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Elementary Operator-Theoretic Proof
of Wiener’s Tauberian Theorem

J.M.A.M. vAN NEERVEN *)

To the memory of Professor P. Grisvard

SUMMARY. - We present a short and elementary proof of Wiener’s
general Tauberian theorem based on the theory of one-parameter
groups of operators.

In this paper we present a short and elementary proof of Wiener’s
Tauberian theorem based on methods from the theory of Cy-groups.

Let T = {T(t)}t«er be a Cp-group on a Banach space X, i.e.
a strongly continuous one-parameter group of bounded linear op-
erators on X. Then T defines a Banach algebra homomorphism
T: LY(R) — L(X) by

o
T(f)z ;:/ fOT(@R)edt, feI'(R),zecX.
—0
The kernel of T, notation I, is the ideal
It :={f € L'(R) : T(f)=0}.
The Arveson spectrum of T, notation Sp(T), is the hull of I, i.e.

the set of all w € R such that f(w) = 0 for all f € Iy. Here, as

usual,
[e o]

f(w) = / e f (1) dt

—0o0
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is the Fourier transform of f € L'(R) at w.

Our proof of Wiener’s Tauberian theorem is based on the fact
that Sp(T) is non-empty provided T is bounded and X # {0}. This
is true in the more general setting of bounded strongly continuous
Banach representations of LCA groups G [Ar] and is usually derived
from Wiener’s Tauberian theorem. The essential point about our
proof of Wiener’s Tauberian theorem is that in the case G = R
the non-emptyness of the Arveson spectrum admits a direct and
elementary operator-theoretic proof. For reasons of completeness,
we shall give the complete proof below.

Assuming for the moment that Sp(T) # 0 if X # {0}, Wiener’s
Tauberian theorem can be proved in a few lines as follows. The right
translation group is the Co-group U on L'(R) defined by

U@)f(s):= f(s—1), teR, aa seR

Note that U(f)g = f * g for all f,g € L' (R); here * denotes convo-
lution.

THEOREM 1. (Wiener’s Tauberian theorem) If the Fourier trans-
form of a function f € L'(R) vanishes nowhere, then the linear span
of the set of all translates of f is dense in L'(R).

Proof. Let X := span{U(t)f : t € R}. We have to prove that X =
L'(R). Consider the quotient space Y := L'(R)/X and let Uy de-
note the associated quotient translation group on Y. Then Uy is
strongly continuous and bounded, and for all g € L!(R) we have
U(f)g = f*g =gx*f = U(g)f By the translation invariance of
X, U(g)f € X. Hence U(f)g € X, so Uy(f)(g+ X) = 0 for all
g € LY(R). It follows that Uy (f) = 0. On the other hand, by as-
sumption f(w) # 0 for all w € R. Therefore, Sp(Uy) = 0. We
conclude that Y = {0} and X = L(R). O

Although the above proof seems to be new, the idea to apply the the-
ory of Cy-groups, and more generally, of strongly continuous Banach
representations of LCA groups, to quotients of translation groups
to derive results in Harmonic Analysis is not; it has been used by
Huang [Hu] to study spectral synthesis in Beurling algebras and sub-
sequently in [HNR] to identify a class of Banach subalgebras of L!(G)
which have the Ditkin property.
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Even for G = R, the usual proofs of Theorem 1 are quite involved;
cf. [Ka], [Lo], [Ru], [Yo].

It remains to prove that Sp(T) # 0 if X # {0}. This is accom-
plished in two propositions. The first is a well-known result of Evans
[Ev]. As usual, for A € g(A), the resolvent set of an operator A, we
write R(\, A) := (A — A)~L. We assume that the reader is familiar
with the elementary theory of Cy-(semi)groups as presented in the
first chapter of [Pa] or [Na].

PROPOSITION 2. Let T be a bounded Cy-group on a Banach space
X, with infinitesimal generator A.
(i) For all f € L'(R) whose Fourier transform belongs to L'(R)
we have

f(T)e = %%ﬁ)}/ F(=t) (R(6 + it, A) — R(—6 + it, A)) z dt,

z € X.

(ii) If f is compactly supported and vanishes in a neighbourhood
of io(A), then f(T) = 0.

(iii) If X # {0}, then o(A) # 0.

Proof. For all § > 0 we have +6 — it € p(A), and for all z € X we

have the identities
o0

R(0 —1it,A)x = / e~ 0= (5)z ds

0

and

w .
R(—0 —it,A)z = —R(§ + it,—A) = — / e 0Hs(_g)z ds.
0

Since f € L'(R), by the formula for the inverse Fourier transform
we have

Ft) = %/_oo f(s)e" ds, aa teR

Hence by the dominated convergence theorem and Fubini’s theorem,

f(T)z = lim | O f (T )z dt
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1 oo oo
— _ l —(5‘t| / (X1 T
o 611%1 e . e’ f(s)ds ) T(t)xzdt

- —6|t\ ist
o %ilol/ (/ e T(t)wdt) ds

_ 1, 5 Cm s _
27“51&)1/ f(s is,A) — R(—0 —is, A)) zds

This proves (i).

If f is compactly supported and vanishes on a neighbourhood
of io(A), then f(T)z = 0 for all z € X by (i) and the dominated
convergence theorem. This proves (ii).

Finally, assume o(A) = . Then (ii) implies that f(T) = 0 for all
f € L'(R) whose Fourier transform f has compact support. These
functions are dense in L' (R); this can be seen in an elementary way
by noting that hm,\_)Oo K, x f = f, where K, is the FeJer kernel,
and recalling that K is compactly supported. Thus f(T) = 0 for
all f € L,(R). In particular, by defining fo(t) := e * for t > 0 and
fo(t) :== 0 for t < 0 we have fo € L}(R) and R(1,4) = fo(T) = 0
This implies X = R(1, A)X = {0}. O

The second proposition is a special case of a result of Jorgensen [Jo].
For the real line, it admits the following simple proof.

ProOPOSITION 3. Let T be a bounded Cy-group with infinitesimal
generator A on a Banach space X. Then Sp(T) = ic(A).

Proof. First let w ¢ ic(A). Noting that o(A) C iR, we choose a func-
tion f € L'(R) whose Fourier transform is compactly supported and
vanishes in a neighbourhood of i0(A4) but not on w. By Proposition
2 (i), f(T) = 0. But then f(w) # 0 implies that w ¢ Sp(T).

Conversely, let w € i0(A). Since o(A) C iR and since the topo-
logical boundary of o(A) is always contained in the approximate
point spectrum (cf. [Na, Ch. A-III]), we see that —iw is contained
in the approximate point spectrum of A. Hence we may choose a
sequence (z,) of norm one vectors in X, z, € D(A) for all n, such
that lim,,_, || Az, + iwz,| — 0. In view of

. t .
T(t)z, — e “z, = / e"*T(s)(A + iw)z, ds =0,
0
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(zn) is an approximate eigenvector of T'(t) with approximate eigen-
value e~?.
Let f € L'(R). By the dominated convergence theorem,

lim H / Z FOT )z — e “a) dtH ~0.

n—o0

Thus, using that ||z,| = 1,

o
170>t 17Dl = Jim | [~ sorryen o
n—00 n—00 o
w o
= ./ eﬂmﬂﬂﬁ‘
= |fw)].
This inequality shows that f(w) = 0 for all f € Ip. Therefore,
w € Sp(T). O
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