Elementary Operator-Theoretic Proof of Wiener's Tauberian Theorem

J.M.A.M. VAN NEERVEN (*)

To the memory of Professor P. Grisvard

Summary. - We present a short and elementary proof of Wiener's general Tauberian theorem based on the theory of one-parameter groups of operators.

In this paper we present a short and elementary proof of Wiener's Tauberian theorem based on methods from the theory of C_0 -groups.

Let $\mathbf{T} = {\mathbf{T}(t)}_{t \in \mathbb{R}}$ be a C_0 -group on a Banach space X, i.e. a strongly continuous one-parameter group of bounded linear operators on X. Then \mathbf{T} defines a Banach algebra homomorphism $\mathbf{T}: L^1(\mathbb{R}) \to \mathcal{L}(X)$ by

$$\mathbf{T}(f)x := \int_{-\infty}^{\infty} f(t)T(t)x \, dt, \quad f \in L^{1}(\mathbb{R}), \ x \in X.$$

The kernel of T, notation I_T , is the ideal

$$I_{\mathbf{T}} := \{ f \in L^1(\mathbb{R}) : \mathbf{T}(f) = 0 \}.$$

The Arveson spectrum of **T**, notation $\mathrm{Sp}(\mathbf{T})$, is the hull of $I_{\mathbf{T}}$, i.e. the set of all $\omega \in \mathbb{R}$ such that $\hat{f}(\omega) = 0$ for all $f \in I_{\mathbf{T}}$. Here, as usual,

$$\hat{f}(\omega) := \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$$

^(*) Indirizzo dell'Autore: Department of Mathematics, TU Delft, P.O. Box 5031, 2600 GA Delft, The Netherlands *e-mail*: J.vanNeerven@twi.tudelft.nl This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

is the Fourier transform of $f \in L^1(\mathbb{R})$ at ω .

Our proof of Wiener's Tauberian theorem is based on the fact that $\operatorname{Sp}(\mathbf{T})$ is non-empty provided \mathbf{T} is bounded and $X \neq \{0\}$. This is true in the more general setting of bounded strongly continuous Banach representations of LCA groups G [Ar] and is usually derived from Wiener's Tauberian theorem. The essential point about our proof of Wiener's Tauberian theorem is that in the case $G = \mathbb{R}$ the non-emptyness of the Arveson spectrum admits a direct and elementary operator-theoretic proof. For reasons of completeness, we shall give the complete proof below.

Assuming for the moment that $\operatorname{Sp}(\mathbf{T}) \neq \emptyset$ if $X \neq \{0\}$, Wiener's Tauberian theorem can be proved in a few lines as follows. The *right* translation group is the C_0 -group U on $L^1(\mathbb{R})$ defined by

$$U(t)f(s) := f(s-t), \qquad t \in \mathbb{R}, \text{ a.a. } s \in \mathbb{R}.$$

Note that U(f)g = f * g for all $f, g \in L^1(\mathbb{R})$; here * denotes convolution.

THEOREM 1. (Wiener's Tauberian theorem) If the Fourier transform of a function $f \in L^1(\mathbb{R})$ vanishes nowhere, then the linear span of the set of all translates of f is dense in $L^1(\mathbb{R})$.

Proof. Let $X:=\overline{\operatorname{span}\{U(t)f:t\in\mathbb{R}\}}$. We have to prove that $X=L^1(\mathbb{R})$. Consider the quotient space $Y:=L^1(\mathbb{R})/X$ and let U_Y denote the associated quotient translation group on Y. Then U_Y is strongly continuous and bounded, and for all $g\in L^1(\mathbb{R})$ we have U(f)g=f*g=g*f=U(g)f. By the translation invariance of $X,\ U(g)f\in X$. Hence $U(f)g\in X$, so $U_Y(f)(g+X)=0$ for all $g\in L^1(\mathbb{R})$. It follows that $U_Y(f)=0$. On the other hand, by assumption $\hat{f}(\omega)\neq 0$ for all $\omega\in\mathbb{R}$. Therefore, $\operatorname{Sp}(U_Y)=\emptyset$. We conclude that $Y=\{0\}$ and $X=L^1(\mathbb{R})$.

Although the above proof seems to be new, the idea to apply the theory of C_0 -groups, and more generally, of strongly continuous Banach representations of LCA groups, to quotients of translation groups to derive results in Harmonic Analysis is not; it has been used by Huang [Hu] to study spectral synthesis in Beurling algebras and subsequently in [HNR] to identify a class of Banach subalgebras of $L^1(G)$ which have the Ditkin property.

Even for $G = \mathbb{R}$, the usual proofs of Theorem 1 are quite involved; cf. [Ka], [Lo], [Ru], [Yo].

It remains to prove that $\operatorname{Sp}(\mathbf{T}) \neq \emptyset$ if $X \neq \{0\}$. This is accomplished in two propositions. The first is a well-known result of Evans [Ev]. As usual, for $\lambda \in \varrho(A)$, the resolvent set of an operator A, we write $R(\lambda, A) := (\lambda - A)^{-1}$. We assume that the reader is familiar with the elementary theory of C_0 -(semi)groups as presented in the first chapter of [Pa] or [Na].

PROPOSITION 2. Let **T** be a bounded C_0 -group on a Banach space X, with infinitesimal generator A.

(i) For all $f \in L^1(\mathbb{R})$ whose Fourier transform belongs to $L^1(\mathbb{R})$ we have

$$\hat{f}(\mathbf{T})x = \frac{1}{2\pi} \lim_{\delta \downarrow 0} \int_{-\infty}^{\infty} \hat{f}(-t) \left(R(\delta + it, A) - R(-\delta + it, A) \right) x \, dt,$$

$$x \in X$$

- (ii) If \hat{f} is compactly supported and vanishes in a neighbourhood of $i\sigma(A)$, then $\hat{f}(\mathbf{T}) = 0$.
- (iii) If $X \neq \{0\}$, then $\sigma(A) \neq \emptyset$.

Proof. For all $\delta > 0$ we have $\pm \delta - it \in \varrho(A)$, and for all $x \in X$ we have the identities

$$R(\delta - it, A)x = \int_0^\infty e^{-(\delta - it)s} \mathbf{T}(s)x \, ds$$

and

$$R(-\delta-it,A)x=-R(\delta+it,-A)=-\int_0^\infty e^{-(\delta+it)s}{f T}(-s)x\,ds.$$

Since $\hat{f} \in L^1(\mathbb{R})$, by the formula for the inverse Fourier transform we have

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(s) e^{its} ds$$
, a.a. $t \in \mathbb{R}$

Hence by the dominated convergence theorem and Fubini's theorem,

$$\hat{f}(\mathbf{T})x = \lim_{\delta \downarrow 0} \int_{-\infty}^{\infty} e^{-\delta|t|} f(t) T(t) x dt$$

$$\begin{split} &= \quad \frac{1}{2\pi} \lim_{\delta \downarrow 0} \int_{-\infty}^{\infty} e^{-\delta |t|} \left(\int_{-\infty}^{\infty} e^{ist} \hat{f}(s) \, ds \right) \, T(t) x \, dt \\ &= \quad \frac{1}{2\pi} \lim_{\delta \downarrow 0} \int_{-\infty}^{\infty} \hat{f}(s) \left(\int_{-\infty}^{\infty} e^{-\delta |t|} e^{ist} T(t) x \, dt \right) \, ds \\ &= \quad \frac{1}{2\pi} \lim_{\delta \downarrow 0} \int_{-\infty}^{\infty} \hat{f}(s) \left(R(\delta - is, A) - R(-\delta - is, A) \right) x \, ds. \end{split}$$

This proves (i).

If \hat{f} is compactly supported and vanishes on a neighbourhood of $i\sigma(A)$, then $\hat{f}(\mathbf{T})x = 0$ for all $x \in X$ by (i) and the dominated convergence theorem. This proves (ii).

Finally, assume $\sigma(A) = \emptyset$. Then (ii) implies that $\hat{f}(\mathbf{T}) = 0$ for all $f \in L^1(\mathbb{R})$ whose Fourier transform \hat{f} has compact support. These functions are dense in $L^1(\mathbb{R})$; this can be seen in an elementary way by noting that $\lim_{\lambda \to \infty} K_{\lambda} * f = f$, where K_{λ} is the Fejér kernel, and recalling that \hat{K}_{λ} is compactly supported. Thus $\hat{f}(\mathbf{T}) = 0$ for all $f \in L_{\omega}(\mathbb{R})$. In particular, by defining $f_0(t) := e^{-t}$ for $t \geq 0$ and $f_0(t) := 0$ for t < 0 we have $f_0 \in L^1(\mathbb{R})$ and $R(1, A) = \hat{f}_0(\mathbf{T}) = 0$. This implies $X = \overline{R(1, A)X} = \{0\}$.

The second proposition is a special case of a result of Jorgensen [Jo]. For the real line, it admits the following simple proof.

PROPOSITION 3. Let **T** be a bounded C_0 -group with infinitesimal generator A on a Banach space X. Then $Sp(\mathbf{T}) = i\sigma(A)$.

Proof. First let $\omega \notin i\sigma(A)$. Noting that $\sigma(A) \subset i\mathbb{R}$, we choose a function $f \in L^1(\mathbb{R})$ whose Fourier transform is compactly supported and vanishes in a neighbourhood of $i\sigma(A)$ but not on ω . By Proposition 2 (ii), $\hat{f}(\mathbf{T}) = 0$. But then $\hat{f}(\omega) \neq 0$ implies that $\omega \notin \operatorname{Sp}(\mathbf{T})$.

Conversely, let $\omega \in i\sigma(A)$. Since $\sigma(A) \subset i\mathbb{R}$ and since the topological boundary of $\sigma(A)$ is always contained in the approximate point spectrum (cf. [Na, Ch. A-III]), we see that $-i\omega$ is contained in the approximate point spectrum of A. Hence we may choose a sequence (x_n) of norm one vectors in X, $x_n \in D(A)$ for all n, such that $\lim_{n\to\infty} ||Ax_n + i\omega x_n|| \to 0$. In view of

$$\mathbf{T}(t)x_n - e^{-i\omega t}x_n = \int_0^t e^{i\omega s} \mathbf{T}(s)(A+i\omega)x_n ds = 0,$$

 (x_n) is an approximate eigenvector of T(t) with approximate eigenvalue $e^{-i\omega t}$.

Let $f \in L^1(\mathbb{R})$. By the dominated convergence theorem,

$$\lim_{n \to \infty} \left\| \int_{-\infty}^{\infty} f(t) (T(t)x_n - e^{-i\omega t}x_n) dt \right\| = 0.$$

Thus, using that $||x_n|| = 1$,

$$\|\hat{f}(\mathbf{T})\| \ge \lim_{n \to \infty} \|\hat{f}(\mathbf{T})x_n\| = \lim_{n \to \infty} \left\| \int_{-\infty}^{\infty} f(t)T(t)x_n dt \right\|$$
$$= \left| \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt \right|$$
$$= |\hat{f}(\omega)|.$$

This inequality shows that $\hat{f}(\omega) = 0$ for all $f \in I_{\mathbf{T}}$. Therefore, $\omega \in \operatorname{Sp}(\mathbf{T})$.

REFERENCES

- [Ar] Arveson W., On groups of automorphisms of operator algebras, J. Funct. Anal., 15 (1974), 217–243.
- [Ev] Evans D. E., On the spectrum of a one-parameter strongly continuous representation, Math. Scand., 39 (1976), 80–82.
- [Hu] Huang S.-Z., Spectral Theory for Non-Quasianalytic Representations of Locally Compact Abelian Groups, Diss. Summ. Math., 1 (1996), 171–178.
- [HNR] HUANG S.-Z., VAN NEERVEN J.M.A.M. and RÄBIGER F., *Ditk-in's condition for certain Beurling algebra's*, to appear in Proc. Amer. Math. Soc.
- [Jo] JORGENSEN P.E.T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl., **90** (1982), 343–370.
- [Ka] Katznelson Y., An Introduction to Harmonic Analysis, Dover Publications, 2nd ed., Inc., New York (1976).
- [Lo] LOOMIS L., Abstract Harmonic Analysis, Van Nostrand, New York (1953).

- [Na] NAGEL R. (Ed.), One-parameter Semigroups of Positive Operators, Springer Lecture Notes in Math. 1184 (1986).
- [Pa] PAZY A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983).
- [Ru] Rudin W., Functional Analysis, McGraw-Hill (1973).
- [Yo] Yosida K., Functional Analysis, 6th ed., Springer-Verlag (1980).