belongs also to L; and therefore also to L.

To show boundedness of G from Li(R x ;RY) to L1 weak(R %
Q;RY), we have to prove that there is a constant C' > 0, independent

of f, such that
|/

mes{(t,z) e Rx Q: |(Gf)(t,z)| > a} < CT’ for each a > 0.

For this purpose we decompose the bad functions h; further into
hi = ki = Tih; + (hi — ki x T;hy),

where T; = (1 +r;A)7F, k;i(t) = exp(—|t|/t;)/2t; for t € R, where
and ¢; will be chosen later, and the * here indicates the convolution
over R. Accordingly, we decompose u = G f as

u:u0+2ui:u0+'v+w,

2

where ug = Gg, u; = Ghy, v = Y, v, v; = Gk * Tihi, w = ), w;,
and w; = u; — v;. Then the estimate

mes{|u(t, )| > 3a} < mes{|uo(t,z)| > a} +
+ mes{|v(t, z)| > a} + mes{|w(t, z)| > a}

shows that it is enough to estimate ug, v, and w separately.
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(i) This is fairly simple for ug. In fact, by Tschebyscheff’s inequality
and by Step 1

mes{(t,z) : |(Gg)(t,z)] >a} < %ngl%

G|3 C
= g5 < —519l1lgleo

C
< Gifha=clil
o [0

<

(ii) Next we estimate the function w = ), w;. We have the repre-
sentation

wit) = / ;S‘(t—s)[hi(s)—

—/ (2ti)_16_|3_r‘/ti(I-I-riA)_khi(r)dr]ds

_ /_Oo Kt — s)hy(s)ds,

o0

where the operator-valued kernel K;(t) is given by
o
Ki(t) = S(txo(t) - / S(s)(2t;) " e (T 4 vy A) R ds
0
— 2 [ K- ),
Tu

a Dunford integral along a contour T, = (oo, 0]e *® U [0, 00)e’® with
¢ > ¢k, Here the function k,(t) is given by

ku(t) = su(®)x0(t) — /0"0 Sulr)(2t) e VN (L 4 rgp) Rdr.

By s,(t) we denote the solution of the scalar Volterra equation de-
pending on the parameter u € C

t
s(t) + u/ b(t —r)s(r)dr=1, t>0.
0
We proceed now as follows. Let

Bf = {(t,z) € Rx Q:d((s,y), (s4,5)) < 2pi},
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where x denotes the quasi-distance constant, i.e.

d((, ), (s,9)) <

r(d((t,2), (r,2)) + d((r, 2), (s, 9));

then with the characteristic function y; of the ball BZ-2 we have w; =
wixi +w;i(1—x;). With the doubling property of d, 3., and 4. we get

mes{|w(t,z)| > a} =

<

<
<

<

mes{| Z[wixz- +wi(1 = xi)| > a}
mes{| Z wixi| > a/2} +
+Z2|wz — Xi | /a

Zmes ; +22|w,~1—xz-)|1/a
C’|f|1/a+ZC|h,~|1/a
Clfl/e,

provided we can show |w;(1 — x;)[1 < C|h;]1, for some constant
C > 0, independent of ¢ and f.

For these terms we begin the estimation in the following way,
employing the above representation of the kernel K (t) as well as the
Poisson estimate for the kernel v, of (z+ A)~!. Recall supp h; C B;.

lwi(1—xi)|1 < C|hi|1 sup // . i(t — s)(z,y)|dzdt
B2)c

(s,9)EB;

< C|h,~|1 sup // / |ku(t —s)
(sy)esi J J(BY)e

y—ulz, y)l|dp|dedt

< C|hi|1 sup // / |ku(t—s)
(sy)eBi J J(BY)e

™™ (|2 — yl|pM™) | dp|dedt

< Clhily / / / k()] /™
(B?)C Tp
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-p(lal[u™)|duldzdt,
since d((t, ), (si,yi)) = 2rp; and d((s, ), (si, 4i)) < pi imply

d((t,I), (s,y)) > pis

by BY we denote the balls d((t,z), (0,0)) = (|t|® + |z|™)"/™ < p; in
R x R". By means of radial symmetry we then obtain with r = |z|
and the scaling r|u|'/™ — r

lwi(1—x3)[1 <

< o [ [ @l el e
w +rm>p
= o [ [ @l el e vt
I ™ 2>pit
—cpai [ [ k)1l plr)r™ it
Tu S S ul+rm>|ulp
o0
< ol [ 1] kaolat [ plretar
vy >t 0

* n—1 |dN|
+ Ky (t)|dt p(r)r" tdrdt]——
t)<ti/2 rm> (7 [t:/218) |l

= Clhi1[l1 + I3],

d
I = / / (1) dt| il
T, t\>tl/2 |H|

n— d
B[ 1] [ 1 190
T, Jt<ti/2 ™ >\ | |’

with the choice r; = (t;/2)? = P /2. This choice for r; and t; will be
fixed from now on. It therefore remains to show that both integrals
I, and I, are finite, with a bound independent of 7. For this purpose
we use a representation formula for the function k,(¢) which is the
content of the following

where

and

Proposition 1. Let b € Ly jo. be of subexponential growth, 2-regular,
¢p-sectorial, and let p € C\ {0} be such that |arg(p)| < o < ™ — Pp.
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Then there is a uniformly bounded holomorhic function ¢ : C; X
Ygo — C such that

ka(t) = / o(, u)%m(tix, t/ti)%, (4.1)

for any contour Ty of the form o +is, s € R, with 0 < o < 1/t;.
The function g,(A,t) is given by

gu(Wt) = xo®eM L - (1+pm) T Q=27+
e M1 = xo(®) (1 =27 =
—xo()(L+X) (1 + ) F/2.

gu(A, t) satisfies the estimate

A2
(14 [A])?

forallt eR, p€ Xy, A€ Cy, 0 <ReX < 1/2.

1900 8)] < CfeReN B |

LIt
1+ |p Jte

1
M-

Proof of Proposition 1. Let u € Xy, be fixed. Then the Laplace
transform () of $,(t) is given by

B(X) = ub(N)(1 + () !
A simple calculation yields

0"(X) = 2mipb(\) (1 + ub(N) > %p(A, u),
where
pm) = (2m) H{2OF () /BO)*Q + ub()) ™ +
+ A% (A) /b(A) — 200 (V) /b(1)?}.

Note that in view of the assumptions of Proposition 1 the function
@(A, ) is holomorphic on C; x X4 and uniformly bounded. With
this representation of §(\) we obtain

~

. A d\
it = | PG u(’z;()x))fMW’ >0,
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where ', as in the statement of Proposition 1. Inserting this repre-
sentation into the definition of k,(¢) and applying Fubini’s theorem,
we obtain

ku(t) = $u(t)xo(t) — /Oooéu(r)(2ti)‘le‘t‘”“<1 +rip) Fds

_ /‘3(/\) A
- /a (10(>":u) (1 -|-,Uj)\(/\))2 {XO(t)
dX

o0
_ /0 [e*oe P51/t /ot;]ds (1 +W)_k}W

~ ub()) /)
= /J SD()\aN)mgmu(tl’\’t/ti)ﬁ)\w

with g,(A,t) as in Proposition 1. The estimate is straightforward.
O

We proceed now with the estimates for I;. By means of Proposition
1, I; now takes the following form.

=]
T, J|t>t:/2

which by means of (2.8), parabolicity and boundedness of ¢ can be
estimated by

A7 |dA|
I<C// / | (O, t/t dt|d
VSO S s Jro,, (o e 9re O 18]y il

Next we introduce the scaling pur; — p, A\t; = A, t/t; = t, ot; = o,
which by the relation r; = (¢;/2)? leads to

A? N
L<C / / / | dtld
VSO S usae Jo, TP+ 1ane 90O Ol y e

Thus we have a bound which is uniform in ¢, once the right hand
side of the last inequality is finite. Next we parametrize the curves
T, by p = t Ppet®® and T, by A\ = (1/4 + is)/[t|, in particular

|du|
]’

b
L gt Pt )00 a2
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ReX = o = 1/4Jt| < 1/2, use symmetry and the estimate for g, (A, t)
proved in Proposition 1.

p
L < C
b //2// 1+sﬂ+p) {tﬂ+p+

(1+s)?
(1+s+1)2

_t}[ds/ + 5)?]dpdt /1.

Write the right hand side of the last inequality as Ji + J2 + J3. Then
integrating first w.r.t. p we obtain

J2:/1:[/lwﬁisty]dt/tz/lj:dt/t(l+t)<oo

as well as o o
J3 = [/1/2 e_tdt/t] [/1 ds/sQ] < o0

On the other hand, with (s + p)=2 < s7#/2(1 + p)=3/2 for s > 1 we

get
/ / / dt/t] B/2— st] L
2 Pt p (1 +p)

d
_ B/2—2 s P
= [/1 s ds] /0 log(1 + 27 p) WL

= (1-p8/2)7" /00 log(1 + 2ﬂp)L < o0
0 (1+p)3/2
The second term I, must be treated somewhat differently. Here we
first decompose k, (t) into three parts, namely &, (t) = kj,(t)+k.(t) +
k3(t), where

J1

AN

() = 00003400 = [ 8,0)C8) e I ) ar],

k2 (t) = —Xo(t)/t $u(r)(2t;) 7L/ (1 + ) Hdr,

and

ki () = —(1 = xo(t))e™ /% /00 Su(r) (2t) e (L 4 rop) Rdr.
0
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Then Iy < Ip1 + Izo + Io3 where Iy; is defined as Io, with &, replaced
by kft We estimate these terms separately.

The integral in the definition of kz can be evaluated explicitly,
namely

pb(1/4;) i
hence by (2.8) we have with r; = (¢;/2)?

Iy < / / 188 (1) e 21
B Ty J|t<t;/2 |l
< C[/O v t/t’dt/t] [/000(1 —I—r,'p)*k*lmdp]
= C[/01/2 e_sds] [/000(1 +p)_k_1dp] < 0.

To deal with ki we employ Hardy’s inequality for the function (t) =
xo ()3, (t)e /%, which reads

/ @)dt < /|s JI[dA,
0

where o = 1/t;. By means of (2.8) we then obtain with p = |y|

t:/2
I, < C/ / |k2 ‘dt] ||all7||
< C/ / : ’"/t’|dr]
ti/2
[/ et/“dt/ti] (14rip)*dp/p
0
¢ [ Bulan] @ +ri)
0 ~JT

c[ '/miﬂlds]uwp) dp/p
o L (sP+1Pp)2

oo - [fOO Sﬂ 1
= — _ds|(1+r)7k
C/O /1 (sﬁ+r)2d8]( + ) "dr

ol [ [t <o
1 0

ki (t) = (1= xo(t))[e /" f2t;] +rin]

IA

IN

IN
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where we again used the relation r; = (;/2)” and proper scaling.
To estimate the term Iy; we proceed as for I7, this time based
on the representation

~

B ub(N) L dA
0 = [ e O e g 6
where now
GAD = xo@N -2 LX) (1)

+e 27 1+ )T A4+ p)7h

where ReX > 0 and p € X4. For [t| < t;/2 we may estimate very
roughly.
|9;1L(>\ t)| < Cxo(t)e™ .

Then we obtain with A = (1 + zs)/t v= rz|p| and 7 =t/(t;/2)

t;/2
Lol
Ty 1—I—ub

_ |dA|
p(r)r"tdr dt|dp
[ /Mm| ]wP dal/ |l

Re)\t

< C / /W / R Y
- Jn . (AP +1ul)?
_ |dA|
p(r)r"tdr dt|d
|:/r’">|m‘i| ) ]|)‘t|2 B
- Sﬂ’T 5—%—

/ Pl (s 5

Evaluating the integral over v first, we get

<o [Tper " [ S s

Since s > 1 we may estimate and evaluate the integrals over s and 7
to the result

o
|I21] < C/ p(r)r" 17 og(1 + r™)dr < oo,
0
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by the assumptions on p(r).

(iii) Finally, we estimate the functions v; = Gk; * T;h;. By
means of the Tschebyscheff inequality and boundedness of G in Lo
we get

mes{| Y vl >a} < | wil3/a®
7 7
< CY kixThil3/o”.
A

We still have the number k£ € N for choice. Fixing at this point
k > n/d, we know from Proposition A2 that the kernel bound p := py,
for T; = (1 + r;A)~* is bounded. Then from Proposition A3 and 3.
we obtain

|(ki % Tihi) (¢, 2)| < [hili sup  |(KT3)((2,2), (s,9))]

(s,y)EBi
< Ihal sup {(at) e e g )
55y i
S Ca mes (BZ) (s ;l!lil:efB'{(2ti)_16_|t—5‘/ti,ri_n/mp(|x . y|7‘z—1/m/2)}

< Ca /R [ Gt = sl Jo — ys(o. )dyds
= Co(Gixi)(t,z),

where y; denotes the characteristic function of the ball B;, and G;
the convolution over R x R™ with kernel

Git,x) = [e 4% 128, [r, ™™ p(||r /™ )2).

Let Msh denote the maximal function of h € Ly. Then the maximal
inequality |(G;h)(t,z)| < (Mal|h|)(t,z) implies for h € Lao(R x R™

|Q_ ki x Tihi,h)| < Ca() Gixi, |B) = Cay_(xi, Gil b))

< Ca) (xi, Ma|hl)
7

IN

Cal " xilz - [Ma|hl|
7

IN

Ca|Ma|p(Ly@xrry)l Z Xil2|hl2,
G
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by boundedness of the maximal operator in Ly(R x R"). Hence 4.
implies

> kixTihila < Cal Y xila < Ca| () mes B;)'/? < Co(|f|1/a)'/?,
and combining these estimates we arrive at

mes{| S vl > a} < O/l /a,

what was to be shown. O

5. Appendix: Poisson kernels

Here we collect some properties of Poisson kernels which have been
used in the proofs of our main results.

PROPOSITION Al. Suppose p : (0,00) — (0,00) is continuous,
nonincreasing and such that

o0
/ p(r)r"ldr < .
0

Then the iterated kernels pg(r) defined inductively by means of

prale) = [ pelle—plaDdy, = R,

satisfy pr(r) < Cgp(egr), r > 0, where Cx, > 0 and ¢ > 0 denote
constants only depending on k € N,

Proof. By induction it is evidently enough to prove the assertion for
the case k = 1. Let z € R" be given and set p = |z|. W.log. we
assume n > 2. Choose a rotation Q which rotates the vector x into
(p,0...,0) = pey. Then

p2(0) —/ p(loes — y)p(yl)dy

/'Al|m—mn)WWw
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o0 1
= / / / p([p? +r? — 2rpn]/?)p(r)r"~'dédndr
0 J-1JlgP=1-n?
9] 1
= wn o2 / / p([p* + 7% = 2rpn) /)1 — P2 Lp(r)r™ L dndr,
0 —1

where w,,_o denotes the surface area of the n — 2-dimensional unit
sphere. By means of the variable transformation n = sint we obtain

oo pm/2
B / / p(V/p? +12 = 2rpsint) cos™ " (t)dtp(r)r"~dr.
0 —m/2

To estimate po(p) we decompose the region of integration into three
parts and name the corresponding terms py;(p).

(i) The first region restricts ¢ to the range —7/2 <t <ty < /2.
For such ¢

p°+ 12— 2rpsint > p* +r? — 2rpsinty > p?(1 — sinty),

hence we obtain

w/2
palp) <)l | o)t 05" ] = Ol
—m/2

p € (0,00),

where € = /1 — sin .

(i) The second region restricts r to the range |r — p| > np > 0,
where 7 € (0,1) is fixed. For such r we have

p? 412 —2rpsint > p? + 12 — 2rp = |r — p|? > n%p?,
hence we obtain with positivity and monotonicity of p
/2
p22(p) < p(np)| / ]| cos™ " tdt = Cp(np).
—m/2

(#4i) The third region is (t,r) € [to, 7/2] x [p(1 —n), p(1 +n)]. Here
we estimate as follows.

w/2 rp(l4+n)
p23(p / / p(V/p? + 12 — 2rpsint)(r cost)"p(r)drdt
to
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< p((1 =n)p)
/2 ro(1+n)
/ p(v/p? + 12 — 2rpsint)(r cost)"drdt

to 1- TI)

= p((L=n)p
p(1+mn)
/ / (v p? + 12 — 2rpcos s)(rsin s)"~dsdr,
p(1

where § = 7/2 — t;. Since sins < s and coss < 1 — s2/4 for § > 0
small enough, this yields

p(1+n) o
p2s(p) < ep(p( — 1)) / /0 (Vo= T2+ prs?f2) (rs)™ Ldsdr

(1-n)

1+ oo
< ep(p(1 - / n/ p(ps/(1—n)/2)p"s" dsdr
1 0

< ep(p(1 - )( / p(t) iV d)

where we used the change of variable r = pr and t = sp\/(1 — 1) /2.
This completes the proof. O

In general one cannot expect that the iterated Poisson kernels be-
come bounded eventually, which is needed for the sup-inf inequality
proved in Proposition A3 below. For this we have to assume more.

PROPOSITION A2. Suppose p : (0,00) — (0,00) is continuous
nonincreasing and such that

p(r)[r"” + 7‘"—5] <M, r>0,

for some constants M >0 and § € (0,1).
Then for k > n/é, the iterated Poisson kernels py(r) defined in
Proposition 1 are bounded and satisfy pr(r) < Myr—"*9) on (0,00).

Proof. Since p subject to the assumptions of Proposition 2 satisfies
the assumptions of Proposition 1 we obtain

pr(r) < Crplerr) < Mr~ 0 > 0.
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Therefore it is enough to show that p; is bounded near zero, for
k>n/é.
We prove by induction

pk(r) < Mk,’,,k‘ﬁ—n’ r> 0’

for all £ < n/d. So assume that this is true for k. Then we write as
in the proof of Proposition 1

oo /2
prr1(p) = / / (/P2 + 12 — 2rpsint) cos™ ! tdtp(r)r™Ldr
0 —7/2

oo pm/2
< M, / / [\/p2 +72—2rp sint]””'k‘i cos™ L tdtrdldr
0 —7/2

oo /2
= Mplkthi—n / / [V1+ s2 — 2ssint] ™t
0 —7/2
cos™ ! tdts®lds,

where we used the scaling r = ps. The integral is treated in a way
which is analoguous to the splitting in the proof of Proposition 1.

oo rto —n+kd
/ \/1 + 52 — 2ssint cos" T tdts?lds <
0

—7/2
o0 kd—
<ec / V1+s? ns‘sflds,
0

which is finite provided n > (k + 1)d.

/2 —n+ks
/ V1 + 82 — 2ssint " cos™ L tdts®ds <
s=1|>n J -7 /2

< 02/ |s — 1|k g0 (s,
[s—1/>n

which is finite iff n > (k + 1)4.

1+n pw/2
/ [V1+ 52 — 2ssint] "+ cos™ 1 tdts® ds =
1-n to

14+n pe
= / / [V1+ 52 —2scos 7] " sin" ! rdrs’lds <
1-n JO
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1+4+n € kS—m
< (33/ / \/(1 —8)2 4+ s72/2 " ldrsd=1ds
1—n 0
1

< 04/ 'rk‘s_ldT,
0

which is finite. This proves the desired estimate for £ < n/d.
Now consider the step k6 < n < (k + 1)d. Here we have to
estimate differently. Since

p? +12 —2rpsint = (p—r)%sint + (p? +r2)(1 —sint) > r?(1 —sint),

we obtain

Lpm/2 kdé—n
/ Vp? 412 —2rpsint cos™ L tdtr~ldr
0 J—m/2

1 /2 _
< (/ pF1)I=n=1 g,y . (/ VI st " cos™! tdt) < oo,
0

—m/2

for (k+1)6 —n > 0. Similarly,

oo pm/2 kb—n
/ Vp? +12 —2rpsint cos™ L tdtr =0 1dr
1 —7/2

0 /2 _
< (/ pRI=n=1=04,y . (/ VI —smt" " cos"! tdt) < oo,
1 —7/2

because of k§ < n. Therefore pg1 is bounded, and then we obtain
by induction boundedness of p; for all [ > k + 1. O

PROPOSITION A3.  Let p € C(Ry) be positive and nonincreasing,
let m >0, B €(0,2), and define a quasidistance d on R x R™ by

d((t,2), (5,)) = [}t — 5|? + | — y "]/,

Let By :={(s,y) € RxR" : d((s,), (s0,Y0)) < po and set typ = pgn/ﬂ
and Ty = pg-

Then there is a universal constant C' > 0 such that for all t € R,
z €R" py >0, (s0,%) € R xR" the inequality

sup [(2t0) eI torg MM |z — ylrg ™)) <
(S,y)EB()

¢ int [(20) e 0rg e gl 2] (1)
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18 valid.

Proof. We may assume w.o.l.g. t = x = 0. Then the assertion is
equivalent to

e_|s‘/t0p(|y|r(;1/m) S Ce_|§|/t°p(\@7|ral/m/2),

for all (s,y),(5,9) € Bo. But the latter implies d((s,y),(5,7)) <
2kpg, ie. |s — 5% + |y — g™ < (2kpo)™, or equivalently |s/ty —
5/to|® + |y/ro — §/ro|™ < (26)™, where s denotes the quasidistance
constant. Therefore the assertion will follow if we can prove that
there is a constant C' > 0 such that

ef|s‘p(‘y|) < Cei|§|p(‘g|/2)’

for all |s — 5| < (26)™# and |y — §| < 2k. But this in turn means

eIl < Cp(1g1/2) /p(ly),

for all such s,5 and y, 7. Because of ||s| — |3]| < |s — 5] < (2k)™/#
this condition is equivalent to

0 <c<p(lyl/2)/p(lyl),

for some constant ¢ > 0, and with ||y| — |7|| < |y — §] < 2k we have
only to check the condition

0 <c<p(r/2)/p(r), forallr,r >0, |r—r7|<2k. (5.2)

To prove this, we consider three cases. If # < r then by monotonicity
of p we have

p(r) < p(7) < p(7/2),
i.e. (5.2) holds wih ¢ = 1. Assume next 2k < r < 7 < r + 2k; then
7/2 < k+71/2 < r, hence p(r) < p(¥/2), by monotonicity of p, i.e.
(5.2) holds wih ¢ = 1. Finally, if 2r < k, r < 7 < r+2k, then 7 < 4k,
hence

p(r) < p(0) = p(2)"'p(2K) < p(26) ' p(7/2),
which implies that (5.2) holds with ¢ = min{1, p(2k)}. O
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